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The combination of four molecular markers
improves thyroid cancer cytologic
diagnosis and patient management
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Giancarlo Di Coscio5, Generoso Bevilacqua1,5 and Ivo Marchetti1,5

Abstract

Background: Papillary thyroid cancer is the most common endocrine malignancy. The most sensitive and specific
diagnostic tool for thyroid nodule diagnosis is fine-needle aspiration (FNA) biopsy with cytological evaluation.
Nevertheless, FNA biopsy is not always decisive leading to “indeterminate” or “suspicious” diagnoses in 10 %–30 %
of cases. BRAF V600E detection is currently used as molecular test to improve the diagnosis of thyroid nodules, yet
it lacks sensitivity. The aim of the present study was to identify novel molecular markers/computational models to
improve the discrimination between benign and malignant thyroid lesions.

Methods: We collected 118 pre-operative thyroid FNA samples. All 118 FNA samples were characterized for the
presence of the BRAF V600E mutation (exon15) by pyrosequencing and further assessed for mRNA expression
of four genes (KIT, TC1, miR-222, miR-146b) by quantitative polymerase chain reaction. Computational models
(Bayesian Neural Network Classifier, discriminant analysis) were built, and their ability to discriminate benign and
malignant tumors were tested. Receiver operating characteristic (ROC) analysis was performed and principal
component analysis was used for visualization purposes.

Results: In total, 36/70 malignant samples carried the V600E mutation, while all 48 benign samples were wild type
for BRAF exon15. The Bayesian neural network (BNN) and discriminant analysis, including the mRNA expression of
the four genes (KIT, TC1, miR-222, miR-146b) showed a very strong predictive value (94.12 % and 92.16 %, respectively)
in discriminating malignant from benign patients. The discriminant analysis showed a correct classification of 100 % of
the samples in the malignant group, and 95 % by BNN. KIT and miR-146b showed the highest diagnostic accuracy of
the ROC curve, with area under the curve values of 0.973 for KIT and 0.931 for miR-146b.

Conclusions: The four genes model proposed in this study proved to be highly discriminative of the malignant status
compared with BRAF assessment alone. Its implementation in clinical practice can help in identifying malignant/benign
nodules that would otherwise remain suspicious.
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Background
Thyroid cancer, which usually presents as a nodule,
accounts for approximately 1 % of all newly diagnosed
cancer cases and its incidence is increasing faster than
any other cancer types, thus representing one of the
most common and clinically worrying malignant tumors
of the endocrine system [1]. Papillary thyroid carcinoma
(PTC) represents the most frequent typology of thyroid
malignancy, with a prevalence of about 90 % of all
diagnosed cases [1]. Fine-needle aspiration (FNA) biopsy
and subsequent cytological analysis represents the most
reliable procedure to date to diagnose thyroid nodules
[2, 3]. FNA is highly specific for thyroid cancer; however,
it has low sensitivity. In fact, 10 %–40 % of the analyzed
nodules are detected as indeterminate lesions, thus cre-
ating difficulties for the optimal management of these
patients [4]. Moreover, only 10 %–30 % of indeterminate
thyroid nodules that are surgically resected are confirmed
to be malignant [5, 6]. As result, most diagnostic surgeries
are performed for benign thyroid nodules. Conversely,
patients who have undergone a surgical lobectomy and
are found to have a tumor larger than 1 cm, may require a
second surgery to remove the remaining thyroid lobe
[7, 8], thereby creating an important gap in the clinical
decision pathway for thyroid nodules. Clearly, additional
diagnostic markers are needed to guide the management
of patients with indeterminate thyroid nodules. In the past
few years, significant progress has been made in develop-
ing molecular markers for clinical use in FNA specimens,
such as gene mutation panels and gene expression classi-
fiers [8], but none of these have yet to be accepted as an
integral part of the diagnostic tools for clinicians and
cytopathologists. BRAF V600E mutation is one the best
known and studied prognostic markers for the diagnosis
of PTC. The genetic characterization of BRAF status leads
to an increase of preoperative diagnostic accuracy up to
20 %–30 % [9, 10]. Nevertheless it stills generates a per-
centage of suspicious papillary thyroid carcinoma (SPTC)
and indeterminate follicular proliferation (IFP) diagnoses.
This occurs because some malignant tumors do not
have the BRAF V600E mutation, confirming the neces-
sity of finding other molecular markers able to provide
a more accurate diagnosis [11]. Few papers have inves-
tigated the role of KIT in thyroid cancer as a possible
new tumor marker. The KIT gene (CD117) codes for a
type III tyrosine-kinase receptor activated by stem cell
factor (SCF). Aberrations in KIT expression and signaling,
including over-expression or reduced/absent expression,
have been characterized in several tumors, such as
gastrointestinal stromal tumors, breast cancer, and thy-
roid carcinoma [12–15], but the role of KIT in human
neoplasia is not fully cleared understood. In 2004,
Mazzanti et al. identified KIT, from a panel of a thousand
genes, as one of the most significant down-regulated gene

