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ABSTRACT
The spread of novel coronavirus strain, Severe Acute Respiratory Syndrome 2 (SARS-CoV-2) causes
Coronavirus disease (COVID-19) has now spread worldwide and effecting the entire human race. The viral
genetic material is transcripted and replicated by 3C-like protease, as a result, it is an important drug tar-
get for COVID-19. Hydroxychloroquine (HCQ) report promising results against this drug target so, we per-
form molecular docking followed by MD-simulation studies of HCQ and modelled some ligand (Mod-I
and Mod-II) molecules with SARS-CoV-2-main protease which reveals the structural organization of the
active site residues and presence of a conserve water-mediated catalytic triad that helps in the recogni-
tion of Mod-I/II ligand molecules. The study may be helpful to gain a detailed structural insight on the
presence of water-mediated catalytic triad which could be useful for inhibitor modelling.

ABBREVIATIONS: COVID-19: Coronavirus Disease-2019; HCQ: Hydroxychloroquine; Mpro: Main prote-
ase; MD: Molecular Dynamics; MM-PBSA: Molecular Mechanics Poisson-Boltzmann Surface Area; ns:
nanosecond; ps: picosecond; K: kelvin; SARS-CoV-2: Severe Acute Respiratory Syndrome 2
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Introduction

The novel coronavirus outbreak was first reported in Wuhan
city of China on December 2019 which causes the
Coronavirus disease 2019 (COVID-19) (Sohrabi et al., 2020) is
now spread worldwide and effecting the entire human race.
The virus strain responsible for this ongoing pandemic is
called Severe Acute Respiratory Syndrome 2 (SARS-CoV-2)
which is the successor to SARS-CoV-1 and also related to
Middle East coronavirus (MERS-CoV) (Petrosillo et al., 2020)
having the highest mortality rate among all human coronavi-
ruses (Elfiky & Azzam, 2020). All three viruses have a com-
mon host and have originated from bats (Hemida & Ba
Abduallah, 2020; Hu et al., 2015). The spread of SARS-CoV-1
(in the year 2002) and MERS-CoV (in the year 2012) to
humans is believed to be through civet cats (Wang & Eaton,
2007) and camels (Azhar et al., 2014) unfortunately the medi-
ator for SARS-CoV-2 is still unknown but researchers suspect
that ant-eating pangolins may be responsible for this spread
as Pangolin-CoV is 91.02% identical to SARS-CoV-2 (T. Zhang
et al., 2020).

During this pandemic several drug targets have been
identified which includes RNA-dependent RNA polymerase
(Anwar et al., 2020; Arya & Dwivedi, 2020; Babadaei, Hasan,
Vahdani, et al., 2020; Elfiky, 2020b), Spike glycoprotein

(Adeoye et al., 2020; Basit et al., 2020; de Oliveira et al., 2020;
Elfiky, 2020a; Sinha et al., 2020; Wahedi et al., 2020),
Angiotensin-converting enzyme 2 (ACE2) (Abdelli et al., 2020;
Ahmad et al., 2020; Babadaei, Hasan, Bloukh, et al., 2020;
Hasan et al., 2020; V. Kumar, Dhanjal, Bhargava, et al., 2020;
Veeramachaneni et al., 2020; Wahedi et al., 2020),
Nucleocapsid protein (Sarma et al., 2020), Papain-like protein-
ase (Quimque et al., 2020), 3 C-like proteinase (Das et al.,
2020; Enmozhi et al., 2020; Islam et al., 2020; Umesh et al.,
2020) and they may be useful for drug development.
However, design and search of multi-epitope vaccine candi-
date molecules have also been initiated in different laborato-
ries (Abraham Peele et al., 2020; Enayatkhani et al., 2020).

The SARS-CoV-2 is a positive-sense single-stranded
RNA virus (Hendaus, 2020; Lu et al., 2020) which utilizes
non-structural protein (nsp) complexes for the process of
transcription and replication in human cells. The replicase
polyprotein is processed by viral protease known as Papain
like protease (PLP) and 3 C-like protease (3CL protease) or
also known as the main protease which is attractive drug tar-
gets for the present pandemic COVID-19 (Al-Khafaji et al.,
2020; Bhardwaj et al., 2020; Gupta et al., 2020; Gyebi et al.,
2020; A. Kumar, Choudhir, Shukla, et al., 2020; D. Kumar,
Kumari, Jayaraj, et al., 2020; Mittal et al., 2020; Sk et al., 2020)
and is most widely studied target for COVID-19 which also

CONTACT Sujit Sankar Panja sujit.panja@gmail.com Department of Chemistry, National Institute of Technology-Durgapur, M.G. Avenue, Durgapur, West
Bengal 713209, India.

