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Abstract

The genomic island encoding the locus of enterocyte effacement (LEE) is an important virulence factor of the human
pathogenic Escherichia coli. LEE typically encodes a type III secretion system (T3SS) and secreted effectors capable of
forming attaching and effacing lesions. Although prominent in the pathogenic E. coli such as serotype O157:H7, LEE has also
been detected in Citrobacter rodentium, E. albertii, and although not confirmed, it is likely to also be in Shigella boydii.
Previous phylogenetic analysis of LEE indicated the genomic island was evolving through stepwise acquisition of various
components. This study describes a new LEE region from two strains of Salmonella enterica subspecies salamae serovar Sofia
along with a phylogenetic analysis of LEE that provides new insights into the likely evolution of this genomic island. The
Salmonella LEE contains 36 of the 41 genes typically observed in LEE within a genomic island of 49, 371 bp that encodes a
total of 54 genes. A phylogenetic analysis was performed on the entire T3SS and four T3SS genes (escF, escJ, escN, and escV)
to elucidate the genealogy of LEE. Phylogenetic analysis inferred that the previously known LEE islands are members of a
single lineage distinct from the new Salmonella LEE lineage. The previously known lineage of LEE diverged between islands
found in Citrobacter and those in Escherichia and Shigella. Although recombination and horizontal gene transfer are
important factors in the genealogy of most genomic islands, the phylogeny of the T3SS of LEE can be interpreted with a
bifurcating tree. It seems likely that the LEE island entered the Enterobacteriaceae through horizontal gene transfer as a
single unit, rather than as separate subsections, which was then subjected to the forces of both mutational change and
recombination.
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Introduction

Salmonella enterica subspecies salamae serovar II 1,4,12,27:b:- (also

referred to as serovar Sofia) is an infrequently detected serovar

except for one niche, commercially produced broiler chickens in

eastern Australia, in which it is the most frequently isolated

Salmonella serovar (reviewed [1]). Unlike the cosmopolitan and

more frequently isolated S. enterica subspecies enterica from which

most pathogenic Salmonella are derived, the salamae subspecies

generally has a more restricted distribution and is not frequently

associated with virulence in humans or animals. Salmonella

pathogenicity is often associated with intracellular invasion

dependent upon functions encoded by a range of Salmonella

pathogenicity islands (reviewed [2,3]). Much of the focus of

Salmonella research has been on members of the S. enterica

subspecies enterica and includes 20 completed genome sequences

(NCBI Microbial Genomes Database Nov. 2011) while only

limited research has focused on the other five subspecies of S.

enterica (salamae, arizonae, diarizonae, houtenae, and indica) and the other

Salmonella species S. bongori. The genome of the second Salmonella

species, S. bongori [4] has recently been completed while S. enterica

subspecies arizonae (NC_010067) has been sequenced but not

published and the genome sequences of several other subspecies

are currently underway.

To gain a better understanding of the most commonly isolated

Salmonella serovar from Australian poultry, a chicken carcass

derived isolate was selected for genome sequencing. Although

primarily isolated from poultry, small numbers of S. enterica

subspecies salamae serovar Sofia are isolated from other niches

including humans [5]. One of these atypical human derived

isolates was also selected for genome sequencing. The genome

sequence of the poultry derived S. enterica subspecies salamae

serovar Sofia isolate is being taken to completion but during the

first pass annotation of the draft assembly of these genomes a novel

genomic island (GI) closely resembling the locus of enterocyte

effacement (LEE) was detected. This discovery represents the first

isolation of LEE from Salmonella.
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The locus of enterocyte effacement is a collection of genes