in PTC compared with benign lesions [16], and in 2012
Tomei et al. showed that KIT was statistically down-
regulated in FNA of PTC versus FNA of benign lesions
[11]. Next, Tomei et al. showed that the addition of KIT
expression increased the diagnostic accuracy of about
15 % compared with cytology-based analysis, but still left
a percentage of indeterminate samples [17]. Thus, the
same authors determined the diagnostic utility of a nine
gene (KIT, SYNGR2, C21orf4, Hs.296031, DDI2, CDH1,
LSM7, TC1, and NATH) assay to distinguish benign
malignant thyroid neoplasms with a predictive power of
80 % [17]. As miRNAs have been reported to be deregu-
lated in thyroid cancer [18], and they have been shown to
function both as tumor suppressors and oncogenes [19],
we decided to assess the prediction value of two miRNAs
targeting the KIT gene; namely, miR-146b and miR-222.
We included in the model the expression of KIT (which
has been shown to have the highest prediction value in
our previous studies) as well as the TC-1 gene, which is
related to thyroid cancer. TC-1 is implicated in the prolif-
eration of cancer cells by regulating Wnt/β-catenin signal-
ing pathways [20–23]. Several studies have shown that
this protein is more expressed in thyroid cancers than
benign nodules, and the potential use of the TC1 gene
expression as a marker of malignancy in thyroid nodules
is also shown in the literature [24]. MiR-222 and miR-
146b have been shown to be up-regulated at least 10-fold
in classic variants of PTC compared with normal thyroid
tissue [25]. Several studies have been performed to analyze
the utility of miRNAs to differentiate benign from
malignant thyroid nodules [26, 27], but few have been
performed on FNA indeterminate thyroid lesions [28]
or have built miRNA-based predictive models [25]. Since
the presence of BRAFV600E assures the malignancy of
the thyroid nodule, whereas wild-type BRAF cannot deter-
mine a specific diagnosis by itself, we aimed at the evalu-
ation, by quantitative polymerase chain reaction (qPCR)
and a computational model, of the expression signature of
four genes as a new genetic model to be added to the rou-
tine BRAF diagnostic test. We propose this model when
BRAF is wild-type in order to improve FNA diagnostic
accuracy, especially for the nodules that would otherwise
remain suspicious. Our four-gene model was character-
ized by a lower number of molecular markers compared
with the previously developed models, resulting in more
practical and usefulness at a clinical level.

Methods
FNA samples
Preoperative thyroid FNA slides of 118 thyroid nodules,
from as many patients, were collected by an experienced
cytopathologist of the Division of Surgical, Molecular
and Ultrastructural Pathology, Santa Chiara Hospital,
Pisa. The cytology cases included in this study referred
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to patients who had a thyroidectomy with examination
according to standard histological criteria, and all pa-
tients had one FNA sample of the lesion. For ethical
reasons, we only used cases with extra slides per patient,
and representative thyroid cells on the slides, selected by
senior cytopathologists, were used to perform molecular
analysis.

Ethics
Prior to the collection of thyroid cells, all patients verbally
gave the informed consent to use their cells for research
purposes if the collected specimens met specific require-
ments in terms of diagnosis (e.g. type of lesion) and eligi-
bility (e.g. cytology cases with extra slides per patient).
Verbal consent was preferred due to the extremely high
number of patients with nodular thyroid pathology every
year, the majority of whom are usually willing to donate
their samples for research purposes, and the limited
number of cases that finally met the criteria of the study.
Very few patients are unwilling to provide cells, thus they
were asked to sign a non-consent form if consent was not
provided, the resulting procedure is easier to manage.
Verbal consent accelerated the cell collection process,

reduced paperwork and promoted time efficiency. The
study and both verbal consent/written non-consent proce-
dures were approved by the Internal Review Board of the
University of Pisa.

Diagnosis
Histological diagnosis was used to assess malignancy or
benignity of all lesions. Criteria used in the cytological
diagnosis were smear background, cell shape, cellular
arrangements, nuclear/cytoplasmic features, presence of
nucleoli, and mitosis, as previously reported [17, 29].
The histological diagnosis of the samples (118) was PTC
in 70 cases, and the cytological diagnosis was PTC in 41
cases, SPTC in 19, and IFP in 10 (Table 1). The histo-
logical diagnosis in the remaining samples identified 20
benign nodules and 28 IFP (Table 1).