Supplemental data for this article can be accessed online at https://doi.org/10.1080/07391102.2020.1804458.

� 2020 Informa UK Limited, trading as Taylor & Francis Group

JOURNAL OF BIOMOLECULAR STRUCTURE AND DYNAMICS
https://doi.org/10.1080/07391102.2020.1804458

http://crossmark.crossref.org/dialog/?doi=10.1080/07391102.2020.1804458&domain=pdf&date_stamp=2020-08-07
https://doi.org/10.1080/07391102.2020.1804458
https://doi.org/10.1080/07391102.2020.1804458
http://www.tandfonline.com


remains conserved among several coronaviruses (CoV), so we
select it for our study. The X-ray crystal structures of SARS-
CoV-2 3CL-protease were surveyed from RCSB Protein Data
Bank (Berman et al., 2000; Burley et al., 2019) which showed
the protein consists of three domains. The Domains I (con-
sisting of 1–99 amino acids), Domain II (consisting of
100–183 amino acids), and Domain III (consisting of 200–306
amino acids) in which domain I contributed His41 and
domain II contributed Cys145 together forming a catalytic
dyad found in entire CoV superfamily. However, the third
catalytic residue is missing and the position seems to be
occupied by an invariant water molecule (L. Zhang, Lin et al.,
2020). The Domain I is connected to Domain III through a
connecting loop consisting of 184–199 amino acid residues
(Figure 1(a)). The ligand-binding site is comprised of Thr26,
His41, Phe140, Asn142, Gly143, Cys145, His163, His164,
Met165, Glu166, Gln189 and Thr190 residues as can be seen
in 6lu7 crystal structure(Jin et al., 2020) (Figure 1(b)).

The Hydroxychloroquine is an FDA approved drug that
has been used to treat malaria(Al-Bari, 2015; Tanenbaum &
Tuffanelli, 1980) rheumatoid arthritis(Rynes, 1988), chronic
discoid lupus erythematosus(Wahie & Meggitt, 2013), and
systemic lupus erythematosus(Chew et al., 2020). During this
pandemic emergency, HCQ has been showing promising
effect in the treatment of COVID-19 (Boopathi et al., 2020;
Hendaus & Jomha, 2020) so, several theoretical and experi-
mental studies are conducted to understand the inhibiting
mechanism of this malarial drug to SARS-CoV-2 (Amin &
Abbas, 2020; Beura & Chetti, 2020; Beura & Prabhakar, 2020;
Devaux et al., 2020; Gautret et al., 2020).

The X-ray crystallographic studies have indicated the
inhibitor/drug binding site on 3CL-protease which helps in
identification for new potential inhibitor molecules, conse-
quently a large number of theoretical studies are conducted
that attempts identification of repurposing drugs for COVID-
19 (Aanouz et al., 2020; Choudhury, 2020; Elmezayen, Al-
Obaidi, Şahin, & Yelekçi, 2020; Joshi et al., 2020; M. T. Khan
et al., 2020; R. J. Khan et al., 2020; S. A. Khan, Zia, Ashraf,
Uddin, & Ul-Haq, 2020; V. Kumar, Dhanjal, Kaul, Wadhwa, &
Sundar, 2020; Lobo-Galo, Terrazas-L�opez, Mart�ınez-Mart�ınez,
& D�ıaz-S�anchez, 2020; Mahanta et al., 2020; Muralidharan,
Sakthivel, Velmurugan, & Gromiha, 2020; Pant, Singh,
Ravichandiran, Murty, & Srivastava, 2020). In our study we
carefully investigated the catalytic and inhibitor binding site
of 3CL-protease in the crystal and MD-simulated structures.
We also report the binding mechanism and stabilization of
Hydroxychloroquine with SARS-CoV-2 main protease through
non-covalent interactions as well as attempt has been made
to model some new structural analogs (Mod I and I/, Mod II
and II/) and their recognition dynamics to conserved water-
mediated catalytic triad.

