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Abstract: Background: Myocardial infarction (MI) is the most severe ischemic heart disease and di-

rectly leads to heart failure till death. Target molecules have been identified in the event of MI includ-

ing increasing angiogenesis, promoting cardiomyocyte survival, improving heart function and restrain-

ing inflammation and myocyte activation and subsequent fibrosis. All of which are substantial in car-

diomyocyte protection and preservation of cardiac function. 

Methodology: To modulate target molecule expression, virus and non-virus-mediated gene transfer 

have been investigated. Despite successful in animal models of MI, virus-mediated gene transfer is 

hampered by poor targeting efficiency, low packaging capacity for large DNA sequences, immuno-

genicity induced by virus and random integration into the human genome.  

Discussion: Nanoparticles could be synthesized and equipped on purpose for large-scale production. 

They are relatively small in size and do not incorporate into the genome. They could carry DNA and 

drug within the same transfer. All of these properties make them an alternative strategy for gene trans-

fer. In the review, we first introduce the pathological progression of MI. After concise discussion on 

the current status of virus-mediated gene therapy in treating MI, we overview the history and devel-

opment of nanoparticle-based gene delivery system. We point out the limitations and future perspec-

tive in the field of nanoparticle vehicle.  

Conclusion: Ultimately, we hope that this review could help to better understand how far we are with 

nanoparticle-facilitated gene transfer strategy and what obstacles we need to solve for utilization of 

nanomedicine in the treatment of MI. 

Keywords: Myocardial infarction, cardiomyocytes, angiogenesis, inflammation, gene transfer, nanoparticles. 

1. INTRODUCTION 

Ischemic heart disease (IHD) is the leading cause of 
morbidity and mortality for decades [1]. Among IHD, myo-
cardial infarction is the most serious one and directly leads to 
heart failure. Atherosclerosis is the fundamental pathological 
basis of IHD, resulting from endothelial injury [2, 3], lipo-
protein sub-endothelium retention [3, 4], inflammatory infil-
tration and accumulation [5-7] and collagen deposition [8]. 
As atherosclerotic plaque grows, it narrows coronary arteries 
and limits blood supply to cardiomyocytes. Myocardial in-
farction happens when severe coronary stenosis blocks blood 
flow and deprives oxygen and nutrient supply. Reperfusion 
exposes cardiomyocytes under oxidative stress which further 
accelerates cell death. In response to cell apoptosis, innate 
immune cells, and subsequently, T lymphocytes and B lym-
phocytes infiltrate into the infarcted area for further cardio-
myocyte destruction. For instance, following myocardial 
infarction, chronic β-adrenergic activation is a potent  
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stimulator for the production of TNF- , IL-1β, IL-6 and IL-
18, all of which contribute significantly to myocardial damage 
and accelerate fibrotic progression [9]. Adult mammalian car-
diomyocytes carry low proliferative potential and could not 
replace the dead cardiomyocytes [10]. Therefore, insufficient 
healing results in scar formation and heart failure. By far, ac-
cumulated studies have demonstrated how cardiomyocytes are 
subjected to apoptosis and how inflammation stimulates fibro-
sis, the key questions/strategies focus on improving angio-
genesis to protect ischemic cardiomyocytes and preserve heart 
function, regenerating cardiomyocytes and restraining in-
flammation and ventricular remodeling.  

1.1. Angiogenesis for Cardiomyocytes Survival and Func-
tion 

Early thrombolysis and stenting reopen stenosed coro-
nary vessel and recapitulate the supply of oxygen and nutri-
ents to promote cardiomyocyte survival in the acute phase. 
Nevertheless, some patients miss the best chance for throm-
bolysis and catheter intervention. When these patients are in 
a chronic stage, how to minimize cardiomyocyte damage, 
maintain cell function and inhibit the progression of fibrosis 
are under investigation.  
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Manipulating key angiogenic factors not only protect 
coronary endothelial cells but also assist new vessel forma-
tion. In the mice received coronary ligation and lectin and 
hypoxyprobe injection, Kobayashi et al. demonstrated that 
new vessels developed from the endocardium on day 3 in the 
ischemic area and became mature on day 14. These primitive 
vessels are independent from coronary circulation but could 
perfuse ischemic area with oxygen supply. They further 
showed that VEGF-VEGFR2 signaling pathway was crucial 
in the formation of primitive vessels [11]. 

VEGF is a very potent factor to stimulate angiogenesis. 