DNA and RNA extraction
The slides were kept in xylene until the slide coverslips
were detached. Slides were then hydrated in a graded
series of ethanol baths, then washed in distilled H2O,
and finally air-dried. DNA extraction was performed
following the manufacturing instructions of a commer-
cial kit (Nucleospin; Macherey-Nagel, Düren, Germany).
A modification was added to the first step: 50 % of the
lysis solution with no Proteinase K was initially poured
on the slides to scrape off the cytological stained sample
using a single-edged razor blade. RNA extraction was
performed by using a commercial kit (High Pure RNA
Paraffin kit, Roche, Indianapolis, IN, USA) according to
the manufacturer’s instructions and adding of the same
modification step as for DNA extraction. The quality
and amount of extracted DNA/RNA was evaluated by
NanoDrop 1000 spectrophotometer (Thermo Scientific,
Wilmington, DE, USA). RNA was treated with DNase Ι
recombinant, RNase-free (Roche, Indianapolis, IN, USA).
RNA was reverse-transcribed in a final volume of 20 μL
by means of the manufacturer’s instructions of a com-
mercial kit (RevertAid First Strand cDNA synthesis
kit, Thermo Scientific, Wilmington, DE, USA).

miRNA extraction from FNA samples and miRNA
expression assay by reverse-transcriptase PCR
Purification of miRNA was performed by using miRNea-
syMini Kit (Qiagen, Valencia, CA) according to the
manufacturer’s instructions. Quantitative reverse tran-
scription (RT) was performed using miScript II RT Kit,
which is an integral component of the miScript PCR
System for miRNA detection and quantification (Qiagen,
Valencia, CA). cDNA generated from the miScript II RT
Kit was used as a template for real-time PCR with the
miScript SYBR Green PCR Kit with miRNA specific
primers for miR-146b and miR-222 (Qiagen, Valencia,
CA). qPCR was run on an Rotor-Gene 6000 (Corbett,
Life Science, Sydney, Australia), under the following
cycling conditions: 1 cycle at 95 °C for 15 min, 40 cycle
at 94 °C for 15 s, 55 °C for 30 s, and 70 °C for 30 s. After
40 cycles, a melting curve was generated by slowly in-
creasing (0.1 °C/s) the temperature from 55 °C to 99 °C,
while measuring fluorescence. Samples were detected in
triplicate and relative expression levels were calculated
using U61 small nuclear RNA (SNORD61, Qiagen,
Valencia, CA) as the endogenous control.

PCR protocol
PCR was performed in a 30 μL final volume, containing
150 ng of cDNA, 0.05 mMdNTP (Invitrogen, Carlsbad,
CA, USA), 2.5 ng/μL of each primer (Invitrogen, Carlsbad,
CA, USA), 1.5 mM MgCl2, 1x PCR Gold Buffer, and
0.75U AmpliTaq Gold (Applied Byosistems, Foster City,
CA, USA). PCR was performed on a 9700 GenAmp PCR

Table 1 Histological, cytological, and molecular diagnosis of
118 thyroid nodules

HD CD BRAF

PTC (70) n WT V600E

PTC 41 15 26

IFP 10 10 0

SPTC 19 9 10

BN (48) IFP 28 28 0

BN 20 20 0

HD histological diagnosis, CD cytological diagnosis, PTC papillary thyroid
carcinoma, SPTC suspicious for PTC, CP papillary carcinoma, IFP indeterminate
follicular proliferation, BN benign nodule, WT wild-type
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System (Applera Corporation, Foster City, CA, USA)
under the following cycling conditions: 94 °C for 7 min;
40 cycles at 94 °C for 45 s, 60 °C for 45 s, 72 °C for 1 min,
and final step at 72 °C for 10 min.