Material and methods

The X-ray structures of some 3CL-protease from SARS-CoV-2
have been surveyed which were selected from RCSB Protein
Data Bank (Supplementry material Table S1). The position
and hydrogen bonding interaction of catalytic residues were

examined using the UCSF Chimera program(Pettersen
et al., 2004).

Ligand preparation

The ligand (HCQ, Mod I, Mod I/, Mod II, Mod II/) structures
(Figure 2) were built by using the Gaussview
program(Dennington et al., 2009). The structures were then
subjected to geometry optimization with B3LYP/6-31G level
of theory, solvation energies were added using the con-
ductor-like Polarizable Continuum Models (CPCM). The partial
atomic charges of the atoms were retained during classical
MD-simulation. All the QM calculations were performed by
using the Gaussian 09 package(Frisch et al. (2009)
Gaussian 09A.02).

Protein–ligand docking

The 3CL-protease has one ligand binding site which has
been indicated in the X-ray crystallographic studies.
Ligand–receptor docking was performed using Autodock
Vina v.1.1.1 (Trott & Olson, 2009). The 6LU7 X-ray structure
(excluding water and ligand molecules) was considered as a
receptor. Two PDBQT files were generated for the receptor
protein, one for rigid portion and another for flexible (His41
and Cys145) side chains using AutoDock Tools v.1.5.4 (Morris
et al., 2009) by assigning Kollman united atom charges
(Weiner et al., 1984). The QM optimized structures of ligand
molecules (HCQ and Mod-I, I/, II, II/) were converted into
PDBQT files after including their partial atomic charges using
the Gasteiger method (Gasteiger & Marsili, 1980). Grid point
spacing was set at 1 Å and 20 grid points were taken in each
direction. As the location of the ligand binding site was
already known (PDB id: 6LU7), so grid box was centered at
that site. Vina automatically calculated the grid map for
searching. All other docking parameters were assigned to
their default values. The docked structures were visually
inspected and selected for further work. The ligand–receptor
docking was also validated with DockThor (A receptor-ligand
docking program) server (De Magalh~aes et al., 2014; Santos
et al., 2020).

Molecular dynamics (MD) simulation

Molecular dynamics simulation was performed using NAMD
v.2.12 (Kal�e et al., 1999; Phillips et al., 2005) with the
CHARMM36 force field(Brooks et al., 1983; Huang & MacKerell,
2013; MacKerell et al., 1998) . Then each structure was con-
verted to Protein Structure File (PSF) by Automatic PSF
Generation Plug-in within VMD program v. 1.9.2 (Humphrey
et al., 1996). Subsequent energy minimization was performed
by the conjugate gradient method. The process was con-
ducted in two successive stages; initial energy minimization
was performed for 2000 steps by fixing the backbone atoms,
followed by a final minimization for 5000 steps that were car-
ried out for all atoms of the system to ensure the removal of
any residual steric clashes. Then the energy minimized struc-
tures were simulated at constant temperature (310 K) and
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pressure (1 atm) by Langevin dynamics (Gullingsrud et al.,
2001) using periodic boundary condition. The Particle Mesh
Ewald method was applied for full-electrostatics and the
Nose–Hoover Langevin piston method was used to control the
pressure and dynamical properties of the barostat(Feller et al.,
1995). All-atom molecular dynamics simulation for 100 ns was
carried out for HCQ, Mod I, and Mod II docked 3CL-protease
structure. The atomic coordinates of simulated structures were
recorded at every 2 ps for further analysis.

MM-PBSA calculation

The ligand-receptor binding energies were calculated by
Molecular Mechanics-Poisson Boltzmann Surface Area (MM-
PBSA) method using Calculation of Free Energy (CaFE)
program(Liu & Hou, 2016). It is capable of handling the simu-
lation trajectories generated by various force field and is
powered by VMD and NAMD. Three different energy terms
are calculated by the MM-PBSA method which includes
energy difference between the complex and separate recep-
tor and ligand molecule in the gas phase from NAMD. Then,
the polar solvation free energy was calculated using the
APBS program(Baker et al., 2001) and finally, the difference
of solvent-accessible surface area (SASA) is measured and
the nonpolar solvation free energy was estimated. The bind-
ing energies are calculated by using the following equation:

DGbind ¼ Gcomplex � ðGreceptor þ GligandÞ
The binding energies of the ligand-receptor complexes were
calculated at 20 ns interval over the simulation trajectories.