Among these family members, VEGF-B is the most abun-

dantly expressed in cardiomyocytes [12]. Huusko et al. in-

jected adenoviral vector containing VEGF-A, or VEGF-B or 

VEGF-E into the anterior wall of the left ventricle in 

C57BL/6 mice. By ultrasound and perfusion analyses, they 

found that VEGF-B- and VEGF-E-induced angiogenesis was 

more physical than that of VEGF-A. Although neither injec-

tion altered left ventricular function, VEGF-A had more side 

effects than VEGF-B and VEGF-E [13]. In agreement with 

this report, when rats underwent I/R injury and then VEGF-

B injection, it increased Akt phosphorylation and Bcl-2 ex-

pression, reduced p38MAPK phosphorylation, all of which 

contributed to the inhibition of autophagy for cell survival 

[14]. Topical expression of VEGF-B by adeno- or AAV-9-

mediated gene transfer could increase the density of the cap-

illary area and cardiomyocyte proliferation and enhance car-

diac function in mice model with myocardial infarction [15, 

16]. Unlike VEGF-B, the role of VEGF-C in cardiomyocytes 

is uncertain. On one hand, in a rat I/R model with pretreat-

ment of VEGF-C in the left ventricle myocardium, VEGF-

C/VEGFR2 activates Akt phosphorylation and inhibits Bax 

expression, leading to increased cardiomyocyte survival and 

function [17]. On the other hand, binding to its receptor 

VEGF-R3 on myofibroblasts, VEGF-C could activate TGF-

β1 and ERK phosphorylation and participate fibrosis [18].  

1.2. Improving Cardiac Function 

Except angiogenesis that could promote cardiomyocyte 

survival with function, calcium stimulates cardiomyocyte 

contraction, and thus, is an important mediator for cardiac 

function. Cardiac action potential consists of two cycles, a 

rest phase and an active phase. Ca
2+

 influx into cytoplasmic 

compartment depolarizes cardiomyocyte contraction. Im-

mediately after that, Ca
2+

 is removed from cytosol for Ca
2+

 

homeostasis. The Ca
2+

 efflux is controlled by Sarco/Endo-

plasmic reticulum Ca2-ATPase (SERCA-2a), a calcium 

ATPase in the sarcoplasmic reticulum in cardiomyocytes. 

As the Ca
2+

 transporter, it facilitates Ca
2+

 transportation 

from cytosolic compartment to the Sarcoplasmic 

Reticulum. In cardiomyocyte-specific SERCA-2-/- mice, 

Ca
2+

 transient amplitude was reduced which was accompa-

nied with O2 consumption dysfunction [19]. In the patients 

with heart failure, calcium cycling was impaired partially 

due to decreased SERCA-2 activity [20]. By contrast, di-

rect [21] and indirect [22, 23] increase of SERCA-2 ex-

pression improved energy utilization and cardiac contractil-

ity. Apart from that, connexin 43 has been identified as the 

major mediator of intracellular Ca
2+

 propagation between 

cardiomyocytes [24]. Down-regulation of connexin 43 

could enhance cardiomyocyte proliferation under myocar-

dial infarction [24]. 

1.3. Restraining Inflammation and Myofibroblast Activa-

tion 

Inflammation is the main drive for cardiomyocyte fibro-
sis and cardiac remodeling. In the presence of MI, endothe-
lial cells become activated and express a series of adhesion 
molecules to attract neutrophils, macrophages, monocytes 
and lymphocytes for infiltrating into injured site [25, 26]. 
These inflammatory cells release inflammatory cytokines 
such as IL-1β, TNF-a and IL-17A that strengthen cardio-
myocyte apoptosis [27-29], MMPs for matrix degradation 
[30, 31] and myofibroblast activation [32, 33]. 

Beside inflammatory cells, β1-adrenergic receptor (β1-
AR) and mineralocorticoid receptor (MR) pathways are acti-
vated in cardiomyocytes, both of which stimulate inflamma-
tory cytokine production to exaggerate inflammation cas-
cade. From the mechanism view, stress activates β1-
adrenergic receptor (β1-AR) on cardiomyocytes for reactive 
oxygen species production, which, in turn, increases inflam-
masome component NLRP3 production for caspase-1 activa-
tion. Activated caspase-1 cleaves pro-IL-18 into active IL-18 
to further reinforce inflammation. In contrast, blockade of 
IL-18 by neutralizing antibody reverted cardiac inflamma-
tion and fibrosis [9]. 

