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Sound generation in zebrafish with
Bio-Opto-Acoustics
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Rebecca E. Poulsen 2, Halina Rubinsztein-Dunlop 1 & Ethan K. Scott 2✉

Hearing is a crucial sense in underwater environments for communication, hunting, attracting

mates, and detecting predators. However, the tools currently used to study hearing are

limited, as they cannot controllably stimulate specific parts of the auditory system. To date,

the contributions of hearing organs have been identified through lesion experiments that

inactivate an organ, making it difficult to gauge the specific stimuli to which each organ is

sensitive, or the ways in which inputs from multiple organs are combined during perception.

Here, we introduce Bio-Opto-Acoustic (BOA) stimulation, using optical forces to generate

localized vibrations in vivo, and demonstrate stimulation of the auditory system of zebrafish

larvae with precise control. We use a rapidly oscillated optical trap to generate vibrations in

individual otolith organs that are perceived as sound, while adjacent otoliths are either left

unstimulated or similarly stimulated with a second optical laser trap. The resulting brain-wide

neural activity is characterized using fluorescent calcium indicators, thus linking each otolith

organ to its individual neuronal network in a way that would be impossible using traditional

sound delivery methods. The results reveal integration and cooperation of the utricular and

saccular otoliths, which were previously described as having separate biological functions,

during hearing.
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Evolution has produced diverse approaches for hearing.
Understanding different auditory systems in nature pro-
vides insights into the role of hearing in ecology, and has

provided valuable design information for biomimetic microphone
technologies1,2. While mammalian hearing is based on a single
organ, the cochlea, which only senses pressure waves, animals
such as fish3, crustaceans4, and insects5 all have multiple sensory
organs that collectively provide hearing.

In adult fish, sound is sensed through the combined con-
tributions of the otoliths (or “ear stones”), the swim bladder, and
lateral line6–12. Otoliths, which are attached to sensory hair cells,
move and vibrate in response to mechanical waves, which allow
the detection of acceleration and variable sound frequencies. The
swim bladder, in addition to regulating buoyancy, expands and
compresses as pressure waves pass, and in “hearing specialist”
fish, these vibrations are relayed to the ear through the Weberian
ossicle13,14. Finally, the lateral line, which senses water flow using
hair cells across the surface of the body3, is also sensitive to low-
frequency sounds15. Discerning the precise contributions made
by each of these organs has been complicated by the nature of
sound as it travels through water. Since fish and other aquatic
animals generally have a density similar to water’s, underwater
sound travels almost unimpeded through their bodies, which
makes it difficult to confine sound to specific sensory organs. As a
result, each hearing organ’s contributions can only be isolated by
silencing or destroying the other hearing organs16–18, or through
selective recordings of afferent nerves19–21.

Zebrafish larvae are a powerful model system for studying
brain-wide neural networks in general, and sensory networks in
particular22. They also offer a relatively simple auditory system
with only two pairs of otoliths (utricular and saccular), and a
lateral line for low frequencies23. At the larval stage there is no
Weberian ossicle, suggesting that the swim bladder does not
contribute to hearing, and the third otolith, the lagena, has not yet
developed. Nonetheless, larval zebrafish have sensitivity to a wide
range of auditory frequencies and an array of different stimulus
features, and have brain-wide auditory networks that share fea-
tures with those in adult fish24,25 and with subcortical auditory
processing in mammals26–28.

Because of the challenges of stimulating individual auditory
organs in aquatic animals, the utricle’s and saccule’s specific
contributions to hearing have remained uncertain. Indeed, since
both the vestibular and auditory systems rely on these two pairs
of otoliths at this stage of development29, this uncertainty extends
across two sensory modalities, with a consensus that the utricular
otolith is used principally for vestibular perception and the sac-
cular principally for audition30–32.

Results
Optical simulation of sound. Here, we present Bio-Opto-
Acoustic (BOA) stimulation, in which optical forces generate
vibrations of otoliths to allow precisely controlled stimulation of
specific components of the auditory system. By generating nat-
uralistic vibrations directly in the individual organs, we can sti-
mulate them selectively in a way that is physically prohibited
using propagating sound waves. During BOA, optical forces are
applied using optical traps33 (OT), which allow precise and non-
invasive mechanical interactions. OT have been used for the
manipulation of small transparent objects in a number of biolo-
gical contexts34–36, most notably in molecular biophysics37,38.

