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Abstract

In metabolomics, identification of complex diseases is often based on application of (multivariate) statistical techniques to
the data. Commonly, each disease requires its own specific diagnostic model, separating healthy and diseased individuals,
which is not very practical in a diagnostic setting. Additionally, for orphan diseases such models cannot be constructed due
to a lack of available data. An alternative approach adapted from industrial process control is proposed in this study:
statistical health monitoring (SHM). In SHM the metabolic profile of an individual is compared to that of healthy people in a
multivariate manner. Abnormal metabolite concentrations, or abnormal patterns of concentrations, are indicated by the
method. Subsequently, this biomarker can be used for diagnosis. A tremendous advantage here is that only data of healthy
people is required to construct the model. The method is applicable in current–population based –clinical practice as well as
in personalized health applications. In this study, SHM was successfully applied for diagnosis of several orphan diseases as
well as detection of metabotypic abnormalities related to diet and drug intake.
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Introduction

Metabolomics is becoming increasingly important in a whole

range of healthcare-related fields such as disease prevention,

diagnosis and intervention, and studies of the impact of diet and

nutrition on various forms of illness [1–3]. In such studies, the

metabolic phenotype or metabotype of individuals is studied. The

metabotype is a characteristic metabolite profile that depends on

the interplay between genes and environmental factors such as

diet, lifestyle, gut microbial composition, and – in patients –

medication. This profile varies greatly between individuals and

populations. Therefore, metabotyping has applications in popula-

tion-based and personalized medicine [1,4]. For example, various

(subtle) abnormalities in the metabotype have been related to

cancer states, diabetes, cardiovascular diseases, neurological

diseases and inborn errors of metabolism (IEM) [1,3,5,6].

Commonly, the metabotype of an individual is measured from

easily accessible biofluids such as urine or serum, or more seldom

from tissue [2]. Typically, untargeted metabolomics techniques

such as 1H nuclear magnetic resonance (NMR) spectroscopy or

mass-spectrometric methods are used for this purpose [2,7,8].

These techniques can measure a wide range of metabolites

simultaneously and generate a multivariate profile of metabolites

present in the sample. Due to the complex nature of the

metabolome in biofluids multivariate data analysis is often

required to interpret the acquired data and detect metabolic

abnormalities. Most studies deal with classification problems such

as disease diagnosis (healthy versus a specific disease) [3,9]. During

data analysis, such problems are commonly tackled as a two-class or

a one-class problem.

Two-class classification strategies aim to model the metabolic

differences between groups of healthy and diseased individuals.

These differences are grouped in a metabolic pattern or biomarker

representing the abnormalities related to the disease. Typically

used methods for two-class classification are orthogonal projection

to latent structure (OPLS) and linear discriminant analysis (LDA)

[9]. More challenging problems are generally tackled using non-

linear approaches such as SVM, K-PLS or Random Forests

[10,11]. In contrast, one-class classification methods focus on the

similarities that are encountered within the diseased group. This

results in a characterization of the expected metabotypes for a

specific disease (e.g. an average metabotype and expected

metabolic variation). Here, the most commonly used technique

is SIMCA [9]. For both classification strategies, a diagnosis is

made by matching the metabotype of a patient against the result of

the model, being this biomarker or expected metabotype.

Both strategies focus on groups of patients with one specific

disease. This might be impractical in a clinical setting for three

reasons. First, it is not realistic to construct a statistically valid

model for rare or orphan diseases. Such diseases are defined in the

United States as any disease that affects fewer than 200000

individuals, and in the European Community as any disease that

affects fewer than 5 in 10000 individuals [12]. Some rare diseases

have less than a dozen known cases. In other words, the number of

potential patients to base the model on is too low. Secondly, even if

orphan diseases are ignored, each disease requires its own specific
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model. Thirdly, unknown metabolic perturbations, for instance

caused by unknown diseases, may not be detected or falsely

interpreted.

Interestingly, similar problems are encountered when monitor-

ing industrial processes. Analogous to disease diagnosis one wants

to know whether or not the process is in-control (healthy); if not, a

known or unknown rare event (a disease) has occurred that may

affect product quality. So-called statistical process control (SPC)

techniques have been developed to detect all of these events as

early as possible [13]. Due to the success of SPC, we propose here

to adapt these strategies and apply the method on metabolome

profiles of body fluids with the aim of diagnosing the disease of a

patient. This provides a new tool for diagnostic support: statistical

health monitoring (SHM).

In SHM, the so-called normal operating conditions (NOC) of

healthy people are defined. NOC is a term that is often used in

SPCA. In this case it basically means that a one-class classifier is

used to model the expected metabotypes of healthy individuals.