The mineralocorticoid aldosterone is produced and se-
creted from adrenal gland to regulate water and electrolyte 
homeostasis. By cell-type-specific gene targeting, MR is 
detected in extra-renal cells including endothelial cells, vas-
cular smooth cells, macrophages and cardiomyocytes in mice 
[34]. MR pathways are involved in inflammation and fibrosis 
in cardiomyocyte infarction by the following evidence: (1) 
activation of MR pathways in endothelial cells could stimu-
late adhesion molecule expressions such as vascular adhe-
sion molecule-1 (VCAM-1) and intercellular adhesion mole-
cule-1 (ICAM-1) [35, 36]; (2) NGAL (neutrophil gelatinase-
associated lipocalin) promotes cardiac damage and remodel-
ing which is a downstream target of MR activation [37]; (3) 
deletion of MR in VSMCs improves left ventricular dysfunc-
tion in mice MI model [38]; and (4) binding of aldosterone to 
MR induces a panel of fibrotic molecule expression in car-
diomyocytes including activation of extracellular signal-
regulated protein kinase (ERK), c-Jun N-terminal kinase 
(JNK) and p38MAPK, transforming growth factor (TGF)-β1 
pathways and increased production of collagen and α-smooth 
muscle actin (SMA). Inhibition of MR expression abolishes 
the above fibrotic marker protein expression [39].  

2. VIRUS-MEDIATED GENE TRANSFER IN THE 

TREATMENT OF MI 

2.1. Virus as Vectors for Modulating Candidate Protein 

Expression 

As we described above, MI is a complicated process, 
among which, key factors are critically involved in cardio-
myocyte death, calcium handling, inflammation and scar 
formation. Selective overexpression or deletion of the key 
factor could promote cardiomyocyte survival and attenuate 
inflammation and fibrosis.  
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By far, virus-mediated gene transfer remains the most po-
tent means to modulate certain protein expression in animal 
models. Both systemic and topical gene transfers by different 
types of viral vectors have shown beneficial effects in vari-
ous animal MI models. Adenoviruses and adenovirus-
associated viruses are more frequently used than retroviruses 
and lentiviruses, because these vectors could induce sus-
tained gene expression for months and they do not integrate 
into the host genome [40-43]. Table 1 lists the effects of vi-
rus-mediated gene transfer in animal models of MI. As 
shown in Table 1, they can be generalized as promotion of 
angiogenesis, [44-62] regulation of SERCA2a expression, 
[22, 63-67] and enhancement of cardiac functions partially 
via modifying β2-adrenergic signaling pathways [68-71] by 
virus-mediated gene transfer.  

2.2. Virus-mediated Gene Transfer in Reprogramming 
Stem Cells for Cardiac Repair 

Following the appearance of induced pluripotent stem 
cells (iPSCs), reprogramming of cardiac fibroblasts into in-
duced cardiomyocytes holds great promise for regenerating 
functional cardiomyocytes after MI.  

When fibroblasts are induced with Gata4, Mef2c and 
Tbx5 expression, these factors are sufficient to drive fibro-
blasts transdifferentiating into cardiomyocytes [72-74]. As 
adenovirus and lentivirus vectors are often used in repro-
gramming, Mathison et al. compared their potency and effi-
cacy in a rat model of MI. Three weeks after coronary liga-
tion, rats were injected with adenovirus or Lentivirus, encod-
ing the cocktail of Gata4, Mef2c and Tbx5. By immunohis-
tochemistry, cardiomyocyte marker troponin T expression 
was comparable and injection fraction was increased in a 
similar extent in both Ad and lentivirus gene transfer groups 
shown by echocardiography. These data imply that Adeno 
and lentiviral vectors are equally effective in inducing fibro-
blast transdifferentiating into induced cardiomyocyte-like 
cells with function [72]. Despite promising, the main obsta-
cles in cell reprogramming are low transfection efficiency, 
time-consumption and genome integration.  

Recently, Miyamoto et al. demonstrated that Sendai vec-
tors encoding Gata4, Mef2c and Tbf5 could rapidly repro-
gram fibroblasts into induced cardiomyocyte-like cells with-
out any sign of integration. In mouse fibroblasts, Sendai vi-
rus system generated 100-fold more beating induced cardio-
myocyte-like cells than retroviral-GMT and the duration to 
induce beating cells was shortened from 30 to 10 days. Ac-
cordingly, by in vivo lineage tracing, injection of Sentai virus 
encoding the factors above was more potent to induce car-
diomyocyte-like cell expression with improved cardiac func-
tion and reduced fibrosis when compared with retroviral-
Gata4/Mef2c/Tbf5 group [74]. 