Gene expression real-time PCR assay
We used q-real-time PCR to analyze the mRNA expres-
sion levels of KIT and TC1 by Rotor-Gene 6000 real time
rotary analyzer (Corbett, Life Science, Sydney, Australia)
following the manufacturing instructions. A first PCR (see
PCR protocol) was performed on control KIT and TC1
expressing samples, then the PCR products were purified
by using GeneEluete™ PCR Clean-Up (Sigma-Aldrich, St
Louis, MO, USA) and sequenced on the ABI PRISM 3100
Genetic Analyzer (Applied Biosystem, Foster City, CA,
USA) to confirm gene sequence. Finally, they were diluted
in a 10-fold series to create the standards for a 10-point
standard curve that was run in triplicate. Real-time PCR
reactions were performed following the manufacturing
instructions of the GoTaqqPCR Master Mix Kit (Promega,
Madison, WI, USA) in 25 μL final volume containing 2X
GoTaqqPCR Master Mix (Promega, Madison, WI, USA),
0.5 μM of each primer (Invitrogen, Carlsbad, CA, USA),
and 5 μL of cDNA. The reaction mixtures were subjected
to denaturation 95 °C for 2 min, 40 cycles of amplification
at 94 °C for 35 s, 60 °C for 35 s, 72 °C for 60 s, and a final
step of 72 °C for 10 min. Standard curves were generated
for each gene, including beta 2 microglobulin (B2M) that
was used to normalize each gene expression level. Post-
amplification fluorescence melting curve analysis for
each gene was conducted by gradual ramping up the
temperature of 0.1 °C/s from 60 °C to 95 °C. No-template
reaction was used as a negative control. The expression of
all markers was calculated as the ratio of absolute quantifi-
cation by standard curve of the gene expression value and
B2M expression. We used Primer3 software to design the
primers for KIT, TC1, and B2M (primer sequences and
annealing temperature are shown in the Additional file 1:
Table S1).

BRAF V600E detection
BRAF V600E mutation status was determined using pyro-
sequencing; PCR amplification and mutational analysis
were performed as described in the Diatech manual Anti-
EGFR MoAb response (BRAF status). Briefly, PCR ampli-
fication was conducted on “Rotor-Gene 6000” (Corbett,
Life Science, Sydney, Australia), and was performed on a
151-base-pair region of exon 15 in the BRAF gene includ-
ing codon 600. All reaction was conducted according to
the following protocol: initial denaturation 95 °C for
3 min, 40 cycles at 95 °C for 30 s, 55 °C for 30 s, 72 °C for
30 s, and a final step of 60 °C for 5 min with Takara Ex
Taq (Qiagen, Valencia, CA). PCR amplification was then
sequenced by PyroMark Q96 ID system (Qiagen, Valencia,

CA). Pyrogram outputs were analyzed with the PyroMark
Q96 software (Qiagen) to determine the percentage of
mutant vs wild-type alleles according to relative peak
height.

Statistical analyses
Quantitative data are expressed as means ± standard devi-
ation. The differences between expression levels of KIT,
TC1, miR-146b and miR-222 were analyzed by Student
t-test and one-way analysis of variance. A difference was
considered significant for a P-value < 0.05, and the ana-
lyses were performed using Statgraphics Centurion (V. 15,
StatPoint, Inc.) and MedCalc (Software for Windows
version 12, Mariakerke, Belgium). Biomarker data were
used to build Bayesian neural networks (BNNs) and to
perform discriminant analysis.
The BNN is a nonparametric statistical method based

on probabilistic neural networks [30–32], able to classify
cases (FNA samples) into different groups of data (malig-
nant, benign) based on a set of quantitative variables (KIT,
miR-222, miR-146b, and TC-1). Briefly, the cases are
classified according to an artificial neural network, which
consists of four layers: 1) input layer, with k neurons
representing the k input quantitative variables (KIT,
miR-222, miR-146b, and TC-1); 2) pattern layer, with n
neurons representing the n cases (FNA samples); 3) sum-
mation layer, with q neurons representing the q possible
groups (malignant, benign); and 4) output layer, which
assigns a case to one of the q groups. In layers 1 and 2, the
classifier is trained by estimating a nonparametric prob-
ability density function for each group. In layer 3, such
densities are combined with prior probabilities and mis-
classification cost functions to compute a score for each of
the possible groups where a case may be assigned. Finally,
in layer 4, a case is assigned to the group with the largest
score. The discriminant analysis [33–35] is a classical
parametric method of classification of cases (FNA sam-
ples) into different groups of data (malignant, benign),
according to a set of quantitative variables (KIT, miR-222,
miR-146b, TC-1). The classification of a case (FNA sam-
ple) is based on the combination of prior probabilities
with discriminant functions, which assign a score to each
group (malignant, benign). The case is then assigned to
the group with highest score. The discriminant functions
are linear combinations of the quantitative variables (KIT,
miR-222, miR-146b, and TC-1), and are derived by maxi-
mizing the separation of the groups (malignant, benign) in
the data. Discriminant analysis is a parametric method
because the quantitative variables are assumed to have a
normal distribution, conditionally on the group of belong-
ing. All analyses were performed by using Statgraphics
Centurion (V. 15, StatPoint, Inc.). We also measured the
area under the curve (AUC) of the receiver operating
characteristic (ROC) curve for each gene individually in
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order to validate the diagnostic accuracy of our molecular
computational models (MedCalc Software for Windows
version 12, Mariakerke, Belgium). Principal component
analysis (PCA) and k-means clustering were conducted as
descriptive tools by using a R software codes (“princomp”
and “kmeans”, package “stats”) [36]. More specifically,
we applied a logarithmic transformation of the data to
stabilize the variances of the variables (KIT, miR-146b,
miR-222, and TC1), since the PCA is sensitive to the
relative scaling of the data.