The NOC should therefore represent the average metabotype of a

population and the inherent (normal) variation present in this

population e.g. due to difference in life style. Next, the metabotype

of a patient is compared to NOC. Deviations from NOC such as

abnormal metabolite concentrations or abnormal patterns of

concentrations are indicated by the method. Subsequently, this

information – a (disease) biomarker for this individual patient –

can be used for diagnosis. The fact that only data of healthy people

is required to construct the SHM model is a tremendous

advantage of this approach. Because of this, SHM is not disease

specific and can be used for diagnosis of rare diseases.

As a case study we applied SHM for diagnosis of a family of

orphan diseases, namely inborn errors of metabolism. IEM

comprise a substantial group of rare genetic diseases that can be

diagnosed by NMR spectroscopy in combination with visual

inspection of the data [5]. Because of the complex structure of the

spectra this can be quite a challenge. Moreover, such an approach

is extremely time-consuming and quite subjective. The proposed

SHM approach may make the diagnosis of IEM easier and

objective. Additionally, it will be shown that, depending on how

the NOC are defined, SHM can also detect metabolic abnormal-

ities related to diet and medication.

The next section will outline the concept of SHM and

mathematic background. In the remaining sections the properties

of SHM are discussed based on application of SHM to the case

study example involving IEM.

Theory of Statistical Health Monitoring

In SHM the metabotype of an individual is compared to that of

healthy people in a multivariate manner. Abnormal metabolite

concentrations, or abnormal patterns of concentrations, are

indicated by the method. This is achieved in two steps. In this

first step – detection of abnormal metabotypes – the metabotype of

an individual is matched against NOC and marked as normal or

possibly abnormal. The abnormal metabolites are identified in a

second step.

Detection of abnormal metabotypes
The first step in SHM is to select samples that represent the

NOC of healthy humans well. From now on we will refer to these

samples as normal or NOC samples. The choice of NOC samples

should reflect the goal of the SHM analysis. For example, if the

goal is purely to detect abnormalities related to disease, the NOC

set can include healthy individuals who recently took medication.

However, if one also wants to detect abnormal metabolites related

to drugs, these individuals should not be included. Additionally,

the demographics of the NOC samples and the expected patients

should be as similar as possible. For example, if a patient has a

completely different lifestyle compared to the NOC samples, many

metabolites may falsely be marked as abnormal. However, if the

demographics are too loosely specified, the limit of detection of the

SHM model will be negatively affected. We will further elaborate

on this important aspect in the discussion section.

The NOC samples are stored in data table (Xh). Each row in Xh

contains the metabotype information from one healthy individual.

Each column corresponds to a measured feature, e.g. a chemical

shift value in an NMR spectrum. The data is centred to zero mean

before starting the statistical analysis. Often it is also useful to scale

the data – e.g. to unit variance – to ensure that each feature has

equal chance to influence the model.

Principal component analysis (PCA) is used to describe the

NOC data [13]:

Xh~ThPT
h zEh ð1Þ

Here, ThPh
T is the part of the model that describes the

structural metabolic variation between the NOC samples, while

matrix Eh only contains residuals or non-structural variation. Th

describes the systematic metabolic differences or variation between

the NOC samples. The columns in Ph, or factors, are the actual

model. The factors are descriptors that indicate in which measured

features the systematic differences occur. A property of the factors

is that they are ordered by importance: the first ‘‘explains’’ most

variation, followed by the second, etc. At some point the

remaining factors only describe noise. These factors are not

included in the model.

To determine whether someone is possibly diseased, the

metabotype information from this individual (xnew) is evaluated

using the constructed model:

xnew~tnewPT
h zenew ð2Þ

Note that tnewPh
T describes which part of the individual’s

metabotype is in accordance with the metabotypes that are

expected for NOC samples. If an individual is similar to the

normal samples, this prediction should capture his/her complete

metabotype. In this case, the error enew should be small and fall in

the range of the error of the NOC samples. Therefore, abnormal

metabotypes can be detected by inspection of the size of enew. In

industrial process control, the so-called Q-statistic is used for this

purpose [13]:

Q~ enewk k2 ð Þ

A sample with a high Q-value corresponds to a metabotype that

either contains abnormal metabolite(s) or abnormal metabolite

concentrations that break the normal between-metabolites corre-

lation pattern. The metabotype of an individual is marked as

abnormal if the value for Q exceeds the significance limit given by

Qa [14]:
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where the parameters of the approximation are defined as

h0~1{
2w1w3

3w2
2

wi~tr
~
L

i
� �

, i~1,2,3 ð Þ

~
L is the covariance matrix of Eh, and za is the standardized

normal variable with (12a) confidence limit, having the same sign

as h0 [14].