2.3. Genetic Modified MSC for MI Treatment 

Except reprogramming, mesenchymal stem cells (MSCs) 
are multipotent stem cells derived from the mesoderm of 
early-phase embryos. They are self-renewable and capable of 
differentiating into a variety of cell types, such as os-
teoblasts, cartilage, skeletal muscle, tendon, fat, endothelial 
cells and nerves [75]. In addition, MSCs could produce a 
variety of proteins and RNAs, so-called secretome and 

exome, to attenuate inflammation and enhance angiogenesis 
[76, 77]. Delivery of MSCs or subpopulation of MSCs to 
animal models of acute myocardial infarction improves left 
ventricular function ejection fraction and increases blood 
vessel density in the ischemic area and reduces collagen 
deposition [78, 79]. 

To gain better homing and angiogenesis efficiency, 
MSCs are genetically equipped with certain character prior 
to injection in MI animals. For instance, when MSCs were 
transfected with VEGF cDNA or hepatic growth factor 
cDNA and then injected into the border of infarcted cardio-
myocytes individually, MSC-HGF and MSC-VEGF injec-
tion showed the most advantageous effect than other groups 
[46]. In line with this, using the facially amphipathic bile 
acid-modified polyethyleneimine (BA-PEI) conjugates, 
transfection efficiency was further improved, resulting in 
higher VEGF expression in MSCs and increased angiogene-
sis in infarcted cardiomyocytes [80]. 

3. NANOPARTICLES AS VEHICLES FOR GENE DE-

LIVERY 

Although virus-mediated gene transfer is successful in 
promoting cardiomyocyte survival, improving cardiac func-
tion and mitigating fibrosis in mice, the safety issues are the 
most concerned that hinder its application moving from ani-
mal studies to clinical practice. The safety issues mainly 
comprise poor targeting efficiency, immunogenicity and 
unpredicted insertion site of the human genome. As an alter-
native approach, nanoparticles provide another option for 
gene delivery.  

3.1. General Introduction 

As how it is named, nanoparticles are small particles be-
tween 1 and 100 nm in size. The interfacial layer typically 
consists of ions, inorganic and organic molecules, which 
affects the properties of nanoparticles. They do not belong to 
modern science. In fact, the history is traced back to the 
fourth century as a component for dichroic glass by artisans 
in Roma. But till 1857, its scientific terms were first de-
scribed as the optical properties of nanometer-scale metals. 
Nanoparticles elicited biologists’ interest because they could 
be linked to biological molecules such as tags that direct 
nanoparticles to specific sites within living cells for tracing 
[81-83]. Nowadays, the applications of nanoparticles have 
been extended for imaging, drug and gene delivery system.  

3.2. Types of Nanoparticles 

Nanoparticles used in medical research consist of mi-
celles or liposomes, polymers, dendrimers, carbon nanotubes 
and metallic nanoparticles. Micelles are hydrophilic. When 
micelles are incorporated with hydrophobic therapeutic 
agents, the solubility problems are solved [84]. Liposomes 
are compatible with the cell membrane and thus the most 
popular carriers for cell endocytosis [85, 86]. Polymers could 
incorporate both hydrophilic and hydrophobic agents to in-
crease solubility [87, 88]. Among polymers, hydrogels have 
been used in patients for wound healing, antibacterial infec-
tion and hemostasis [88-91]. Dendrimers are organic 
nanoparticles, synthesized step by step to finely tune their 
properties and formed in the three-dimensional structure
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Table 1. Summary of the effects of virus-mediated gene transfer in animal models of myocardial infarction. 

Molecular Target  Vector Type Animal MI Models Results 

Angiogenesis 

CD151 [44] rAAV, local Rat  Increased VEGF expression and improved left ventricular 

function 

VEGF [45-49] Adenovirus, local Rat, sheep Improved ejection fraction; reduced myocardial fibrosis 

β-adrenoceptor [50] Ad rats Activation of VEGF pathway for increased angiogenesis 

and global contractility 

Fibroblast growth factor 9 

[51, 52] 

Ad mice Conditional expression of FGF9 promotes myocardial 

vascularization and hypertrophy with enhanced systolic 

function and reduced heart failure mortality after MI.  

Endothelial nitric oxide syn-

thase [53-56] 

Ad rat eNOS provided cardiac protection after myocardial infarc-

tion injury through inhibition of cardiac apoptosis and 

collagen deposition, and suppression of TGF-β1 

Stromal cell-derived factor or 

CXCR4 [57, 58] 

Ad Rat SDF-1 alpha could improve cardiac structure and function 

after Myocardial infarction through angiogenic and anti-

fibrotic actions. 