Results and discussion

The analysis of 3CL-protease crystal structures from SARS-
CoV-2 showed that the His 41 of Domain I lies close to
Cys145 of Domain II which together form the catalytic dyad.
An invariant water molecule, HOH445 (W1) is positioned
within hydrogen bond distance to His41ND1, Arg40NB,
His164ND1, and Asp187OD2 atoms (Figure 3).

The Root Mean Square Deviation (RMSD) of the protein
backbone (Ca) atoms (Figure 4) show that the Mod I/Mod II
complexed MPro structures are more stable than the HCQ
complexed structure whereas, the Root Mean Square
Fluctuation (RMSF) curve shows the active site residues in all
the three complexes are stable with small fluctuations at N
and C-terminal region of the protein. All the ligand-protein
complexes show similar deviation and fluctuation validating
the consistency of the simulation trajectories.

Molecular docking and simulation studies of
hydroxychloroquine (HCQ) with 3CLpro

The optimized structure of HCQ was docked in 6lu7 crystal
structure, the ligand molecule binds to a groove on the sur-
face of the protein with binding energy �-5.4 kcal/mol. The
catalytic dyad (His41 and Cys145) interacts with the si-face
(under the aromatic ring) of the ligand molecule through
non-covalent interaction. The His41 endowed parallel dis-
placed p‧‧‧p interaction with aromatic ring 1 of HCQ and
the Cys145 shown S-H‧‧‧p interaction with aromatic ring 2
of HCQ. The Thr24OG1 located at the entrance of the inhibitor
binding site is stabilized by the O21 hydroxyl group of HCQ
through hydrogen bond interaction (Supplementry material
Figure S1).

During simulation, the hydrogen bond interaction
between Cys145SG and His41NE2 is ranging from 3.1 to 3.3 Å
and the average H-bond interaction of W1 water center to
His41ND1, Arg40NB, His164ND1, and Asp187OD2 atoms are
observed to be � 3.0–3.3, 3.1–3.4, 2.8–3.4, 2.7–3.2 Å respect-
ively (Figure 5).

A distorted trigonal pyramidal geometry has been
observed around the W1 water center where Arg40NB and
His164 at the apex position and His41, His164, and Asp187
are present at the three corners of the plane (Figure 6) with
�100% residential frequency. In this HCQ complex structure,
the Cys145SG atom is observed to lie near C8 and C9 carbon
centers with �3.88 and 3.72 Å distance respectively suggest-
ing these two centers may be important for inhibitor

Figure 1. The structural representation of SARS-CoV-2 Mpro (PDB Id:6LU7). a) Domain I, II III, and the connecting loop are shown by yellow, cyan, green and
orange colours respectively. This colouring scheme for the protein has been maintained in the entire manuscript. The catalytic dyad (His41 and Cys145) and the
invariant water molecule (HOH445) are shown here. b) The active site residues with the N3-inhibitor molecule (carbon atom is shown with white). The carbon
atoms of amino acids are shown with their representative domain colour.
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modeling so, these carbon centers were modified by substi-
tuting with different functional groups for easy nucleophilic
attack by Cys145 catalytic residue.

Molecular docking and simulation studies of modified
inhibitor molecules with 3CL-protease

Observing the structural arrangement and interaction of His41
and Cys145 with HCQ, some ligand molecules were modelled
(Figure 2) and docked into the inhibitor binding cavity of the
6lu7 crystal structure. The docked structures of modified

ligand molecules (Mod I, I/, II, and II/) win the 6lu7 crystal struc-
ture are shown in Supplementry material Figure S2.

The binding energies (B.E.) for Mod I and Mod II are
observed to be �6.1 and �5.5 kcal/mol whereas that of Mod
I/and Mod II/are �5.4 and �5.3 kcal/mol respectively. The
results indicate that the modification of HCQ at the C8 pos-
ition is energetically favourable compared to the C9-position.
Moreover, we may say the formation of carbocation at
C8-position of Modified ligand molecules would be more sta-
ble than at C9-position due to –I effect of N7-atom in the
aromatic ring of the ligand molecule so, Mod I and Mod II
structures were selected for further MD-simulation studies.