In this study, we have designed an optical system capable of
applying BOA forces in vivo at frequencies ranging from 1Hz to
1 kHz (Fig. 1a). We used this to vibrate the otoliths of 6 day post-
fertilization (dpf) larval zebrafish (Fig. 1b), allowing controlled
stimulation of individual auditory organs for the first time in any

intact aquatic animal. To study the brain-wide sensory networks
downstream of the otoliths, we combined BOA and actual acoustic
stimuli with fluorescent calcium imaging of pan-neuronal
GCaMP6s39 in a light-sheet microscope40. This provided volu-
metric brain-wide recordings of the neuronal activity resulting from
real and simulated acoustic stimuli at cellular resolution (Fig. 1c, d).
This, in turn, allowed the targeted and systematic exploration of the
contributions made by individual auditory organs to auditory and
vestibular perception in this important model system.

In our experimental setup, acoustic stimuli were presented
from behind the animal to minimize the effects of laterality.
Because the larvae have a density similar to water, the traveling
acoustic waves are predicted to cause their bodies to vibrate with
the water (for our stimuli, along the rostro-caudal axis). However,
their otoliths, mostly made out of a tightly packed calcium
carbonate crystal, are much denser than water, and therefore
move less than the rest of the larva. This relative motion between
the otoliths and the rest of the fish causes deflection of hair cells
in the ear, thus producing a neural signal that feeds into auditory
processing circuitry41. Therefore, to simulate acoustic stimuli
coming from behind the animal, we vibrated the otoliths along
rostro-caudal axis. While this was necessary to provide BOA
stimuli equivalent to our auditory stimuli, we note that this
direction of movement is not optimal for the utricle, which is
most attuned to lateral movements19.

Modeling and quantification of Bio-Opto-Acoustics. Using the
optical system presented in Fig. 1a (detailed in “Methods” and
Supplementary Fig. 1), we applied alternating OT to opposite
(rostral and caudal) sides of the otoliths at various frequencies,
creating oscillations of the targeted otolith. These vibrations of
the otoliths within the fish body are also observed with sound
waves (Fig. 2a, b) due to the high density of otoliths. The motion
of each otolith under either auditory or BOA stimulation can be
expressed through Newton’s law: F=ma. In the case of auditory
stimulation, it is the acceleration of the otolith relative to the
body that is relevant, which results in an effective acceleration of
asound= (1− ρf/ρot)a. We see that the high mass density of the
otolith ρot compared to the ear fluid ρf is essential for high sen-
sitivity. Optical forces can replicate acoustic stimulation by gen-
erating similar accelerations of the otolith.

When solving Newton’s law equation in the Fourier domain,
the solution of the otolith position can be expressed as (details
in Supplementary Information):

x fð Þ ¼ F fð Þ
k þ i 2 πγf

ð1Þ

Where γ is the viscous drag coefficient of ear fluid, k the elasticity
constant of hair cells, and where the total force F can include
optical force, acoustic sounds, and background forces such as the
heartbeat, blood flow, muscle movement, and thermal fluctua-
tions. At low frequencies we simply expect x ~ F/k limited by the
hair cell stiffness. At higher frequency, we anticipate the
oscillation amplitude to scale as 1/f.

To quantify the amplitudes of these vibrations at different
frequencies, we measured the otoliths’ displacement during BOA
stimulation (see “Methods” and Supplementary Figs. 2 and 3). To
do this, we visualized and quantified the otoliths’ vibrations from
the spectrograms of their displacements (Fig. 2c). While
displacements at low frequencies (1 Hz) are masked by other
movements in the animal (heartbeat, blood flow, and voluntary
movements), displacements at higher frequencies can be
identified and quantified (red circles in Fig. 2c). As clear lines
appear for the exact frequency of stimulation, the movement of
the otoliths induced by BOA stimulation appears sinusoidal for
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those frequencies, as would occur during natural sound
stimulation. We also verified that the non-stimulated otolith,
located within the same ear, was not significantly moved during
the stimulation (Supplementary Fig. 2).

The results confirm the displacement of otoliths using BOA
stimulation in vivo. At 10 Hz, we measured displacements of
roughly 140 nm, while at 400 Hz, those displacements decreased
to about 50 nm for the saccular otolith and 15 nm for the
utricular otolith (Fig. 2d) with 400 mW laser power. As expected
from Eq. (1) the amplitude of motion decreased with higher
frequency. This is unsurprising, since temporally shorter OT
forces should produce smaller displacements of the otolith. We
found larger displacements across the frequency range for the
saccular otolith (Fig. 2d), in spite of its larger size and mass, likely
owing to a more favorable geometry that produces stronger
trapping forces during BOA stimulation.