Hepatic growth factor [59-61] Ad Rabbit, rat, canine improved left ventricular ejection fraction and fractional 

shortening, reduced the fibrotic area, and increased the 

capillary density in the risk area. 

apoA-I [62] Ad mice Increased endothelial progenitor number and function and 

the peak rate of isovolumetric relaxation by AdapoA-I 

SERCA2a expression 

SERCA2a [63, 64] AAV1; Lentivirus Sheep, rat Improved contractility, reduced myocyte apoptosis and 

myocyte hypertrophy 

antisense phospholamban 

(asPLB) [22] 

AAV rat enhanced myocardium SERCA activity; prevented the 

progression of heart failure 

Urocortin-2 [65] AAV8 mice increased LV systolic and diastolic function 

Small ubiquitin-like modifier 

1 (SUMO-1) [66] 

AAV1 swine improved cardiac function and stabilized LV volumes  

S100A1 [67] AAV9,  porcine Prevented heart failure and reduced scar side 

Cardiomyocyte preservation and regeneration 

Stem cell factor [68] Adenovirus Swine Recruitment of cKit+ cells, improved cardiac function 

Connexin43 [69] Ad pig Targeted manipulation of Cx43 levels improved conduc-

tion velocity and reduced ventricular tachycardia suscepti-

bility. 

G protein-coupled receptor 

kinase 2 (GRK2) [70, 71] 

scAAV Sheep, pig preservation of regional and global systolic function  

 
[92]. Carbon nanotubes are graphite sheets rolled up into a 
tubular form in which drugs are filled [93]. Different from 
others, metallic nanoparticles are functional themselves. The 
conjugation of metal nanoparticles with biomolecules could 
be used in biosensing, bioimaging and tissue engineering 
[94]. When nanoparticles circulate in the peripheral blood, it 
could be taken by white blood cells, leading to reduced hom-
ing. To reduce phagocytosis and obtain better targeting effi-
ciency, nanoparticles are pegylated on the surface to escape 
the recognition by circulating and resident phagocytes [95].  

3.3. Nanomedicine in Imaging 

Magnetic resonance imaging (MRI) allows us to visual-
ize the structure and characteristic of atherosclerotic plaques, 
coronary stenosis and the extent of infarcted cardiomyocyte 
area. Three MRI techniques are T1, T2 and off-resonance. In 
off-resonance, pulse sequences excite and refocus off-
resonance water to give the positive contrast. Paramagnetic 
contrast agents including gadolinium chelates and nanoparti-
cles enhance T1 contrast to give bright contrast in MR im-
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age. In addition, iron oxide nanoparticles enhance predomi-
nantly T2 contrast and give dark contrast. Some nanoparti-
cles contain several contrast agents such as 18F-cross-linked 
iron oxide which is formed by superparamagnetic iron oxide 
core and functionalized with the radionuclide 18F. When 
iron oxide nanoparticles are injected to animals with MI, 
macrophages take up these nanoparticles and thus become 
labeled by MRI. From the detected signals on MRI, we could 
know how severe the inflammation is, present in the infarc-
ted area and plaque and whether the plaques are stable or not 
[96]. Another substantial application of nanomedicine in 
imaging is cell tracing. When stem cells are labeled with 
certain nanoparticles before injection, they could be followed 
up by MRI for weeks to assess homing efficiency and fate of 
the injected stem cells [97].  

3.4. Drug Delivery System Using Nanoparticles 

The golden criteria of drug delivery system include spe-
cific targeting, controlled drug release, pharmaceutical effi-
cacy and degradable delivery material for safety. Receptors 
and intracellular molecules are equally important mediators 
for cell function. Using antibodies immune therapies, anti-
bodies could recognize receptors on the cell surface and a 
limited number of extracellular targets [98, 99]. Neverthe-
less, how to control intracellular targets is more demanding. 
These issues could not be reached by conventional drug as-
sembling system. The development of nanotechnology has 
brought a solution to solve these issues.  

Accumulated studies have consistently delineated the 
therapeutic effects in the treatment of cardiovascular diseases 
using nanoparticle-based drug delivery system (nano-DDS). 
Using microchip technology and 3D dynamic contrast-
enhanced MRI, Kim et al., found that nanoparticles could 
translocate over endothelium with controllable permeability 
in rabbits [100]. These data imply that nanoparticles delivery 
systems could target molecules inside the cells.  