To summarize, for a measured metabotype (xnew) the PCA

model (tnewPh
T) is used to predict what this metabotype would

look like if the individual was an NOC sample. The larger the

difference between predicted and measured metabotype (enew) the

more likely the metabotype is to be abnormal. The size of this

difference is expressed via the Q-statistic. An example of SHM

when monitoring 2 metabolites is presented in File S1.

Identification of abnormal metabolites
The second step in SHM is to detect the abnormal metabolites

that caused the deviation from NOC. A clinical practitioner can

use this information for example for disease diagnosis, possibly via

a database search.

Since the Q-statistic should detect all deviations from NOC, the

contribution of measured features to this statistic should be

investigated. For this purpose, the value for Q is decomposed into

per feature contributions. Here, we used partial decomposition

[15]:

Q~ enewk k2
~xnew I{PhPT

h

� �
xT

new~

XK

i~1

xnew I{PhPT
h

� �
jij

T
i xT

new~
XK

i~1

qi

ð Þ

where I is the identity matrix and ji is the i th column of the

identity matrix. Index i and K indicate a specific feature and the

total number of measured features, respectively. The contribution

of the measured value in feature i to Q equals qi. High values

indicate abnormal behaviour of this particular feature. However,

the contribution of each feature in the NOC data should be taken

into account as well: a large contribution of a feature becomes less

meaningful if such contribution values were also observed for the

NOC samples. Therefore, all contributions were studied relatively

to the variance of the NOC residuals Eh [15]:

rqi~
qi

~Li,i

Where ~Li,i indicates the element in the i th row and column of
~
L.

The set of relative contributions for all features will be referred

to as a personal health profile or personal biomarker.

Method and Materials

Data
To assess the value of SHM for disease diagnosis, a set of urine

samples of 193 healthy children and a set of 24 patients was

measured using proton NMR spectroscopy. Eighteen patients

were known to suffer from one of seven different IEM. For the

other six patients, no IEM was diagnosed, but their metabotypes

contained commonly prescribed drugs such as depakine and sabril.

More details regarding the healthy and patient samples are

specified in Tables 1 and 2, respectively. Note that a subject had to

be between 4–12 years old to participate in this study and be of

Dutch ancestry. An equal amount of males and females were

selected.No other selection criteria such as lifestyle and diet were

imposed.

The urine samples were centrifuged before analysis. A volume

of 70 ml of a 20.2 mmol/l trimethylsilyl-2,2,3,3-tetradeuterium-

propionic acid (TSP, sodium salt; Aldrich) 2H2O solution was

added to 700 ml of urine as a chemical shift reference (d= 0.00)

and as a lock signal. The pH of the urine was adjusted to

2.5060.05 with HCl. Finally, 650 ml of the sample was placed into

a 5-mm NMR tube (Wilmad Royal Imperial; Wilmad LabGlass,

USA).

Table 1. Abnormal compounds present in urine 1D 1H-NMR spectra from the healthy individuals.

Compound CS (ppm); multiplicity Origin

Acesulfame 2.11d; 5.67q Artificial sweetener

Acetaminophen 2.15s; 6.90d; 7.25d Paracetamol

A-glucuronide* 2.16s; 5.12d; 7.13d; 7.34d Paracetamol

A-L-cysteinyl* 2.15s; 6.99d; 7.51d Paracetamol

A-N-acetyl-L-cysteinyl* 1.84s; 2.14s; 6.93d; 7.42d Paracetamol

A-Sulphate* 2.17s; 7.45d; 7.31d Paracetamol

Cyclamate 1.53–2.06m Artificial sweetener

Mannitol 3.6–3.8v Sweetener

N-Methylhydantoin 2.92s; 4.08s Bacteria

TMA-oxide 3.54s Fish meal

The metabolites were identified by comparison of the abnormal resonances to a database of NMR spectra of model compounds [5]. In cases where the overlap of
resonances in the 1D spectrum was quite severe, 2D COSY NMR experiments were used to provide additional information and confirm that the metabolite identification
based on the 1D spectrum was correct.
*Spectrum not completed interpreted; s = singlet; d = doublet; t = triplet; q = quartet; m = multiplet; v = various multipets.
A = Acetaminophen; TMA = Trimethylamine.
doi:10.1371/journal.pone.0092452.t001
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1H NMR spectra were ubtained using a Bruker 500 MHz

spectrometer (pulse angle 90u, delay time 4 s, number of scans

256, temperature 298 K). The water resonance was suppressed by

gated irradiation centred on the water frequency. Shimming was

performed automatically on each sample prior to the data

acquisition using the TopShim method from Bruker BioSpin.The

phase and baseline were corrected manually.

