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Non-invasive assessment of cognitive importance has been a major challenge for planning of neurosurgical procedures. In the past decade, in
vivo brain imaging modalities have been considered for estimating the ‘eloquence’ of brain areas. In order to estimate the impact of damage
caused by an access path towards a target region inside of the skull, multi-modal metrics are introduced in this paper. Accordingly, this
estimated damage is obtained by combining multi-modal metrics. In other words, this damage is an aggregate of intervened grey matter
volume and axonal fibre numbers, weighted by their importance within the assigned anatomical and functional networks. To validate these
metrics, an exhaustive search algorithm is implemented for characterising the solution space and visually representing connectional cost
associated with a path initiated from underlying points. In this presentation, brain networks are built from resting state functional magnetic
resonance imaging (fMRI) and deterministic tractography. their results demonstrate that the proposed approach is capable of refining
traditional heuristics, such as choosing the minimal distance from the lesion, by supplementing connectional importance of the resected
tissue. This provides complementary information to help the surgeon in avoiding important functional hubs and their anatomical linkages;
which are derived from neuroimaging modalities and incorporated to the related anatomical landmarks.
1. Introduction: Planning an access trajectory towards central
nervous system lesions or tumours often demands careful
examination of the functional importance for the tissue surrounding
the lesion and across the considered path. Failure to assess the
impact of tissue damage along the candidate trajectory may result
in severe cognitive, perceptual, motor, or language deficits [1].
In order to minimise the damage to the healthy tissue relying
on preoperative imaging, one heuristic is to choose the path
that minimises the length of the access path [2] or distance from
critical vessels [3]. However, these consideration alone might
not be enough. Depending on the position of the lesion, the
surgeon might have to choose between causing a deficit in order to
remove the whole lesion or leaving it untouched. Going through an
eloquent area can result in a measurable functional deficit;
however, currently it is difficult to predict the amount of the deficit.

This decision-making process becomes even more complicated
once the high inter-individual variability of the brain networks is
taken into consideration. Growing evidence from missing function-
al hubs in computational models [4] to experimental studies on
the effects of brain injuries on postoperative neuropsychological
deficits [5], suggests the importance of mapping the brain activity
and network integrity around planned resections and focal lesions
might prevent potential adverse outcomes of neurosurgical treat-
ments. This need motivates the use of non-invasive brain imaging
modalities to assess connectional aspects of the underlying tissue
based on objective metrics derived from structural and functional
brain networks.

Currently, planning a preoperative neurosurgical path is solely
dependent on traditional and readily identifiable eloquent brain
regions observed by neurosurgeon (e.g. insula, language or motor
areas), regardless of individual differences that might arise from
multimodal brain maps. Although there has been previous efforts
to include multiple brain imaging modalities (e.g. fMRI and
diffusion tensor imaging, DTI) into the automatic planning of
trajectories [6–8] or employing functional connectivity (FC) to
explore network status of the lesion areas [9], most of the studies
have focused on avoiding vascular system [10, 11]. There have
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been some recent studies showing importance of the connectome
in brain surgery [12]; however, this application merits more
research studies to develop interactive techniques (such as [13])
to probe for functional organisation and predict long-term
outcomes of resecting a tissue segment using non-invasive
imaging modalities [14].

Integrating proposed method into the neurosurgical workflow
assists neurosurgeons to modify their surgical access paths accord-
ing to the individual patient networks. Our method is capable of
mapping graph theoretical network measures of the whole
brain to their anatomical counterparts, through construction and
visualisation of conducted trajectory and computational estimation
of its cognitive damage. This way, the surgeon is able to visualise a
planned trajectory and assess its overall damage (also known as
score) on structural and functional networks of any individual,
decreasing the potential deficits.

2. Imaging data description: Dataset used in this study is
collected with approval from research ethics board of UWO and
consists of resting state (RS) fMRI, T1 anatomical and diffusion
weighted imaging (DWI) scans acquired from healthy subjects
in a 3T scanner. The RS-fMRI data comprised one session of 140
scans with a TR of 2100 ms and isotropic voxel size of 2.5 mm.
Preprocessing steps are carried out in SPM [http://www.fil.ion.ucl.
ac.uk/spm/] and include realignment, coregistration and smoothing
with default parameters of the tool. FMRI volumes were parcellated
according to Desikan Killiany (DK) atlas by an VASSET pipeline
[https://github.com/akhanf/vasst-dev] and average of the time
series from grey matter (GM) areas were extracted. For the compu-
tation of FC a MATLAB implementation of Dynamic FC [15] was
considered and first eigenconnectivity matrix (matrix with largest
eigenvalue) was chosen as the main FC matrix.

DWI scans have 64 gradient directions (138 bidirectional scans)
and unweighted B= 0 scans (b= 0 S/mm2) with an isotropic voxel
size of 2 mm. Distortion and motion artefacts were corrected
using eddy and topup in FSL [https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/].
DTI conversion and whole fibre tract generation (tractography)
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was carried out in 3D Slicer [https://www.slicer.org/]. Structural
connectivity (SC) matrix is generated from deterministic tracto-
graphy with regards to DK atlas parcellation of 70 regions over
the GM. [16].