Recently, two polymers, polylactide (PLA) and 
poly(lactide-co-glycolide) (PLGA) were approved by the 
FDA for nanoparticle synthesis. PLGA polymers could in-
corporate hydrophilic and hydrophilic agents and become 
biodegradable. In a mouse model of atherosclerotic plaque 
rupture, a single injection of PLGA nanoparticles containing 
pioglitazone significantly reduced the number of Ly6chigh 
monocytes. After weekly intravenous injection for 4 weeks, 
the fibrous cap in atherosclerotic plaque became thickened 
and stabilized [101]. Similarly, when mice were subjected 
with coronary ligation and injected with pitavastatin alone or 
with pitavastatin-incorporating nanoparticles for consecutive 
3 to 5 days, administration of pitavastatin-incorporating 
nanoparticles decreased the number of monocytes/macro- 
phages in the infarcted heart and inhibited left ventricular 
remodeling whereas pitavastatin alone did not [102]. These 
data indicate that nanoparticles are more efficient than tradi-
tional drug delivery system. 

3.5. Gene Delivery System Using Nanoparticles 

Besides for imaging and drug delivery, nanoparticles 
hold some advantages for gene transfer. First, they are small 
molecules that easily and efficiently penetrate to target cells; 
second, nanoparticles could be covalently linked to specific 

tags in a controlled number per nanoparticle and thus they 
could be taken by target cells; third, multivalent nanoparti-
cles could cluster receptor to activate signaling pathways; 
and fourth, the synthesis of nanoparticles would be faster 
than the virus packaging system [103, 104]. 

There are two types of nanoparticle systems carrying 
DNA or RNA: an entrapping system which is a reservoir 
type nanosphere system and surface binding system which 
supports an ionic interaction between the cationic polymer 
and the anionic nucleic acid. The entrapping system could 
protect DNA or RNA from degradation. How to synthesize 
and modify nanoparticles for higher transfection efficiency 
with the least toxicity is under investigation. A substantial 
progress has been made on how to modify nanoparticles for 
better gene delivery, which is summarized below: 

3.5.1. PEGylation 

The complex of PEG-polycation block copolymers and 
DNA are water soluble, colloidally stable, non-toxic and 
effective in transfection. Based on this, conjugation of 
polylysine to PEG further condenses plasma DNA into DNA 
nanoparticles. When transfected, the transgene expression was 
10- fold higher than controls [105]. In parallel, Dasari et al. 
linked PEG on the N-terminal cysteine of a peptide for ocu-
lar delivery. This construct enables gene transfer in the ret-
ina. Using the reducible PEG-POD/DNA nanoparticles, 
FLT1 cDNA was transfected intro retina cells in vitro and 
FLT1 expression was induced without any change of LDH 
activity. When tested in vivo, the reducible PEG-POD/DNA 
induced 21- fold increase in transgene expression which re-
sulted in 50% reduction in choroidal neovascularization in a 
murine model of age-related macular degeneration [106]. 
Because it is quickly degraded by the extracellular environ-
ment, this reducible PEG-SS-POD/DNA nanoparticle is a 
powerful and safe gene delivery system.  

3.5.2. Chitosan 

Chitosan is a cationic polysaccharide derived from partial 
deacetylation of chitin. It is an ideal carrier for drug, DNA 
and siRNA delivery because of good incorporation and long-
term release [107-109]. The strategies of making better chi-
tosan/DNA nanoparticles have been revolutionized in the 
aspects of size, concentration and the stoichiometry of poly-
mer for better efficiency and safety. Chitosan nanoparticle 
systems have been applied in vaccines and intranasal deliv-
ery of chitosan-DNA complex against Coxsackievirus B and 
hepatitis B infections [110-112]. Intriguingly, Mannosylated 
chitosan nanoparticles are preferentially taken by macro-
phages [113]. Thus, whether Mannosylated chitosan 
nanoparticles could be used for suppressing inflammation 
and attenuation of myocardial infarction awaits for future 
exploration.  

3.5.3. Polyethyleneimine (PEI) 

Polyethyleneimine (PEI) is one of the most widely stud-
ied cationic polymeric vectors. An advanced strategy was 
reported in which low molecular weight PEI was linked with 
succinic acid which improved the hydrophilic and hydropho-
bic balance within the polymer and in the meantime, mini-
mized the toxicity. The modified PEI could condense plas-



Nanomedicine for Gene Delivery for the Treatment of Cardiovascular Diseases Current Gene Therapy, 2019, Vol. 19, No. 1    25 

mid DNA and the formed complex was approximately 130 
nm in size. When tested using the CD200 gene as the re-
porter, the transgene expression was increased 1.5-fold than 
controls in vitro and the expression pattern was distributed in 
a variety of organs and could even penetrate the blood-brain 
barrier [114].  