The range of frequencies in our BOA stimulus train
(Supplementary Fig. 4a) include those associated with vestibular
stimuli (1 Hz), those at the interface of vestibular and auditory
stimuli (10 Hz), and those that are considered to be in the
auditory range (100–1000 Hz). As such, we can flexibly test
specific otoliths for their ability to detect and relay information to
the vestibular and auditory systems in a way that is not possible
with real-world auditory and vestibular stimuli, observing the
resulting sensory responses by combining our BOA stimulation
with whole-brain calcium imaging in stationary larvae.

Brain responses to Bio-Opto-Acoustics. Our modified micro-
scope (Fig. 1) was used to perform brain-wide volumetric GCaMP

imaging (using the elav3:H2B-GCaMP6s transgenic line39,
expressing GCaMP6s in the nuclei of all neurons) at 4 Hz volu-
metric imaging rate (details in “Methods”). This approach was
used to map brain-wide responses to a range of BOA frequencies,
along with 100 Hz acoustic tones. An example fluorescence image
is shown in Fig. 1d. We first automatically segmented regions of
interest (ROIs) generally corresponding to individual neurons
across the brain, and then extracted signals through time for each
ROI, using CaImAn package42, as stimuli were presented (see
“Methods”). We then performed a linear regression to identify
ROIs responsive to the acoustic tones and BOA stimuli, followed
by a k-means clustering to identify classes of ROIs (clusters) with
distinct response profiles to the stimuli. Following this step, we
selected clusters responsive to acoustic tones that were also
consistently represented across all six larvae tested (see Supple-
mentary Fig. 4 and the selection criteria detailed in the “Meth-
ods”). Finally, we warped the 3D structures of all six animals’
brains onto one another and onto the Z-brain atlas of the larval
zebrafish brain43, providing a registered reference brain for our
responses, and mapped each responsive ROI back to its 3D
position within the brain (see “Methods”). This approach allowed
us to identify and locate all ROIs responsive to tones or BOA
stimulation, and to register them within a common reference.

Our goal was to identify clusters responsive to tones and to
compare our targeted BOA stimulation of the utricle, the saccule,
or both to actual acoustic stimulation that would affect both
otoliths. To remove the complication arising from unilateral
versus bilateral stimulation, we pierced the left ear of each larva,
which led to a collapse of the otic capsule and a displacement of
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fluorescence image recorded from one plane in one fish. The white dashed ovals indicate the eyes, and the green line delineates the brain. R, rostral; C,
caudal. Scale bar indicates 10 μm.
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the otoliths, presumably rendering the ear deaf to auditory
stimulation. This ensured comparable stimulation of the right ear
only as we applied both BOA and acoustic stimuli at 100 Hz.

We observed that the clusters responsive to 100 Hz tones from
the speaker were also responsive to 100 Hz OT stimulation,
confirming that BOA stimulation taps into natural auditory
circuits in the brain (Fig. 3a). Interestingly, cluster 1 shows that
the simultaneous trapping of the utricle and saccule enhances the

neuronal response in a super-additive manner (Fig. 3b). This
suggests that the utricle contributes to the detection of a wide
range of frequencies. We additionally found a saccule-specific
category of ROIs (cluster 2). These ROIs show no pronounced
preference for higher frequencies, responding across the range of
1–100 Hz (Fig. 3c), which surprisingly suggests the involvement
of the saccular otolith in the detection of low frequencies that are
more vestibular than auditory. These data indicate that both the
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Fig. 2 Mechanics of sound perception in zebrafish. a Schematic illustration of sound propagation from a speaker and the resulting movements of the
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targeted otolith. c Average spectrogram (normalized over frequency) of the position of the optically manipulated otoliths (both saccule and utricle
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scale. Saccule data are represented in blue and utricle in red. Filled circles and diamonds represent mean values. Fit was performed to Eq. (1), with fitting
parameters describing γ and k and neglecting mass. N= 5 fish.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19982-5

4 NATURE COMMUNICATIONS |         (2020) 11:6120 | https://doi.org/10.1038/s41467-020-19982-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


utricle and the saccule contribute to detecting a wide range of
frequencies rather than processing distinct frequency ranges in
parallel, and further suggest that auditory and vestibular
perception in larval zebrafish are mediated by both otoliths in
concert rather than each being carried out by a designated otolith.