Results
BRAF status characterization
All 118 FNA samples analyzed in this study were molecu-
larly characterized for the presence of the BRAF V600E
mutation in exon 15: 36/70 malignant samples carried the
V600E mutation, while all 48 benign samples were wild
type for BRAF exon 15 (Table 1).

Quantitative markers of gene expression
We tested TC1 gene expression in 109 patients (65 malig-
nant, 44 benign), miR-146b and miR-222 expression in 58
FNA smears (41 malignant and 17 benign) and KIT
expression in 105 FNA smears (47 malignant and 58
benign) to better understand the relationships between
their expression and malignant/benign status. TC1 and
miR-146b markers were significantly overexpressed (TC1
P-value = 0.04; miR-146b P-value = 0.0005) in malignant
lesions (TC1 mean = 0.29; miR-146b mean =205.84) com-
pared with benign lesions (TC1 mean = 0.08; miR-146b
mean = 2.09). Moreover, miR-222 expression was higher
in malignant lesions, but this up-regulation was not
statistically significant. Conversely, KIT mRNA expres-
sion levels were significantly higher (P-value = 0.0006)
in benign thyroid tumors (mean = 1.19) compared with
malignant tumors (mean = 0.13; Fig. 1).

Building molecular computational models: classification
of malignant and benign samples
In this study, gene expression data were used to build
BNNs and to perform discriminant analyses in order to
discriminate between benign and malignant disease and
predict the probability of thyroid cancer for individual
patients. The number of FNA samples taken into account
for these analyses was reduced from 118 to 51 to include
all the analyzed genes for each patient, and we included
malignant samples carrying a BRAF mutation as positive
control (Table 2). The BNNs classifier made up of KIT,
TC1, miR-222, miR-146b on 51 FNA samples (38 malig-
nant and 13 benign; Table 2), resulted in a predictive
power of 94.12 %. It is interesting to note that this model
correctly classified 95 % of the samples in the malignant
group and 92.31 % of the samples in the benign group
(Table 3). The predictive power of KIT, TC1, miR-222,
miR-146b expressions to discern malignant from benign
lesions was also confirmed by means of discriminant ana-
lysis that showed a predictive power of 92.16 % (slightly
less than BBNs). Also, more importantly, it correctly
classified 100 % of the samples in the malignant group
and 69.23 % of the samples in the benign group (Table 4,
Additional file 2: Table S2). In order to validate the accur-
acy of the models as predictive tools, we conducted a
blind analysis on 11 unknown samples, with both dis-
criminant analysis and BNNs. At the end of the analysis,
our models diagnosed all the 11 unknown samples in
accordance with pathological diagnosis. Discriminant ana-
lysis gave a benign probability of 0.1101 and a malignant
probability of 0.8898, while BNNs determined 0.0764 and
0.9264, respectively (Tables 5 and 6). The samples cor-
rectly classified were diagnosed as SPTC at the cytological
level and were moved to the diagnostic group of malig-
nant after pathological diagnosis. Seven of the 11 SPTC
samples used in this analysis had BRAF mutations. There-
fore, there were four BRAF wild-type patients. Our model
assigned these four patients to the malignant group with a

A B

Fig. 1 Expression mean for each marker in malignant and benign samples. KIT - TC1 (a) and miR-222 - miR-146b (b) gene expression levels in
benign and malignant thyroid samples
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probability of 0.9065, 0.8631, 0.7890, 0.9585 by dis-
criminant analysis and 0.999, 0.824, 0.799, 1 by BNNs,
respectively (Tables 5 and 6).

Principal component analysis
We next performed PCA in order to visualize in a three-
dimensional space the discriminative power of all four
markers according to malignant and benign status (Fig. 2).
A separation between malignant and benign samples can
be visually identified (Fig. 2, left plot). A similar grouped
structure was identified by an unsupervised analysis
performed via “k-means” clustering (Fig. 2, right plot).

ROC curve analysis
In order to determine the model robustness for predicting
malignancy in thyroid samples, we finally resorted to ROC
curve analyses by individually using the expression of each
marker (TC1, KIT, miR-146b, miR-222; Fig. 3, Table 7).
Among all markers, KIT and miRNA146b showed the
highest AUC (0.9) for malignant versus benign.