3.5.4. Solid Lipid Nanoparticles 

Due to shared compatibility to the cell membrane, 
liposomes have been used extensively for gene transfer for 
research. As alternatives, Solid Lipid Nanoparticles (SLNs) 
and Nanostructure Lipid Carriers (NLCs) have been devel-
oped since the 1990s. Because they could be equipped on 
purpose, they could protect DNA/RNA from degradation 
during delivery, reach specific target cells, and pass through 
all barriers, resulting in better transgene expression as de-
sired. SLNs have a solid lipid core with a surfactant layer in 
an aqueous dispersion whereas NLCs are mixtures of solid 
and liquid lipids.  

SLNs and NLCs carry several properties superior to 
liposome in gene transfer: (1) Depending on the charges of 
nucleic acids to be transferred, SLNs and NLCs could either 
be cationic or anionic to obtain stable binding in an electro-
static manner which helps DNA/RNA condensation and pro-
tects them from being degraded by enzymes in the environ-
ment [115]; (2) After injection, they bind to serum proteins 
which serve as carriers and deliver them to cells. When they 
reach the cells, the positively charged SLCs and NLCs inter-
act with the negatively charged cell membrane to mediate 
endocytosis. Once they are equipped with the target ligands 
that recognize the receptors on cell and/or nuclear mem-
brane, the transfection efficiency would increase by receptor 
and ligand interaction on top of endocytosis [116, 117]; and 
(3) in addition to gene transfer, SLNs and possibly NLCs are 
also carriers for drug delivery. Currently, SLNs and NLCs 
have been widely tested in the field of cancer, infectious 
disease and ocular disease [118-120]. Nevertheless, limited 
studies have been performed using SLCs and NCLs for treat-
ing ischemic heart. Notably, modification of SLCs and NLCs 
makes them feasible for penetration of cell and nuclear mem-
branes. Different pathways are involved in different types of 
cells. The endocytosis pathways have to be clarified before 
SLCs and NCLs are designed for drug and gene dual transfer 
into cardiomyocytes.  

3.5.5. Magnetic Nanoparticles 

As introduced earlier, magnetic nanoparticles such as 
iron oxide and Fe3O4 could accumulate to favored cells for 
imaging-based cell tracing. When they are coated by differ-
ent polymers, they become stabilized and activated by pH, 
temperature and microwave [121]. Coating strategies are the 
main issues in preparing these nanoparticles. Recently, a 
type of mesoporous silica-coated magnetic nanoparticles was 
reported. Their magnetic targeting abilities, magnetic hyper-
thermia performance and MRI properties have made them a 
superior candidate for suicide gene therapy in cancer treat-
ment [122]. Considering the different nature and mecha-
nisms between cancer and infarcted cardiomyocytes, whether 
magnetic nanoparticles could be used for gene therapy is not 
yet known in myocardial infarction.  

All types of nanoparticles that could be applied for the 
treatment of cardiovascular diseases are summarized in Ta-
ble 2.  

3.5.6. Limitations and Future Perspective 

In virus-mediated gene transfer, there were potential limi-
tations in nanoparticle-facilitated gene therapy as well. First, 
although nanoparticles-based gene delivery could induce 
faster and higher transgene expression than controls, the du-
ration of transgene expression is relatively short and lasts for 
days. Second, the nucleic acids that nanoparticles carry do 
not integrate into human genome which makes it safer than 
virus vectors. However, the cellular toxicity is still present 
and could not be ignored. The toxic effects of engineered 
nanoparticles on germ cells, embryos and reproductive sys-
tems have been noted [123]. And third, detailed understand-
ing of how nanoparticles are distributed, metabolized and 
eliminated is demanding to enhance targeting efficiency and 
prolonged efficacy with least of toxicity. Huge amount of 
work is anticipated for improving nanoparticle-mediated 
gene therapy for better targeting and least side effects.  