In terms of their distributions across the brain (Fig. 3d), these
responses occur in structures of the primary auditory pathway,
including the octavolateralis nucleus (ON) in the hindbrain, the
torus semicircularis (TS) in the midbrain, and the dorsal
thalamus in the forebrain (Fig. 3e). These responses are similar

to what has been previously found in auditory studies with
zebrafish larvae, which, along with matching to the acoustic
stimuli in our own study, corroborates the efficacy of the BOA as
a proxy for acoustic stimulation26,27.

The ON is the first relay center in the brain for auditory and
vestibular information44, and given that the left ear is inactivated
and BOA is applied to the right ear, responses to both auditory
and BOA stimulation are preferentially found in the right ON
(Fig. 3d, e). Activity in the contralateral (left) ON is presumed to
result from connections between the left and right ON, as have
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been observed for auditory responses in other fish species45,46 and
for lateral line information in zebrafish47. We note that this
pronounced asymmetry is lost in subsequent processing centers,
suggesting that later stages of auditory and vestibular processing
are performed bilaterally in this system.

Apart from the structures of the main ascending auditory
pathway, the BOA stimulation also elicits responses in the
cerebellum and tectum (Fig. 3e). The activity of the cerebellum
could be modulating the auditory responses48, or could be related
to motor responses26. On the other hand, the tectum is known to
integrate multiple sensory modalities, including auditory infor-
mation49. It is possible that auditory information in the tectum
can be used to generate a spatial map, as the homologous superior
colliculus does in mammals50.

Finally, we note a transition from the ON where we find a
preponderance of cluster 1 ROIs, to brain regions later in the
auditory pathway where we see more balance between the clusters
or a greater number of cluster 2 ROIs. This suggests a possible
shift from general responses in the ON (with responses to all
tested frequencies and drawn from both otoliths) to more
selective responses (favoring high frequencies, and with selective
control by the saccular otolith) later in the auditory processing
pathway.

Discussion
In this study, we have introduced BOA as a method for the
precise stimulation of the auditory system with light. Our
observations, while they provide unambiguous accounting of
saccular and utricular contributions to brain-wide auditory pro-
cessing, likely understate the breadth and complexity of these
sensory pathways. Further analyses with bilateral BOA stimula-
tion, a greater number of stimulus frequencies, and a corre-
spondingly greater diversity in functional clusters, will be
necessary fully to map the nuances of each otolith’s contribution
to auditory and vestibular processing. Such studies will allow the
detailed characterization of frequency discrimination, analyses of
the convergence and differentiation of vestibular and auditory
pathways in the brain, and the ontogeny of auditory and vestib-
ular processing during development. As these structures are part
of the main ascending auditory pathway of teleost48,51, which are
shared with amphibians and mammals48,52–54, BOA represents
an effective tool for the exploration of the vertebrate auditory
system.

Methods
Animals. All procedures were performed with approval from The University of
Queensland Animal Welfare Unit (in accordance with approval SBMS/378/16).
Zebrafish (Danio rerio) larvae, of either sex, were maintained at 28.5 °C on a 14 h
ON/10 h OFF light cycle. Adult fish were maintained, fed, and mated as previously
described55. All experiments were carried out in nacre mutant elavl3:H2B-
GCaMP6s larvae39 of the TL strain.

Sample preparation. Zebrafish larvae at 5 days post-fertilization (dpf) were
immobilized in 2% low melting point agarose (LMA) (Sigma-Aldrich) on micro-
scope slides. Using the thin sharp end of a pulled pipette, the left ears of zebrafish
larvae were pierced. The fish were released from LMA and placed back in their
incubator. The following day, these larvae (6 dpf) were immobilized dorsal side up
in 2% LMA on microscope slides. Each embedded fish was transferred to custom
made, 3D printed chamber56, which was filled with E3 media55. Larvae were then
allowed to acclimate for 15 min prior to imaging on the custom-built dual optical
trapping microscope presented in Fig. 1.

The protocol for the experiments can be found in ref. 57.