Figure 2. Chemical structures of HCQ and modified ligand molecules included in this study.
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The molecular dynamics simulation of Mod I and Mod II
complexed 6lu7 structure shows that the Cys145SG lies in
close proximity to O25 atom of the ligand with average dis-
tance ranging from 3.2 to 3.7 Å for Mod I and 3.5 to 4.0 Å
for Mod II complexed structure (Figure 7 and 8). The hydro-
gen bond interaction between the catalytic dyad Cys145SG‧‧
‧His41NE2 varies from 3.2 to 3.5 Å. The W1 water molecule
forms strong hydrogen bond interaction with His41ND1 and
Asp187OD2 thus bridging the gap between these two resi-
dues. The His41ND1‧‧‧W1 distance ranges from �3.1 to 3.4 Å
and 3.0 to 3.3 Å whereas that of W1‧‧‧Asp187OD2 ranges
from 2.7 to 2.9 and 2.7 to 3.0 Å for the respective Mod I and
Mod II complex structures (Figure 7 and 8).

In classical proteases (like chymotrypsin, trypsin or elas-
tase), the catalytic triad is made up of an acid, base and a
nucleophile but in coronavirus main proteases (SARS-CoV-2
Mpro (PDB Id 6lu7), SARS-CoV Mpro (PDB Id 2zu5) and

MERS-CoV Mpro (PDB Id 5wkk)) presence of water-mediated
Aspartic acid residue along with base (His) and nucleophile
(Cys) seem to be unique and reflecting the formation of
water-mediated catalytic triad so, the occupation of W1
water center adjacent to the base (His41) and its recognition
to Asp187 through Asp187OD2‧‧‧W1‧‧‧His41NE2 interaction
could be an evolutionary change in the catalytic site of CoV-
Mpro for unknown reasons.

During simulation, the recognition of Asp187 to Mod I/II
is observed to made through Asp187OD2‧‧‧W1‧‧‧His41ND1/
NE2‧‧‧Cys145SG‧‧‧Mod I/II (O25) path. The carbonyl oxygen
(O25) is stabilized by amide backbone atoms of Cys145,
Ser144, and Gly143 residues (Figure 9).

MM-PBSA binding free energy

The binding free energies of the ligand-receptor complexes
by the MM-PBSA method (Table 1) are calculated. The final
binding energy is the cumulative sum of Electrostatic, Van
der Waal, Polar solvation, and SASA energies which show
that the Mod II structure has better binding energies when
compared to Mod I and HCQ molecules. The Mod I structure
shows low binding and electrostatic energies compared to
the HCQ complex structure. The Mod II complexed structure
shows high binding energy of ��213.09 kcal/mol at
80–100ns time interval.

So, analyses of crystal and ligand-bound simulated struc-
tures from SARS-CoV-2 Mpro a mechanism has been pro-
posed which may shed some light on the mechanistic role of
the above residues in ligand complexed Mpro structures
(Figure 10).

In SARS-CoV-2 Mpro the catalytic triad is made up of
Cys145, His41, and Asp187 residues, a catalytic water
(HOH445) which is associated with His41 and Asp187
through hydrogen bond interaction. Initially, His41 abstracts
a proton from Cys145 making it a better nucleophile (cyst-
eine thiyl radical, CysS-) for attack on the carbonyl carbon
(C24) of the ligand molecule. The Asp187 and HOH445
anchor the His41 molecule to its correct conformation during
the formation of transition state complexes. The reaction is

Figure 3. The interaction of His41ND1, Arg40NB, His164ND1, and Asp187OD2 resi-
dues with an invariant water molecule through hydrogen bond interaction. The
hydrogen bonds are shown by dotted lines.

Figure 4. The Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuation (RMSF) curves of the protein backbone (Ca) atoms during MD-simulation.
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Figure 5. Hydrogen bond interaction between different residues in HCQ-SARS-CoV-2 Mpro during MD-simulation.

Figure 6. The hydrogen bonding geometry around W1 water center involving His41, Arg40, His164, and Asp187 residues during MD-simulation.
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Figure 7. Hydrogen bonding interaction between the different residues in Mod-I-SARS-CoV-2 Mpro during MD-simulation.

Figure 8. Hydrogen bond interaction between different residues in Mod-II-SARS-CoV-2 Mpro during MD-simulation.
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Figure 9. Recognition of Mod-I/II to Cys145, His41, Asp187 residues and W1(HOH445) water center.

Table 1. The MM-PBSA binding free energy calculation for HCQ, Mod I, and Mod II-MPro complex structures during MD-simulation. All the given energies are in
kcal/mol.