The regions 0.2–4.7 ppm and 5.0–10.0 ppm were selected for

further analysis in Matlab 7.14 (Mathworks, Natick, Massachu-

setts, U.S.A.). Next, the urine profiles were normalized to the

creatinine signal to correct for dilution effects. Equidistant binning

with a bin size of 0.04 ppm was used to reduce the dimension of

the normalized data from 30888 to 246 variables. Finally, the data

was centred to zero mean and scaled to unit variance.

For some samples (see below), 2D COSY NMR spectra were

also recorded for extra spectral information. The spectra were

recorded at 500 MHz using 4 k data points in F2 and a spectral

with of 6002 Hz. For all samples, 256 increments and 16 scans per

increment were used. The TR was 2 s, during which the water

resonance was presaturated. Prior to Fourier transformation, a

since function was applied in both time domains.

Ethics statement
The medical ethical committee of the Radboud University

Medical Centre in Nijmegen, The Netherlands, approved the

study protocol. Informed verbal parental consent was obtained for

all volunteers. At that time consultation of the medical ethical

committee of the Radboud University Medical Centre in

Nijmegen, The Netherlands resulted in the advice to ask the

collaboration of the parents/caretakers of the children via an

information letter explicitly stating that their collaboration was on

a voluntary basis and that all samples would be fully anonymized

and that all samples would be destroyed at the latest 5 years after

the sample collection.

SHM model construction and validation
First, the raw NMR spectra of the 193 healthy individuals were

extensively screened by an experienced clinical practitioner to rule

out any abnormal metabolic patterns in these samples. Seventeen

samples with abnormal patterns related to dietary influences and

drug intake were identified. These samples were marked as

abnormal and used to validate the SHM approach since detection

of abnormal patterns due to diet and drugs is in principle no

different from detection of abnormalities related to a disease.

Additionally, the set of 24 patients was used for validation. In all

samples, the abnormal metabolites were identified by the clinical

practitioner by comparison of the abnormal resonances to a

database of NMR spectra of model compounds [5]. In cases where

the overlap of resonances in the 1D spectra was quite severe, 2D

COSY NMR experiments were used to provide additional

information and confirm that the metabolite identification based

on the 1D spectra was correct.

The SHM model was constructed on the basis of 120 training

samples that were selected from the remaining set of 176 binned
1H NMR spectra of normal (healthy) individuals by the Kennard

Stone algorithm [16]. The optimal number of factors in the PCA

model was determined by a bootstrapping algorithm called

NUMFACT [17]. In essence, the PCA factors determined for

each resampling were compared for changes. Factors which

changed significantly from one resampling to the next were

probably due to noise and excluded from the model.

Validation of identification of abnormal metabolites was

performed by applying the left-out 56 healthy; 17 healthy, but

abnormal; and 25 patient samples to the SHM model. An imposed

significance limit (a) of 5% was used. Note that centring and

scaling of the test data was based on the feature means and

standard deviations of the training data.

All analysis was performed using in-house developed algorithms.

Bootstrapping to estimate the number of factors in PCA was

performed with PLS_Toolbox 6.7.1 [18].

Table 2. Abnormal compounds present in urine 1D 1H-NMR spectra from the patients.

Compound CS (ppm); multiplicity IEM/Orign

Arginine 1.69m; 1.92m; 3.24q; 3.85t Cystinuria

4-Amino-5-hexenoic acid 1.94m; 2.08m; 2.46m; 5.47m; 5.80m Medication: Sabril

Dihydroxycholenic acid 0.67s; 0.80–0.94v 3b-Hydroxy-D5-C27-steroid dehydrogenase deficiency