present in a variety of enteric organisms that has been

demonstrated to play an important role in the virulence of human

pathogenic Escherichia coli including enteropathogenic E. coli

(EPEC), atypical enteropathogenic E. coli (ATEC), and enterhae-

morrhagic E. coli (EHEC). LEE function is characterized by the

formation of attaching and effacing (A/E) lesions after attachment

of the E. coli cell to an enterocyte. LEE typically contains genes

that encode a type III secretion system (T3SS), secreted effectors,

regulatory molecules, chaperones, and accessory proteins required

for the formation of the A/E lesion. The activity of the LEE island

has been reviewed previously [6,7] but can be briefly summarized

as follows. Initial attachment of a bacterial cell to the host

enterocyte by a bacterial cell surface adhesin is followed by

penetration of the enterocyte cell membrane by the needle-like

structure of the T3SS which then translocates effector proteins into

the enterocyte. The key effector protein is the translocatable

intimin receptor (Tir) that inserts into the enterocyte cell

membrane and acts as an anchor to bind intimin (Eae) protein

on the surface of the bacterial cell. This protein binding acts to

lock together the enterocyte cell membrane and the outer

membrane of the LEE expressing cell. In addition to its role in

interacting with Eae, Tir also plays a role in polymerization of

actin within the enterocyte to form the pedestal characteristic of

the A/E lesion on which the bacterial cell sits.

The LEE island has been found in E. coli, Citrobacter rodentium,

Escherichia albertii, and is also likely present in Shigella boydii based on

the detection of the eae gene [8]. LEE is usually composed of 41

genes within a region of ,35 kb in length. Nucleotide composition

of LEE is ,38% G+C which is substantially lower than the G+C

content of the genomes of organisms known to harbor it (,50%).

Flanking sequences outside the 41 gene core of LEE are more

variable in both gene content and nucleotide composition.

Comparative analysis of flanking sequences by Müller et al. [9]

demonstrated that previously described LEE islands ranged from

those lacking any flanking sequences to those with large flanking

regions encoding multiple genes and containing prophage

remnants. Insertion of LEE into the genome generally occurs at

one of three tRNA genes, pheV, pheU, or selC.

The LEE region has been well studied in E. coli and Citrobacter

rodentium including a detailed analysis undertaken in C. rodentium to

systematically create knockout mutants of every gene in LEE then

characterize their effects on pathogenicity, T3SS function, and

LEE gene expression [10]. No optimal E. coli LEE animal model

exists but C. rodentium LEE is an effective model system for studying

LEE activity because it is a natural mouse pathogen with a LEE

island that has a high level of sequence identity to the LEE present

in E. coli. These knockout experiments clearly demonstrated the

requirement for the T3SS structure as well as several secreted

effectors for the generation of the A/E lesion and for virulence. In

addition, bioinformatic analysis of the genes of the LEE island

were able to make further predictions on the function of several

LEE genes lacking experimentally determined functions [11].

It is clear that horizontal gene transfer (HGT) plays an

important role in the evolution of pathogenicity regions such as

LEE [6]. LEE most likely entered the Enterobacteriaceae through

HGT from an as yet unknown source. Previous analysis has

demonstrated that most LEE genes are under purifying selection

which is not surprising given the conservation of low G+C content

and the high level of identity between the known LEE islands [12].

It is also clear that recombination has played an important role in

the evolution of the LEE. T3SS are a prevalent pathogenicity

mechanism throughout the Enterobacteriaceae [13] and the most

well conserved subset of genes within LEE. This conservation of

the T3SS genes has led to these genes being the basis for previous

estimates of the genealogy of LEE [9]. Several authors have

undertaken limited phylogenetic analyses of LEE and from this

work it appeared that there were two lineages of LEE one of which

was then subdivided into two major groups [9,12].

In this study we describe a novel lineage of the LEE region

present in two isolates of S. enterica subspecies salamae that has

important implications for the genealogy of LEE. We present a

detailed phylogenetic analysis of the entire T3SS of LEE as well as

rooted single gene phylogenetic analyses of escF, escJ, escN, and escV

to better understand the genealogy of LEE within the Enterobac-

teriaceae.

Materials and Methods

Ethics Statement
The human derived microbial sample (S1635) was collected

originally published using the strain identifier MH76 [14]. This

sample was derived from a strain stored at a pathology testing

laboratory which was collected from a human with unspecified

disease state and no specific collection date. Under the terms of the

Australian National Statement on Ethical Conduct in Research

Involving Humans and the associated legislation the National

Health and Medical Research Council Act (1992) collection of a

host de-identified, microorganism at the time of collection (prior to

1992) required no Human Research Ethics Committee approval.