3. Methods: A graphical overview of the proposed workflow is
given in Fig. 1. Steps (1)–(4) are the main inputs to the system.
Steps (1) and (2) are FC and SC matrices, respectively. Step (3)
is a collection of target points inside the central nervous system.
Step (4) is a 3D box surrounding the brain, sampled with a grid
of points with adequate resolution to build a search space. Steps
(5) and (6) are construction of eloquence scores for the GM
regions and white matter (WM) fibres. Step (7) serves to create
the surgical path and isolate the GM and WM tissue impacted by
the chosen path. Steps (8) and (9) compute and hold results of an
iterative process that iterates between Steps (4) and (7) to cover
all assigned paths from a given box in Step (4) towards a target
point in Step (3).

3.1. Computation of eloquence scores: The objective of eloquence
metric is to represent connectivity role of the underlying tissue
and formulate a new approach to assess cognitive importance
of the brain areas [17]. Brain networks (also known as brain
connectivity) demonstrate areas of the brain that are linked either
in functional or structural domains. Functional connectivity
represents statistical similarities that can be extracted from brain
activity recorded by functional neuroimaging methods, whereas
structural connectivity shows physical linkages that exist between
GM areas through WM fibres. Therefore, these two major
connectivity types are mapped to the associated tissue according
to the atlas that has been used to compute the connectivity
matrices. In other words, the anatomical location of the GM
region that represents the network node was assigned a network
measure to indicate its importance in the given network. Same
Fig. 1 Overview of the multimodal connectivity based preoperative neurosurgica
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principle has been applied to WM fibres, only difference being
that end points of the fibres are considered to find out which
node of brain network they belong to. Overall, we defined four
eloquent scores from measurements based on graph theoretical
brain networks: structural score (SS) and functional score (FS) for
GM regions and WM fibres. FCGMk is the functional component
of an eloquence score for a GM area labelled as k and is defined as

FCGMk =
∑N

j=1

|FC(k, j)| (1)

where FC(k, j) is the row k and column j of FC matrix. Similarly,
SCGMk is the structural component of the eloquence score for
the same GM area computed with the following equation:

SCGMk =
∑N

j=1 |SC(k, j)|
L

(2)

SC(k, j) is one element of the structural matrix and contains
number of the fibres between regions k and j. In order to cancel
out the effect of the ROI size, SCGMk is divided by L (volume
of the ROI).

Eloquence score of a single fibre from the whole brain tracto-
graphy is built upon GM areas that fibre intersects in brain
volume: ROIs = {GM1, GM2, . . . , GMm} (m is the number of
intersected areas). As such, functional score (FCWMp) and struc-
tural score (SCWMp) of fibre p are the mathematical average for
the corresponding score of the associated regions (ROIs):

FCWMp = FCGMi where i [ ROIs (3)

SCWMp = SCGMi where i [ ROIs (4)
l path planning
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Fig. 2 3D visualisation of a surgical path to a target lesion
a Target landmark identified with a red sphere in 3D scene
b Start point located outside of the skull depicted along with impacted WM
and GM tissue
3.2. Path visualisation and tissue extraction: Surgical access path
is modelled and visualised as a cylindrical tube (Fig. 2), which
travels between two arbitrary points and its length and radius are
adjustable. A sweeping spherical point cloud serves to scan
through internal volume of cylinder to detect and store existing
GM areas and WM fibres (Fig. 2) within the volume. At the
Fig. 3 Visualisation of the optimal path search for a single target: Damages ass
a FCGM
b SCGM
c FCWM
b SCWM
e Tscore
f 3D reconstruction of Tscore for image-guided interventions with target fiducial hi
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same time, proposed algorithm (7) sums up eloquence scores of
the relevant tissues. Main algorithm that has been used in this
part is explained in previous works [18, 19].

3.3. Optimum path search: Solution space is formed by a 3D cube
encapsulating the skull to capture all plausible paths towards any
target point in the brain. Start points for the paths are located on
five faces of the cube (all faces except the base, which overlaps
with skull volume) with a grid of 1 cm spacing (a flattened
version of search box is shown in Fig. 1(4)). For a single target
point, search algorithm runs through all entry points on the box
(Step (4)) and generates the path with GM and WM components
in Step (7) and passes all the variables to Step (8). In which,
total damage to the tissues is calculated by summing up the
four components of eloquence score. In the next step, Step (9)
reconstructs a volumetric box of the resulted scores and paints
those points by numerical assessment of surgical outcome. In
order to aggregate four components of the eloquence score, we
decided to normalise them to a certain range by feature scaling
(min–max scaling) followed by a summation of four components:

X ′ = X − Xmin

Xmax − Xmin
(5)

Tscore = FCGM′
path + SCGM′

path + FCWM′
path + SCWM′

path

(6)

Equation (6) is equivalent to the total of GM volume and WM
fibres normalised according to their statistical distribution
and weighted with relevant eloquence score. To represent the
outcomes of the proposed framework, a colour-coded risk map
consisting of Tscore for the candidate entry points is shown to the
surgeon (Fig. 3f ).