Nonetheless, nanoparticles are potent in gene therapy. 
The dual properties in drug and gene transfer by nanoparti-
cles could not be replaced by any other delivery systems. 
Here is an example, demonstrating elaborately how to utilize 
nanomedicine for better treatment. Tang et al., set up a com-
binatorial library of 15 high-density lipoprotein-inspired 
nanoparticles, a PEGylated micellar and a long-circulating 
liposomal nanoparticle. All of which had distinct physio-
chemical properties such as size and chemical composition. 
They screened the injected nanoparticles by half-life and 
accumulation in the organs by near-infrared fluorescence 
imaging and assessed their cholesterol efflux capacity  
in vitro. They further evaluated the effects of nanoparticles 
on inflammatory cells in aorta, spleen and blood by flow 
cytometry. Thus, the best candidate was screened which had 
high cholesterol efflux capacity, relatively long half-life, 
predominantly accumulated in aorta and liver and a high 
relative aortic-to-splenic macrophage association ratio. They 
formulated the candidate with a Liver X receptor agonist 
GW3965 (Rx-HDL) and confirmed its effects on atheroscle-
rosis in apoE-/- mice. As expected, this nanoparticle proc-
essed all the characters above and inhibited atherosclerosis 
with the least liver toxicity [124]. This study gives a direc-
tion to utilize nanoparticles to deliver a gene of interest and 
drug of interest to the targeted cells for specificity, accuracy, 
efficacy and safety.  

Based on their unique characters, hybrid nanoparticles 
could inherit both advantages to achieve better gene delivery 
efficiency. For instance, polymer-lipid hybrid nanoparticles 
hold the property of polymeric materials and also a lipid 
formulation. When they were incorporated with PEG-
distearoyphosphatidylethanolamine, gene transfer efficiency 
was 3-fold higher than conventional transfection method 
[125]. Another elaborate example is the incorporation of 
gold nanoparticles (Au NPs) into the liposome. Once admin-
istered under near-infrared irradiation, liposomes are frag-
mented and gold nanoparticles are released and penetrated 
into tumor tissues to proceed photothermal treatment, lead-
ing to superior inhibition of tumor cell growth in vitro and 
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Table 2. Summary of the nanoparticles that could be applied for the treatment of cardiovascular disease. 

Type Structure and Compositions Size Modification for Improved Efficiency 

Micelle [128] Lipids and synthetic am-

phiphilic polymeric molecules 

dispersed in a liquid colloid 

10-100 nanometers Micelle-like nanoparticles: half micelle and half polymeric. 

Liposome [129] Phospholipid bilayers and an 

aqueous core 

Up to thousands of 

nanometers 

polyethylene glycol (PEG) 

Polymeric nanosphere 

[129, 130]  

Polymeric materials An average of 700 

nanometers 

Poly(lactide-co-glycolide) (PLGA) or polylactide (PLA)-based 

biodegradable nanoparticles. Could carry both hydrophobic and 

hydraulic drugs 

Dendrimer [131, 132] A monodisperse assembly with 

complex structure 

Starting from several 

nanometers 

GPIb to PLGA; probucol loaded PLGA 

Metallic nanoparticle 

[133, 134] 

Could be gold, iron oxide to 

superparamagnetic iron oxide 

Varied  Dextran or poly(ethyleneglycol); suitable for magnetic resonance 

imaging 

Nanogel [135, 136] A nanosized spherical hydrogel Varied Thermally responsive manipulation for better delivery 

 

Fig. (1). Proposed nanoparticle-based gene transfer system. Nanoparticle-based delivery system could carry transferred genes and drug at the 

same time whereas other systems could not. The basic structure of nanoparticles could be manipulated by charges that regulate interaction 

between nanoparticles and DNA to be transferred and by chemical modifications on the surface, leading to DNA stability, resistance to en-

zyme destruction in the environment and improved cellular uptake. To further enhance uptake, ligands could be wrapped on the surface that 

could specific recognize the receptors on the target cells. 

in vivo [126]. Therefore, how to make the best use of hybrid 
nanoparticles for gene delivery is under investigation. When 
polyethyleneimine particles are loaded with modified choles-
terol, they could bind DNA with more affinity and protect 
DNA from degradation [127]. Therefore, these “lipopoly-

plexes” would be essential tools for more efficient gene de-
livery to target cells. 

CONCLUSION AND FUTURE OUTLOOK 

In conclusion, nanoparticles possess several advantages 
while other vectors do not. They could be synthesized in a 
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controlled manner and produced on a large scale. They are 
biocompatible and could be designed to carry certain proper-
ties to protect DNA/RNA content from enzyme-induced deg-
radation, recognize target of interest more specifically, and 
efficiently penetrate cell and nuclear membrane (Fig. 1). 
They could facilitate dual transfer-gene and drug at once. 
The biggest challenge that nanoparticles need to overcome is 
coating. With the development of technologies and knowl-
edge on cell biology and pathology, nanoparticles would be 
desirable for clinical purpose. Different from cancer treat-
ment, application of nanoparticle-mediated gene transfer in 
cardiomyocyte infarction is relatively rare which definitely 
opens the space for future exploration.   
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