The chicken carcass derived microbial sample (S1296) was

collected off the end of the production line at a licensed

commercial poultry processing facility. This sample would

therefore be regarded as food and did not require institutional

review board or ethical approval.

Salmonella Strains
S. enterica subspecies salamae serovar 1,4,12,27:b:- (also referred

to as serovar Sofia) strains S1296 and S1635 were isolated in

Australia from a chicken carcass and a human of unknown disease

state respectively. The serovar designation follows standard

conventions [15] where ‘‘1,4,12,27’’ refer to the O antigen types

with underlined antigen types indicating seroconversion by phage

lysogeny (so not necessarily present in all strains), ‘‘b’’ refers to the

phase 1 H antigen (flagella), and the ‘‘-’’indicates the absence of

the phase 2 H antigen. These strains have different cell surface

phenotypes and distinct XbaI restriction digestion patterns [16].

Strain S1296 was selected for genome sequence analysis because it

was a typical representative of the poultry derived S. enterica

subspecies salamae. Strain S1635 (also published as MH76 [14]),

kindly provided by Dr Michael W. Heuzenroeder and Dr Ian L.

Ross, Infectious Diseases Laboratories, Institute of Medical and

Veterinary Science, Adelaide, South Australia was selected as

representative of the infrequently isolated S. enterica subspecies

salamae serovar Sofia derived from a non-poultry source.

Genomic Island Sequence
Bacterial cultures were grown overnight in nutrient broth at

37uC prior to preparation of genomic DNA with (Qiagen DNeasy

blood and tissue kit) following the manufacturer’s instructions for

Gram-negative bacteria. Draft genomic DNA sequences for S.

enterica subspecies salamae S1296 and S1635 were determined with

combined Illumina 250 bp insert size paired-end sequencing

(Micromon, Department of Microbiology, Monash University)

and Roche paired-end pyrosequencing with 3 kb inserts (Austra-

lian Genome Research Facility). Roche pyrosequencing was

assembled with Roche gsAssembler 2.4. The genomic islands

and adjacent genome sequence described in this manuscript were
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located within one contig in both genomes. The integrity and

accuracy of these sequences were assured by correcting homopol-

ymer errors and polymorphisms by mapping Illumina paired-end

sequence data onto the contigs using Nesoni v0.35 (www.

bioinformatics.net.au). Absence of structural anomalies (e.g., large

deletions, rearrangements, etc.) were screened by two methods.

First, mapping the paired-end relationships of Illumina data with

inGAP-sv [17] was used to detect improper paired-end fragment

distances within the assembled sequence. The second method

confirmed the integrity of the assembly by comparison of

computer predicted NcoI restriction fragment sizes with restriction

fragment sizes determined by optical mapping using MapSolver

3.2.0 (optical mapping and software supplied by OpGen Inc.,

USA). Sequences for the complete LEE genomic islands from both

S1296 and S1635 have been submitted to Genbank (accession

JQ747523 and JQ747540 respectively). The Genbank entries

include the LEE flanking genes, pheV, and adjacent genomic genes

yqgA and ars.

Gene Selection
The source of all DNA sequences analyzed in this paper are

listed in Table 1 with additional information provided in Table S1.

Full strain designations are used in the body text of the manuscript

while abbreviated taxon identifiers are used in the trees. Taxon

identifiers utilize standard three letter genera – species abbrevi-

ations. For E. coli strains this is followed by O antigen type unless

more than one of any given type is present in which case a strain

identifier is appended. Non-E. coli strains utilize the three letter

abbreviation combined with the strain identifier (key present in

Table 1). Complete LEE regions present in the NCBI Genbank

database at the commencement of this study were used for

phylogenetic analysis. Organisms containing the LEE region for

which a whole genome sequence was available were included in

the housekeeping gene analysis along with several other genomes

lacking the LEE region to provide a context for the tree as well as

an outgroup. This tree was updated upon the release of the

Salmonella bongori genome sequence [4]. The 17 housekeeping genes

were selected based on housekeeping genes used in previous

studies [18,19] and included accD, dcuA, galK, hemC, ilvE, ksgA,

murD, oppB, pabB, pntB, polB, purB, rnc, rpoN, tesB, thrB, and trpB.