Formiminoglutamic acid 2.00–2.22v; 2.47t Formiminotransferase deficiency

Homogentisic acid 3.64s; 6.78m Alkaptonuria

Hydantoin-5-propionic acid 2.00–2.22v; 2.51t Formiminotransferase deficiency

3-Hydroxyisovaleric acid 1.33s; 2.55s Isovaleric aciduria 3MCC-deficiency

Isovalerylglycine 0.94d; 2.02m; 2.18d; 3.94d Isovaleric aciduria

Lysine 1.47m; 1.72m; 1.92m; 3.01t; 3.77t Cystinuria

3-Methylcrotonylglycine 1.86d; 2.03d; 3.97d; 5.78m 3MCC-deficiency

2-oxo-1-pyrrolidine acetamide 2.10m; 2.48t; 3.52t; 4.01s Medication: Piracetam

5-Oxoproline 2.20m; 2.43m; 2.55m; 4.36m 5-Oxoprolinuria

Taurine 3.27t; 3.43t(wide due to exchange) Unknown; possibly nutrition

Trihydroxycholenic acid 0.73s; 0.80–0.94v 3b-Hydroxy-D5-C27-steroid dehydrogenase deficiency

Valproic acid 0.88t; 1.30m; 1.50m; 2.44m Medication: Depakine

The metabolites were identified by comparison of the abnormal resonances to a database of NMR spectra of model compounds [5]. In cases where the overlap of
resonances in the 1D spectrum was quite severe, 2D COSY NMR experiments were used to provide additional information and confirm that the metabolite identification
based on the 1D spectrum was correct.
*Spectrum not completed interpreted; s = singlet; d = doublet; t = triplet; q = quartet; m = multiplet; v = various multipets.
3MCC = 3-Methylcrotonyl CoA carboxylase.
doi:10.1371/journal.pone.0092452.t002
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Results

Inspection of the 1H NMR data: current clinical practice
The data was first analysed according to current clinical

practice, namely by visual inspection and by means of PCA

scoreplots. This inspection was required to select the NOC

samples (healthy individuals) on which the SHM model could be

trained.

A clinical expert visually inspected the NMR data of the 193

healthy children and the 24 patients. Ten exogenous metabolites

related to diet or drug intake were observed in the set of 193

children. More details are specified in Table 1. Seventeen samples

contained metabolites related to bacteria, a fish meal, paraceta-

mol, or cyclamate. The artificial sweeteners Acesulfame K and

mannitol were present in the metabotype of such a large number

of healthy individuals that they were not marked as abnormal

metabolites. Fifteen abnormal metabolites were observed in the 24

patient samples. These were related to 7 IEM (18 patients) as well

as medication (6 patients). More details are specified in Table 2.

In figure 1, a PCA scoreplot of all samples is shown (autoscaled

data). The samples were coloured according to the observations

made by the clinical expert. Clearly, many abnormal metabotypes

could not be distinguished from healthy samples this way.

Alternative colourings of the plot indicated no trends related to

age, gender or other demographics either.

Statistical health monitoring
The SHM model was constructed on the basis of 120 healthy

metabotypes. The clinical expert had not detected any of the

exogenous metabolites listed in table 1 in these samples, except for

the articial sweeteners Acesulfame and mannitol. This means that

future samples that contain exogenous metabolites related to fish,

paracetamol intake, etc will be marked as abnormal by the model

even if they are healthy. This can be undesirable if the sole

purpose of the SHM model is disease diagnosis. We will further

elaborate upon this choice of NOC samples in the discussion.

Eighty-three percent of the total variation in the NOC data was

estimated to be systematic by NUMFACT. This variation was

modelled by the first 16 factors. Next, the metabotype of

the validation samples was automatically inspected using the

constructed SHM model. As shown in figure 2, Q-values of the

abnormal metabotypes were clearly larger compared to the

normal metabotypes. Using the imposed significance limit of

5%, all normal and abnormal metabotypes were correctly

identified. Note that the cut-off point Q5% to mark a patient’s

metabotype as abnormal was completely based on the training

samples (equation 4).

The 17% variance left out of the model must correspond to

individual variations, which did not necessarily belong to the NOC

of the whole group. This unexplained variance partly re-appeared

as Q contribution. Therefore, metabotypes of normal individuals

did not have zero contribution for every feature. Statistically

speaking, with the chosen significance level 5% of the samples that

are within NOC are expected to be incorrectly marked as

abnormal (i.e. 3 individuals). In this case all normal individuals

were correctly detected which is related to size of our test cohort.

For metabotypes marked as abnormal, the abnormal metabo-

lites were identified via the relative feature contributions to Q. The

set of relative contributions can be considered as a personal

biomarker for that individual since they highlight how and how

much this individual is different from NOC. The contribution can

be visualized in a so-called contribution plot which is commonly

done in industrial process control, or in the original NMR

spectrum to integrate SHM in current clinical practice. In a

contribution plot the relative contribution is plotted against the

chemical shift value. Three examples are presented in figures 3a, c,

and e. In each figure, high peaks relative to the baseline indicate

resonances that were abnormal with respect to NOC. An

advantage of contribution plots is that features with a large

contribution are easy to identify, even if they have a low intensity

in the original NMR spectrum (e.g. the resonances between 9.6–

9.8 ppm in figures 3e and 3f). In contrast to contribution plots,

visualization in the NMR spectrum itself allows the user to make

combined use of contribution values as well as NMR knowledge

such as multiplet structure to make a diagnosis. As shown in

figures 3b, d, and f, the contribution values are colour coded in this

type of visualization.