Dual optical trapping system and targeting. The dual optical trapping (OT)
system (Fig. 1 and Supplementary Fig. 1) was composed of an infrared laser
(1070 nm IPG Photonics YLD-5 fiber laser), a half-wave plate (HWP) that rotates
polarization by 45°, and a polarizing beamsplitter (PBS) that splits the incoming
beam into two beams of the same intensity with perpendicular polarizations. The
two independent beams (Trap 1 for the utricle and Trap 2 for saccule) were

reflected off of a galvo mirror (GM) (Thorlabs GVSM002/M). The two beams were
recombined with a second polarizing beamsplitter and a telescope (L2= 150 mm
and L3= 300 mm focal length). An additional lens L1 (150 mm focal length) was
added into Trap 2 path to displace this trap +20 μm in Z (above Trap 1) in order to
reach the saccule, located around 20 μm above the utricle. The beams were then
reflected off a 950 nm cut-off wavelength shortpass dichroic mirror (DM) in the
imaging column, and projected onto the back focal plane of a ×20 1NA Olympus
microscope objective (XLUMPLFLN-W). This created two tightly focused spots at
the imaging plane, or +20 microns above the imaging plane of the microscope
objective. The positions (x, y) of each pair of optical traps (two trap positions for
each otolith) were steered with the galvo mirrors. The two galvo mirrors were
driven with Arduinos (Leonardo) in order to place the OT beam at precise (x, y)
locations, and oscillated between these predetermined locations at variable fre-
quencies (1, 10, 100, and 1000 Hz). Two shutters (Thorlabs SHB1T) allowed
independent gating of the OT and were also driven using an additional Arduino
(Leonardo). A laser power of 400 mW was used and gauged using a power meter at
the focal plane of the ×20 1NA objective. From our previous study on force
measurements within otoliths58, we know that traps positioned between 1 and
3 μm from the edge of the otolith produce the largest forces, and that this force is
radial. Therefore, we positioned each trap in the rostral-caudal axis of each otolith
(utricular and saccular otolith) and about 2 μm from its edge. Once the trapping
positions were determined, we performed the BOA stimulation and calcium
imaging simultaneously.

Acoustic stimulation. Acoustic stimulation was provided by a mini speaker
(Dayton Audio DAEX-9-4SM Skinny Mini Exciter Audio and Haptic Item
Number 295-256) wired to an amplifier (Dayton Audio DA30 2 × 15W Class D
Bridgeable Mini Amplifier). The mini speaker was glued to the glass coverslip wall
of the 3D printed chamber located behind the fish. The sound intensity level was
selected as the average between the sound intensity obtained when a fish would
start to detect the 100 Hz tone (GCamp6s fluorescent activity seen in the ON), and
the sound intensity obtained when a fish would start to have escape responses to
100 Hz tones. Five fish were observed to determine this parameter. This parameter
was kept constant for all acoustic stimulation experiments.

Imaging and analysis of otolith movements. In order to image both the utricular
and saccular otoliths at high speed (1 kHz), we built a system to provide tran-
sillumination of the fish with a bright white LED light under the specimen. Using
μManager59, we cropped the video recordings to a tight region around each otolith
to allow the acquisition frame rate to reach 1 kHz. Each otolith was recorded
separately, and otolith motion was estimated from recorded movies using an
efficient subpixel image registration by cross-correlation method60. Using this
method, we calculated the displacement of each otolith in X and Y in response to
the optical manipulation. Since the resulting traces were noisy (subpixel move-
ments), we represented the data in the Fourier domain using a spectrogram (Fig. 2
and Supplementary Figs. 2 and 3) with a 1 s window. The choice of the window
time was optimized to allow maximum detection of the frequency within the
displacement, and as a consequence, the displacement of the otolith over time
appears to happen during more than 1 s of the stimuli (Supplemental Fig. 3b, c).

It is worth noting that during BOA stimulation, the camera detects a very small
fraction of the laser light used for the trap, and as a consequence, the raw signal
contains a small step function when the stimulus appears and disappears. This
results in the presence of multiple frequencies (appearing as vertical lines on the
onset and offset times of the traps) in the spectrogram with weak intensities.

Fluorescence imaging system. Calcium imaging and OT were performed through
the same ×20 objective. For the fluorescence imaging of a chosen depth on the PCO
edge 5.5 camera, we used a combination of a filter (Thorlabs FF01-517/520-25),
tube lens (TL= 180 mm focal length, Thorlabs AC508-180-A), relay lenses (RL,
Thorlabs AC254-125-A-ML), ETL (Optotune EL-10-30-Ci-VIS-LD driven with
Gardasoft TR-CL180), and offset lens (OL, Eksma Optics 112-0127E). The scan-
ning light sheet was generated using a 488 nm laser (OBIS 488lx), scanned with 2D
galvo mirrors (GM, Thorlabs GVSM002/M), a 50/50 beamsplitter, and a 1D line
diffuser (1D-LD, RPC Photonics EDL-20-07337). Details on the optical path for
the whole system can be found in Supplementary Fig. 1. Further details on the use
of the ETL can be found in ref. 61 and on the use of the 1D diffuser in ref. 40.