Association analysis between miRNA146b, miRNA 222,
TC1, and KIT gene expression level and BRAF V600E
mutation
We investigated the expression of miRNA146b, miRNA
222, TC1, and KIT in only malignant FNAs: there were
41 malignant FNAs with 20/41 carrying the V600E
mutation on BRAF exon 15. We found that miR-146b

and miR-222 were significantly down-regulated (P-value =
0.036; P-value = 0.037, respectively) in the malignant sam-
ples with wild-type BRAF (mean = 146.57; mean = 8.15,
respectively) compared with the malignant group with
BRAF V600E (mean = 381.73; mean = 29.59, respectively).
The opposite was found for KIT (mean = 0.06 for BRAF
V600E; mean = 0.22 for wild-type BRAF, P-value = 0.023)
and TC1 (mean = 0.10 for BRAF V600E; mean = 0.47 for
wild-type BRAF, P-value = 0.009), which carried the V600E
mutation in 28/47 and 34/65 of malignant samples,
respectively (Fig. 4).

Discussion
The current diagnosis of thyroid nodules, based on FNA
cytology, still leads to a significant proportion of indeter-
minate lesions. In the past few years, several studies have
investigated the development of molecular markers to
play a diagnostic role in FNA specimens [8]. Never-
theless, the studied genes still have limited diagnostic
power owing to the small number of screened patients
or because only a few authors tested these markers on
indeterminate lesions to conclude a definitive diagnosis;
furthermore, there are many contradictory results in the
literature [25, 37]. Owing to the lack of useful pre-
operative diagnostic biomarkers and in view of acquiring
a better understanding of the correct diagnosis of indeter-
minate lesions, we herein proposed new markers, such as
KIT, TC1, miR-146b and miR-222. We found that KIT
mRNA expression levels were significantly higher in
benign thyroid tumors compared with malignant ones,
thereby confirming our previous results [11]. Few papers
have suggested to analyze KIT expression on FNA bio-
psies from benign and malignant thyroid nodules to verify
if KIT expression analysis is of clinical interest. Down-
regulated KIT expression in thyroid tumors is in contrast
with the over-expression of other tyrosine kinase

Table 2 Histological, cytological, and molecular diagnosis of
51 thyroid nodules used in the computation models

HD CD BRAF

PTC (38) n WT V600E

PTC 22 10 12

IFP 5 5 0

SPTC 11 4 7

BN (13) IFP 7 7 0

BN 6 13 0

HD histological diagnosis, CD cytological diagnosis, PTC papillary thyroid
carcinoma, SPTC suspicious for PTC, CP papillary carcinoma, IFP indeterminate
follicular proliferation, BN benign nodule, WT wild-type

Table 3 Classification table of Bayesian neural networks.
Predictive power of KIT, TC1, miR-222, and miR-146b for discriminating
malignant from benign: among the 51 cases used to train the model,
94.12 % of them were correctly classified

Actual mal_ben Group size Predicted

Benign Malignant

Benign 13 12 1

(92.31 %) (7.69 %)

Malignant 38 2 36

(5.26 %) (94.74 %)

Table 4 Classification table of discriminant analysis. Predictive power
of KIT, TC1, miR-222, and miR-146b for discriminating malignant from
benign FNA. This procedure is designed to develop a set of
discriminating functions which can help predict malignant
vs. benign status based on the values of other quantitative variables;
51 cases were used to develop a model to discriminate among the
two levels of malignant vs. benign; four predictor variables were
entered. Amongst the 51 observations used to fit the model,
47 % or 92.16 % were correctly classified

Actual mal_ben Group size Predicted

Benign Malignant

Benign 13 9 4

(69.23 %) (30.77 %)

Malignant 38 0 38

(0.00 %) (100.00 %)

Classification variable: Malignant vs Benign
Independent variables: KIT, TC1, miR-222, miR-146
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receptors, such as c-RET and c-MET, or oncogenes,
such as c-RAS, indicating that the signaling pathways of
different tyrosine kinase receptors can control opposite
biological mechanisms, or alternatively affect cell prolifer-
ation or differentiation in a specific cell type. The KIT lig-
and, SCF, operates in conjunction with thyroid-
stimulating hormone; however, it is not a mitogenic factor
in primary thyrocytes cultures [38], which suggests that
the SCF/KIT pathway might be involved in thyrocyte dif-
ferentiation rather than proliferation. By investigating the
diagnostic ability of miR-222 and miR-146b in our FNA
samples, we showed that miR-146b was significantly over-
expressed in malignant lesions, as reported in the litera-
ture [25], and that miR-222 expression was also higher in
the malignant group compared with the benign group, al-
though this did not reach significance. Since miR-146b is
more accurate at differentiating malignant from benign
thyroid lesions on FNA, we suggest that FNA miR-146b
analysis is a useful adjunct in the management of patients
with thyroid nodules. The concomitant increase in the