The abnormal metabotypes were further inspected using both

representations of the relative contribution. All IEM, were correctly

diagnosed this way. Similarly, all abnormalities related to diet and

the different types of medication were correctly identified. Most

IEM were diagnosed via key resonances – biomarkers relating to the

Figure 1. PCA scoreplot of the autoscaled data. Note that the
points are coloured according to the observations made by a clinical
expert as healthy; healthy, but exogenous metabolites were present;
patients diagnosed with IEM; and other patients.
doi:10.1371/journal.pone.0092452.g001

Figure 2. Q-values obtained by statistical health monitoring for
56 healthy and 42 abnormal metabotypes.
doi:10.1371/journal.pone.0092452.g002
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Figure 3. Feature contributions visualized in a contribution plot and the original NMR spectra for three abnormal metabotypes. The
abnormal metabolites are related to (A, B) high concentrations of taurine, (C, D) alkaptonuria, and (D, E) paracetamol comsumption. The arrows
indicate the resonance corresponding to the middle of a bin. Each bin had a width of 0.04 ppm.
doi:10.1371/journal.pone.0092452.g003
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specific IEM; not always were all relevant biomarker resonances for

a specific IEM marked as abnormal. This is similar to visual

inspection of the data: resonances with a high degree of splitting or

overlap cannot be discerned from noise in 1D spectra.

In order to illustrate the principles of relative contributions and

the procedure to follow to establish a potential diagnostic better,

we will describe the three examples in figure 3 in more detail

below. The complexity of these examples is progressively rising in

terms of spectral interpretation meaning that correct identification

by SHM is more challenging.

Case 1. The first example is considered relatively simple

because only two resonances are involved. As shown in figure 3a,

SHM clearly marked two resonances at 3.27 and 3.43 ppm as

abnormal: the relative contribution was much larger compared to

the contribution of other resonances. Similar to visual inspection

of the data, the metabolite corresponding to these abnormal

resonances was identified by comparison of the resonances to a

database of NMR spectra of model compounds. These particular

two resonances correspond to taurine indicating that the

metabotype of this patient contained abnormally high concentra-

tions of taurine. This was confirmed by visual inspection of the

spectrum by the clinical expert. At the moment the cause of the

high concentrations of taurine in the metabotype of this patient is

unknown. Perhaps, the abnormality can be related to diet, e.g.

consumption of energy drinks.

Case 2. The contribution plot of this patient also showed two

resonances that were abnormal: a singlet at 3.64 ppm and a

multiplet at 6.78 ppm (figures 3c and 3d). However, inspection of

this plot was more difficult compared to case 1. The multiplet was

much easier to detect compared to the singlet because the NMR

spectra of healthy individuals did not contain much signal around

6.78 ppm. Therefore, the relative contributions of this multiplet

were very large. In contrast, the singlet at 3.64 ppm was positioned

in a crowded region of the spectra resulting in much lower

contribution values. However, compared to the contributions at

the surrounding chemical shifts, the singlet at 3.64 was still clearly

abnormal. This shows that inspection of contribution plots should

not only focus on the absolute value of the contributions, but on

their size relative to the contribution that is observed for most

chemical shifts. One could say that for each individual the ‘‘Q

baseline’’ must be used to determine if a particular peak is

abnormal or not. The abnormal singlet at 3.64 ppm and the

multiplet at 6.78 ppm indicated that the metabotype of this

individual contained a large concentration of homogentisic acid

[5]. Thanks to this, the patient was diagnosed with the IEM

alkaptonuria. Alkaptonuria is caused by a deficiency of the enzyme

homogentisic acid oxidase in tyrosine catabolism [5]. This results

in high concentrations of homogentisic acid in the urine of such a

patient.

Case 3. As shown in figure 3e, eight regions in the NMR

spectrum of this individual had abnormal contributions. Similar to

case 2, the contributions of the relevant resonances again differed

by orders of magnitude.