Complex Time (ns) DEElectrostatic DEVan der Waal DEpolar SASA DEbinding
HCQ-MPro 20 �130.55 þ/- 3.47 �35.81 þ/- 3.74 36.24 þ/- 2.95 �40.70 þ/- 3.65 �170.82 þ/- 3.45

40 �137.29 þ/- 1.38 �34.66 þ/- 1.33 33.57 þ/- 1.16 �39.44 þ/- 1.30 �177.82 þ/- 1.29
60 �151.44 þ/- 3.22 �32.61 þ/- 3.12 29.57 þ/- 2.83 �37.27 þ/- 3.10 �191.75 þ/- 3.06
80 �150.93 þ/- 2.72 �33.08 þ/- 2.87 31.86 þ/- 1.89 �37.74 þ/- 2.84 �189.89 þ/- 2.58
100 �153.59 þ/- 4.95 �32.72 þ/- 2.59 30.96 þ/- 1.65 �37.34 þ/- 2.57 �192.69 þ/- 2.94

Mod I-MPro 20 �115.93 þ/- 3.93 �36.14 þ/- 3.98 39.10 þ/- 0.30 �40.84 þ/- 4.06 �153.81 þ/- 3.06
40 �124.83 þ/- 2.16 �39.37 þ/- 1.99 42.01 þ/- 1.54 �44.48 þ/- 1.96 �166.67 þ/- 1.91
60 �125.62 þ/- 2.54 �39.60 þ/- 4.23 46.33 þ/- 2.55 �44.70 þ/- 4.21 �163.59 þ/- 3.38
80 �125.24 þ/- 4.47 �39.10 þ/- 2.34 45.54 þ/- 3.30 �44.22 þ/- 2.34 �163.02 þ/- 3.11
100 �135.22 þ/-2.66 �35.09 þ/- 2.09 39.68 þ/- 2.44 �40.04 þ/-2.06 �170.67 þ/- 2.31

Mod II-MPro 20 �148.43 þ/- 6.29 �48.22 þ/- 3.38 51.47 þ/- 4.73 �54.02 þ/- 3.42 �199.2 þ/- 4.45
40 �157.48 þ/- 2.42 �45.61 þ/- 1.89 43.25 þ/- 0.98 �51.15 þ/- 1.89 �210.99 þ/- 1.79
60 �157.20 þ/- 1.06 �45.32 þ/- 2.80 43.34 þ/- 0.91 �50.92 þ/- 2.76 �210.1 þ/- 1.88
80 �155.53 þ/- 4.03 �46.20 þ/- 2.80 42.28 þ/- 0.85 �51.86 þ/- 2.79 �211.31 þ/- 2.61
100 �157.45 þ/- 1.00 �45.88 þ/- 3.41 41.87 þ/- 2.64 �51.63 þ/- 3.38 �213.09 þ/- 2.60
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followed by the formation of a tetrahedral intermediate
where the oxyanion group of the intermediate is stabilized
by amide backbone atoms of Gly143, Cys145, and Ser144
residues. Finally, the ROH product molecule is released from
the reaction medium by the formation of a stable Mod-lig-
Cys145 adduct.

Conclusion

The Molecular docking followed by MD-simulation of the
HCQ complexed structure of SARS-CoV-2 Mpro reveals the

binding of this ligand molecule on the surface of the protein
structure near to the catalytic dyad (His41 and Cys145). The
Cys145 is observed to lie near the C8 and C9 centers of the
ligand molecule which encouraged us to modify these cen-
ters by addition of –COOH and –COOCH3 functional groups.
The modified ligand molecules (Mod I and Mod II) are found
to have higher binding energy towards the inhibitor binding
domain compared to their counter partners (Mod I/and Mod
II/). During the simulation of Modified ligand molecules with
SARS-CoV-2 Mpro, the Cys145 is observed to be perfectly
positioned near the C24 atom of ligand molecules thus sug-
gesting the possibility of a nucleophilic attack to this site

Figure 10. Proposed mechanism of action in SARS-CoV-2 Mpro.
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during catalysis. The W1 water center hydrogen-bonded to
His41ND1 seems to be crucial for the recognition of ligand
molecules to catalytic dyad and Asp187 (located on the con-
necting loop between Domain I and Domain III) through
Mod-I/II(O25)‧‧‧Cys145‧‧‧His41NE2/ND1‧‧‧W1‧‧‧Asp187OD2
interaction. So, from the results, it may be presumed that
the Asp187 may function as the third catalytic residue where
W1 water center maintains the structural recognition of this
catalytic triad.
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