expression of the two miRNAs that target KIT [18, 39]
and the decrease in KIT expression in our malignant
FNA samples strengthens the choice to use these
markers in the diagnosis of nodules. TC1 has been re-
ported to be over-expressed in thyroid cancer compared
with benign nodules [24, 40], and according to the litera-
ture, we found significant over-expression of TC1 in ma-
lignant lesions compared with benign lesions. The exact
function of the protein coded by this gene is still un-
known, although the overexpression of TC-1 in papillary
carcinoma suggests that it may play an important role in
thyroid carcinogenesis. Medical diagnoses are progressing
quickly as a result of computational advances, for example
computation model like discriminant analysis and BNNs,
and have been proven to generate better results compared
with standard statistical techniques [41, 42]. BNNs and
discriminant analyses made up of KIT, TC1, miR-222, and
miR-146b performed on data collected from FNA samples
showed a very strong predictive value (94.12 % and
92.16 %, respectively) for discriminating malignant from

Table 5 Gene model validation test by discriminant analysis. Malignant or benign group allocation probability values for the
unknown samples

Unknown samples Benign probability Malignant probability Predicted diagnosis Cytological diagnosis Pathological diagnosis BRAF status

A 0.0700 0.9300 Malignant SPTC Malignant V600E

B 0.0530 0.9470 Malignant SPTC Malignant V600E

C 0.1075 0.8925 Malignant SPTC Malignant V600E

D 0.0177 0.9823 Malignant SPTC Malignant V600E

E 0.1964 0.8036 Malignant SPTC Malignant V600E

F 0.1380 0.8620 Malignant SPTC Malignant V600E

G 0.0935 0.9065 Malignant SPTC Malignant WT

H 0.1369 0.8631 Malignant SPTC Malignant WT

I 0.1458 0.8542 Malignant SPTC Malignant V600E

L 0.2110 0.7890 Malignant SPTC Malignant WT

M 0.0415 0.9585 Malignant SPTC Malignant WT

Table 6 Gene model validation test by BNN analysis. Malignant or benign group allocation probability values for the unknown
samples

Unknown samples Benign probability Malignant Probability Predicted diagnosis Cytological diagnosis Pathological diagnosis BRAF status

A 0.0302 1.0000 Malignant SPTC Malignant V600E

B 0.0011 1.0000 Malignant SPTC Malignant V600E

C 0.0004 0.9996 Malignant SPTC Malignant V600E

D 0.0000 1.0000 Malignant SPTC Malignant V600E

E 0.3242 0.6758 Malignant SPTC Malignant V600E

F 0.0223 0.9777 Malignant SPTC Malignant V600E

G 0.0009 0.9991 Malignant SPTC Malignant WT

H 0.1759 0.8241 Malignant SPTC Malignant WT

I 0.0847 0.9153 Malignant SPTC Malignant V600E

L 0.2007 0.7993 Malignant SPTC Malignant WT

M 0.0000 1.0000 Malignant SPTC Malignant WT
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benign patients. It is noteworthy that discriminant analysis
showed a correct classification of 100 % of the samples in
the malignant group, and 95 % by BNN (Tables 3 and 4).
Based on the discriminant analysis, the predicted prob-
ability of disease resulted to range between 85 % and
100 % for almost all disease cases. No classification errors
occurred when the predicted probability of the disease
was higher than 85 %; hence, the use of the four genes as
a case classifier strengthens their importance as preopera-
tive predictors of diagnosis of thyroid nodules (Additional
file 2: Table S2). Of note, miR-222 relevantly contributed
to strengthening the discriminative power, even if it was
not a significant marker itself for the discrimination of
malignant from benign samples. Both the models were
validated using 11 unknown samples. Referring to the
standard pathological diagnosis conducted by clinical
pathologists, they lead to an accurate diagnosis (Tables 5
and 6). In particular, the samples that were correctly clas-
sified were diagnosed as indeterminate samples (SPTC) at
the cytological level; 7 of the 11 SPTC samples used in this
analysis were BRAF mutated. Therefore, there were four
patients left out that even after BRAF mutational analysis
remained SPTC. Our model assigned these four patients
to the malignant group, with a high probability on both
discriminant analysis and by BNN. Our data demonstrate
that our model can make the diagnosis of malignancy with
more certainty than a surgeon. It is important to point out