Comparison of the abnormal regions to spectra of model

compounds clearly indicated that the metabolites acetaminophen,

acetaminophen-glucuronide, and acetaminophen-sulphate were

present in high concentrations (see table 1). This is caused by

consumption of paracetamol by this individual. As shown in

Table 1, this drug can actually be detected in urine via abnormal

concentrations of five metabolites. A number of these metabolites

will be visible in the NMR spectrum depending on how the drug

was metabolized. In this case no high Q-values were observed at

resonances 1.84, 6.99, and 7.51 ppm. This indicates that the

compounds A-N-acetyl-L-cysteinyl and A-L-cysteinyl were either

present in very low concentration, or that in this particular case

paracetamol was not metabolised into these metabolites. This was

confirmed by visual inspection of the NMR spectrum. Due to the

large number of resonances involved, identification of paracetamol

intake via SHM is considered more difficult compared to the

previous two cases. Additionally, the intensities of the resonances

involved are much lower which makes diagnosis even more

difficult.

Note that for all individuals who consumed paracetamol, the

resonances around 9.8 ppm were also marked as abnormal. These

resonances have not been described in literature. However, by

means of a simulated NMR spectrum of paracetamol in the

Bruker software we ascribe these resonances to NH-groups in the

molecule.

Discussion

In this study, SHM was introduced as a valuable tool for

diagnosis of a multitude of possible (rare) diseases. The method

was successfully applied in a case study involving diagnosis of

several IEM as well as metabolic abnormalities related to drug

consumption and diet.

First, the metabotype of each individual was marked as normal

or abnormal: 100% of the ‘‘healthy’’ and 100% of the abnormal

metabotypes were correctly identified. Next, it was shown that

feature contributions can be used to identify the abnormal

metabolites. The contributions are very easy to calculate without

prior knowledge. Prior knowledge, however, is required to

interpret them and relate the abnormal features to a disease.

Therefore, SHM should be regarded as a decision support tool for

diagnosis. In case of rare diseases, SHM is the only tool available

to detect the abnormalities. In case of more common diseases, the

SHM-based metabotype screening could be followed by more

classical targeted approaches (e.g. a two-class classifier) to confirm

the diagnosis.

The first step of SHM, detection of abnormal metabotypes in a

multivariate fashion, is functioning in a reliable way. The second

step concerns identification of the abnormality. This identification

relies on a univariate evaluation of the individual contributions of

each feature or measured signal to Q. These contributions should

be studied with some caution due to the so-called smearing effect:

contributions from abnormal features can propagate to other

features meaning that fault free features can show increased

contribution [15]. This a well-known issue in industrial process

control that has been greatly discussed in literature [13]. The

smearing effect is a direct consequence of the fact that an SHM

model is constructed on the basis of normal metabotypes. Because

of this the model is very well able to detect when a metabotype is

abnormal. However, when the abnormal metabolites are identified

via the Q-statistic again information from the normal (NOC)

individuals has to be used (see equation 7). The model assumes

that the correlations between metabolites in the abnormal

metabotype are the same as those encountered in the NOC

samples. This doesn’t have to be the case. This imperfect

assumption may lead to some false positives i.e. some metabolites

can be marked as abnormal while they are not. Unfortunately, the

smearing effect cannot be avoided. In this study, the smearing

effect was minimized by using partial decomposition of the Q-

statistic, instead of the commonly used complete decomposition

method. This ensures that the contribution of an abnormal feature

will always be greater than the contribution given to the ‘‘good’’

feature [15].

Some works in the process control literature suggest the use of

control limits for determining the significant feature contributions.
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However, this should be discouraged since the (biological)

unrelated features might also show an increased contribution

due to the smearing effect [15]. Therefore, we prefer to rely on

human expertise by visually inspecting the contribution plots.

Selection of NOC samples is a critical step in the

construction of an SHM model. The proposed method detects

deviations from these normal samples. This deviation can be

related to disease, but also a healthy sample with a deviation

that is not present in the NOC set – e.g. the paracetamol

example presented in case study 3. When disease diagnosis is

the goal of the SHM model, examples such as case 3 are false

positives. As shown in figure 1, the patient samples differed

more from the NOC samples (the healthy group) compared to

the group of healthy samples that contained exogenous

metabolites. This was the main reason why the latter group

was not included in NOC: we wanted to investigate if SHM

was also able to detect these smaller deviations from NOC.