4. Experimental results: To analyse performance of the proposed
method to the traditional approach of trajectory planning, seven
targets were placed on various locations with medium depth and
are shown in Fig. 1(3) by our clinical team. Then, for each target,
one specialist neurosurgeon selected a trajectory based on 2D and
3D views relying on anatomical scan and cortical surface
ociated with

ghlighted in red, green to red shows low to high damage
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Table 1 Evaluation of the trajectories from proposed method to traditional decisions made by surgeons

Target number Method Path length, mm Damage score range Eloquence damage Euclidean distance on the box, mm Angular distance (deg)

1 routine 20 [0,560] 176 37 45
proposed 22 58

2 routine 15 [0,584] 240 38 65
proposed 19 75

3 routine 18 [0,641] 29 0 0
proposed 18 29

4 routine 21 [0,631] 108 69 49
proposed 23 29

5 routine 48 [0,570] 90 54 13
proposed 36 37

6 routine 49 [0,627] 194 26 15
proposed 48 58

7 routine 33 [0,585] 194 11 10
proposed 28 70

average routine 29 [0,600] 147 34 28
proposed 27 66
(generated by FreeSurfer [https://surfer.nmr.mgh.harvard.edu/]).
We recorded initial response (indicated as routine). Following
this step, neurosurgeon used this initial answer to search local
minimums its vicinity and refine it to enhance the risk score
(Tscore). Second step was performed under the guidance of 3D
visualised scores resulted from the search. Radius of the
tube representing the path was set to r = 5 mm for all of these
trials. Results are represented in Table 1. Path length refers to
the distance from the target to the cortical surface parallel to the
assigned trajectory. Damage is the value obtained from (6) for the
given path. Damage score range is the span of the values present
in the search domain (3D box). Physical distance between
projected points over the box is reported as Euclidean distance
and angle between proposed and routine trajectory is reported as
Angular distance. These experiments are carried out on an
Ubuntu OS using a new 3D Slicer module which was developed
for this study.

5. Discussion: In the design of this study, the main assumption was
that expert neurosurgeon can decide where approximately is the right
entry point to the brain; given this assumption the goal was to provide
a complimentary tool to fine-tune that decision by providing
alternative access path in the vicinity of the initial decision that
causes less harm to the brain networks. Table 1 provides the
numerical results. Average of the path length for the proposed
versus routine method are 27 and 29 mm. The main goal was to
investigate the changes in damage, not the length. However, our
results show that new method does not necessarily cause longer
paths. Main objective of this study was to offer alternative
trajectories in the proximity of the original trajectory whilst
lowering estimated cognitive damage. This has been achieved by a
small average physical difference (34 mm Euclidean and 28°
angular) and improved cognitive damage with the new trajectory
(66 compared to 148). In target number 3, initial response landed
in a neighbourhood with minimal damage values and as a result,
enhanced and routine trajectories are equal. Whereas, for target
number 4, initial response was significantly altered to achieve a
lower damage score, causing a significant distance between
enhanced and routine approaches. Regarding the small to medium
size brain tumours, since brain deformation is negligible, we
predict that performance of the proposed method would be the
same as healthy datasets tested in the current work. Moreover, we
would like to clarify that the current experimental procedure is
based on the fact that if an expert neurosurgeon agrees to change
the initial decision, adjusted entry point is equally safe with the
extra benefit of avoiding critical hubs of the brain networks.
Healthcare Technology Letters, 2017, Vol. 4, Iss. 5, pp. 152–156
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6. Conclusion: The proposed eloquence metrics and estimated
damage score are developed to quantitatively map graph theoretical
network measures to their associated nodal areas. These anatomical
hubs are perceived to play a central role in neural communications
and information exchange across functional and structural networks
[20]. Therefore, if resected, injured, or disconnected, may result
in disruptions of network structure, leading to decline of cognitive
performance or worse, debilitating motor, perceptual, or linguistic
impairment. Accordingly, the surgeon can be supplied with
anatomical counterparts of multimodal brain networks, without
mentally being overloaded with connectome matrix data that does
not provide explicit 3D structural information. Our current
implementation utilises a typical network measure (unsigned
weighted degree) [17]. It should be noted that the proposed
eloquence scores are based on functional and structural
connectivity, which have been shown in the last decade to
correlate with actual cognitive abilities [21]. The main novelty of
our approach is the visualisation and objective combination of both
connectivity types. In the current format, this method is customised
for planning an access path towards a medium-depth brain tumours
or lesions; however, it can be modified for other neurological
applications which depend on cognitive assessment of brain tissue.
For deep-seated lesion or tumours, a simulation algorithm should
accompany this method to take tissue deformations into
considerations. Future work includes substitution and testing with
other global or local network measures. We also consider to run
comparative studies between entry points chosen by expert
neurosurgeons and damage score maps generated by the proposed
algorithm. Upon availability of clinical data, it would be
worthwhile to carry out validation studies to evaluate accuracy of
the score maps with regards to the post-operative outcomes.
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