Fig. 2 Principal component analysis and k-means clustering. We plot the first three principal components of the space of the four log transformed
features TC1, c-KIT, miR-146, and miR-222 in the context of classifying malignant vs benign. The data points in the plots on the left are labeled
according to their condition (“Malignant vs Benign”). The plots on the right show the clusters identified by the unsupervised analysis performed via
k-means clustering. We can see that the separation induced by the conditions “Malignant vs Benign” approximately reproduces/reflects the intrinsic
grouped structure of the data

Fig. 3 ROC analysis for KIT, TC1, miR-146b, miR-222 for case
classification into malignant vs benign. KIT and miRNA146b
showed the highest discriminating power (AUC = 0.9). The true
positive rate (sensitivity) is plotted as a function of the false
positive rate (100-specificity) for different cutoff points. Each
point on the ROC plot represents a sensitivity/specificity pair
corresponding to a particular decision threshold

Panebianco et al. BMC Cancer  (2015) 15:918 Page 8 of 11



that SPTC lesions are often very difficult to diagnose, and
in this study we developed a molecular approach that is
able to correctly classify with 100 % certainty the un-
known SPTC samples as malignant. Because our markers
panel is 100 % sensitive for malignant pathology of inde-
terminate FNA lesions, it would be reasonable to recom-
mend a total thyroidectomy if malignancy is predicted. In
order to visualize in a three-dimensional space the dis-
criminative power of all the four markers, we applied a
PCA to the benign and malignant samples. We obtained
an overall separation among them according to the ex-
pression of the four markers used in the study, which
confirmed that the four markers together discriminate
between benign and malignant status. Using the dataset
from the computational model and the PCA analysis, we
also performed ROC analysis in order to optimize the
model for negative and positive predictive values in our
thyroid cohort. The ROC curve of c-KIT and miRNA146b
had a high diagnostic accuracy for FNA samples, nearing
100 %; therefore, they alone and in combination can be
used to distinguish between malignant and benign nod-
ules. On the other hand, the ROC curve of TC1 had high
specificity (92.9), which means that when TC1 is over-
expressed in our samples it has a high probability to
correctly identify the samples as malignant with a low
risk of false positives, but it had low sensitivity (38.5).
Therefore, when the value of TC1 is low there is a high

probability to have a false benign result. Further analyses
revealed that the expression levels of the four genes are
also significantly associated with the molecular status of
the BRAF gene. As a matter of fact, as shown in Fig. 4, in
the BRAF mutated group, the down-regulation of KIT and
up-regulation of miR-146b and miR-222 are indicative of
a more aggressive behavior reflecting the same trend
between benign and malignant lesions. On the other hand,
TC1 expression levels have the opposite behavior from
what is observed earlier between the malignant and be-
nign lesions, indicative therefore of a mutual exclusive
malignancy driving with respect to BRAF V6000E. Our
hypothesis is that when the malignant transformation is
driven by mutated BRAF, TC1 has no influence on the
transformation; however, when BRAF is wild-type, TC1
has a major role in neoplastic transformation. These
results shows how the presence of the BRAF V600E muta-
tion is accompanied by a specific genetic scenario in
which sets of genes discriminate the mutational and wild-
type status, supporting the hypothesis of higher tumor
aggressiveness associated with the BRAFV600E mutation.

Conclusions
In conclusion, herein we were able to develop a statis-
tical model that accurately differentiates malignant from
benign indeterminate lesions on thyroid FNAs using a
panel of two miRNAs and two genes (miR-146b, miR-

Table 7 Individual ROC analysis for each marker in malignant vs benign

Sensitivity Specificity AUC SE 95 % CI p-value

TC1 38.5 92.9 0.634 0.0816 0.487 to 0.764 0.0953

c-KIT* 95.7 88.2 0.973 0.0261 0.883 to 0.998 <0.0001

miR146b* 87.8 100.00 0.931 0.0364 0.824 to 0.983 <0.0001

miR-222 48.8 68.7 0.551 0.0955 0.405 to 0.690 0.9171

AUC area under the curve, SE standard error, CI confidence interval
*P < 0.05

A B

Fig. 4 Expression mean for each marker in BRAF WT and V600E malignant samples. KIT - TC1 (a) and miR-222 - miR-146b (b) expression in BRAF
wild-type versus V600E malignant lesions
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222, KIT, and TC1). We suggest the use our four-gene
model as a further step in the diagnosis of suspicious
nodules in clinical cases with an indeterminate cyto-
logical analysis and wild-type BRAF molecular marker.
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