This group should be included in NOC, however, if the user

only wants to detect metabolites related to disease. Therefore,

we also briefly investigated this disease diagnosis model. A

direct consequence of the fact that the NOC now contained

extra inter-individual variation due to diet and medication was

that the cut-off value for Q (equation 4) was increased. This

means that samples will less quickly be marked as abnormal,

increasing the chance of false negatives. In this case, however,

all patient samples were still correctly diagnosed. In contrast to

the SHM model presented in the results section, all samples

with metabolites related to medication and drugs were now

marked as normal. In this feasibility study, the NOC set was a

small population of healthy children. These samples matched

in age and ancestry to the expected IEM patients. No

restrictions on factors such as lifestyle were imposed to ensure

enough diversity within the NOC set so that it is representative

of future patient samples. However, due to the size of our

cohort most likely not all possible factors such as all types of

medication were included in NOC. We expect that a much

larger cohort of randomly selected NOC samples would

contain most of the common diets; types of medication; and

other factors, thereby avoiding the occurrence of false positives

related to this. Additionally, if false positives occur later on, the

NOC set can be updated with these samples. Note that the

cohort should match the expected demographics of the

patients are closely as possible since the larger the biological

variation of the NOC samples the more difficult it will be to

detect a subtle abnormality related to disease.

When working with large cohorts of NOC samples, an

interesting research line would be to see if sub-populations of

normal individuals with completely different characteristics due to

e.g. environmental factors can be identified. Each sub-population

has its own NOC. In such a case, a SIMCA-like model structure

where a separate SHM model is constructed for each population

seems more appropriate compared to one general model that was

used in the present study. Matching new samples only against

NOC of the correct sub-group could greatly enhance the power of

the SHM model for disease diagnosis. If the subpopulations are

unknown, perhaps a clustering approach such as mixture

modelling can be used to define them.

Three additional future development lines can be defined for

SHM: (1) connection of SHM output to a disease database, (2)

development of personalized health control, and (3) application of

SHM in clinical trials. The first research line could be

implemented in SHM in the form of a database of known disease

which would automatically link the abnormalities detected with a

list of potential diseases.

The second perspective is to define NOC at an individual level

instead of a population or sub-group based one. To do so,

longitudinal metabotyping experiments should be performed. The

SHM model would then very precisely describe the NOC

metabotype profile because no intra-individual differences have

to be taken into account. In consequence, SHM would be able to

detect more subtle abnormalities. An additional advantage of

longitudinal studies for detection of abnormal metabotypes is that

the user can accumulate information from a series of measure-

ments. One could check whether measurements appear randomly

distributed between the control limits or if a structure is appearing,

signalling the start of a deviation from NOC. Such tests may

greatly improve the power of SHM for disease detection.

Identification of the specific abnormality may be improved by

studying contributions relative to the last k timepoints instead of all

NOC samples. The abnormal metabotype should be most similar

to the last metabotypes that were measured before the individual

became ill.

In this study, NMR was used to assess the metabotype of each

individual because it is a very stable technique with a detection

limit in the low micromolar range. This technique has been used

routinely for over 20 years in Radboud University Medical Centre

in Nijmegen to diagnose IEM. Although NMR is a valuable

analytical platform to diagnose IEM, it is not necessarily the best

technique for other diseases. Other data types such as results of

classical blood tests or more advanced measurements such as 2D-

NMR and LC-MS should be used if they are known to provide

more relevant information. In principle, SHM can be applied to

any type of data. For each application it is important to take into

account the structure of the data and adjust the model accordingly.

Here, PCA was used to describe healthy metabotypes. Multiway

data coming from 2D-NMR or LC-MS could be evaluated using a

PARAFAC or Tucker3 structure [19]. Because SHM can be

applied to any data type, it will most likely not only find

application in metabolomics, but also in other fields such as

proteomics or genomics.

Conclusion

Due to the complex nature of metabolomics data, multivar-

iate statistics are required interpret the data. Unfortunately,

current multivariate tools can only diagnose diseases in a

targeted fashion; a separate model is required for each disease.

Additionally, such tools are not always applicable to rare or

orphan diseases. Abnormal metabotypes can sometimes be

detected in an untargeted fashion by visual comparison of the

data. However, detection of subtle abnormalities and abnor-

mal patterns is extremely subjective and time-consuming. An

alternative approach, SHM, was proposed in this study.

In SHM, the metabotype of an individual is compared to

normal (healthy) metabotypes in a multivariate manner. Any

abnormal patterns are indicated by the method. Subsequently, this

information can be used for diagnosis. In this study, SHM was

successfully applied for diagnosis of various metabotypic abnor-

malities related to diet, drug intake and IEM.

SHM is a general method that is not only applicable to

metabolomics data. Additionally, the method offers perspectives in

the framework of personalized health.

Supporting Information

File S1 An example of SHM when monitoring 2
metabolites is presented as supporting material.
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