With this configuration, we were able to scan 250 μm of brain tissue above the
original imaging plane, where utricle otolith is placed. One galvo scanning
direction (Y) created the light sheet while the second direction (Z) created the
depth scan in the sample. The two mirrors were driven independently using
Arduinos (DUE) with custom-written code. The Y scanning was a sawtooth scan at
600 Hz, which was synchronized to the camera acquisition to ensure similar
illumination for each camera acquisition. The Z galvo was driven in 10 ms steps to
scan the light sheet in Z through the sample. The 50/50 beamsplitter created two
light sheets, one projecting into the rostral side and one into the right side of the
fish. The 1D line diffuser was placed just after the galvos to reduce shadowing
effects in the planes40. The imaging system was controlled using μManager, based
on ImageJ62,63. In our experiments, an exposure time of 10 ms was chosen for each
plane during volumetric imaging, with laser power output of 60 mW, which was
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attenuated to 1.5 mW for each plane at the sample. A total depth of 250 μm in Z
was scanned64, with 25 planes at 10 μm intervals, resulting in a 4 Hz volumetric
acquisition rate. We commenced laser scanning 30 s prior to imaging neural
activity to eliminate responses to the onset of this off-target visual stimulus.

Extraction of fluorescent traces. The volumetric scan was first transformed into a
hyperstack in Fiji65, and then separated into individual slices. We used the CaImAn
package to analyze our images66,67 and extract the fluorescent traces of each ROI
from every slice (http://github.com/flatironinstitute/CaImAn). We compensated
for small movements using a rigid registration68. The greedy ROI method was used
to initialize, for each slice, 4000 components from which to extract, demix, and
denoise the fluorescent traces using an autoregressive model of order 166. We used
a correlation threshold of 0.8 to merge overlapping ROIs and avoid over-
segmentation. The components were updated before and after the merge steps,
empty components were discarded, and the components were ranked for fitness as
in ref. 66.

Whole-brain analysis of fluorescent traces. The active ROIs and their respective
fluorescent traces were further analyzed in MATLAB with a custom-written code.
This code and descriptions of its use can be found in the “Code availability” section
and previous versions are described in refs. 69,70. The traces from six fish were
pooled and z-scored. Regressors were built for the stimulus train presented with a
typical GCaMP response at each stimulus onset (Supplementary Fig. 4a). A linear
regression was performed between all the fluorescent traces and the regressors. The
coefficient of determination (r²) of the linear regression models was used to select
stimulus-responsive ROIs, and we chose a 0.2 threshold based on the r² distribu-
tion of our models to allow for conservative filtering of the data (Supplementary
Fig. 4b). The next step was clustering with the k-means method. The fluorescent
traces passing the linear regression test were clustered into 120 clusters using k-
means with the cityblock distance and five replicates. All the clusters’ averages were
correlated with the regressors, and the clusters responsive to tones and specific to
the optical vibration of the saccule with a response at least 1 SD above baseline were
selected. The fluorescence traces within each resulting cluster were compared to the
regressors using linear regression and the ROIs showing r2 values above 0.4 were
selected (Supplementary Fig. 4c).

Finally, clusters were filtered with the following selection criteria:

(1) Responsivity to each tone stimulus as a GCaMP6s profile,
(2) Responsivity to each tone stimulus with a response above 1 SD to baseline,
(3) Less than 90% of the ROIs within the cluster are represented in each

individual fish.

Spatial registration of fluorescence imaging to a reference brain. We used
Advanced Normalization Tools (ANTs, https://github.com/ANTsX/ANTs) to
compute the diffeomorphic map between the time-averaged 3D image stack of each
fish and the H2B-RFP reference of Z brain43,71,72. The same mapping was used to
warp the centroid coordinates for each ROI of interest to the H2B-RFP frame of
reference, which includes 294 segmented brain regions43. We used MATLAB to
represent each ROI centroid as a sphere within the Z-brain reference brain image.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The.tif files data that support the findings of this study are available in “Bio-Opto-
Acoustics” with the identifier https://doi.org/10.14264/9809ff7. Source data are provided
with this paper.

Code availability
Codes can be downloaded from https://doi.org/10.14264/9809ff757.
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