Accession numbers for S. enterica subspecies salamae S1296 and

S1635 housekeeping genes are listed in Table S1.

Genomic Island Comparisons
The LEE core regions of the relevant genomic islands from E.

coli O157:H7 Sakai (NC_002695) and S. enterica subspecies salamae

S1296 (JQ747523) were manually extracted for generation of a

linear comparison maps. A 38, 260 bp region was extracted from

S. enterica subspecies arizonae RSK2980 (NC_010067) for compar-

ison with the flanking region of the S1296 LEE island. Translated

BLAST comparison (tblastx) and map generation were performed

with Easyfig 2.1 [20] with minimum length of BLAST hits set to

20 and maximum E-value set to 0.001.

Phylogenetic Analysis
The nucleotide sequence of each gene present in the Salmonella

LEE (Table 2) and all of the housekeeping genes were aligned to

the appropriate ortholog from the known LEE regions or genomes

listed in Table 1. Single gene multisequence alignments were

created with Mega 5.05 [21] by translating DNA sequences into

amino acids then aligning with ClustalW and Muscle followed by

conversion back to DNA sequence. Gaps and poorly aligned

regions were removed with Gblocks [22] using default settings for

codon based alignments and a custom script was used to

concatenate all LEE genes or just the T3SS genes into sequence

matrices. All matrices were tested for discrepancies in the

nucleotide composition using SeqVis 1.5 [23] (Figure S1).

Evolutionary substitution models were analyzed using jModelTest

0.1.1 [24,25]. Genetic diversity (h) per site was estimated for

Gblocks curated alignments using the Watterson estimate [26]

assuming infinite sites as implemented in DNAsp ver. 5.10.01 [27]

for every gene in LEE. Standard deviations of h were calculated

allowing for free recombination. A sliding window analysis of h
was conducted for the T3SS alignment with and without Salmonella

sequences present using a step size of one base and a window size

of 100 bases.

Bayesian Inference (BI) was performed using a multiprocessor

implementation of MrBayes 3.2 [28]. In line with the results of

jModelTest, the General Time Reversible model (nst = 6) was used

for all analyses with GTR+G used for housekeeping genes and

GTR+I+G implemented for the T3SS matrix as well as the escF,

escJ, escN, and escV alignments. Data were partitioned by the three

positions in the codon and BI analyses were run using the 4by4

nucleotide model for 106106 generations. Convergence metrics

were assessed using Tracer 1.5 [29] to assure that the samples used

for burnin excluded data prior to achieving a stable plateau in the

ln likelihood values and that sufficient sampling was completed.

The majority rule tree (and all other trees in this manscript) was

then rendered with FigTree 1.3.1 [30] and Mega 5.05 [21] with

posterior probabilities converted to a percentage. BI analyses were

run a minimum of three times for each alignment to ensure that

the resulting tree was reproducible.

Maximum likelihood (ML) analysis was performed using Garli

[31] with a GTR (nst = 6) based codon model. Garli was selected

for ML analysis because of its capacity to use a codon model and

rigorous likelihood searching methods. Codon frequencies were set

to F364 and a single dN/dS parameter was used. Individual

analyses were terminated when the ln likelihood value was not

improved after 3000 generations. Garli does not perform

traditional bootstrapping [32], instead 500 independent runs were

used as ‘‘bootstrap replicates’’ and summarized with SumTrees

3.3.1 [33]. Replicate runs of Garli were limited to 500 iterations

due to the protracted time required for each iteration. Bootstrap

results were then expressed as a percentage.

Recombination and Selection Estimation
Recombination testing was undertaken with

PHIPack. (http://www.maths.otago.ac.nz/̃ dbryant/software.

html) which implements the pairwise homoplasy index (Wv) [34],

maximum x2 [35], and neighbour similarity score (NSS) [36] using

5000 permutations. The impact of recombination on phylogeny

was gauged using ClonalFrame [37] which uses a Bayesian

inference method to determine phylogeny accounting for both

spontaneous mutations and recombination events. ClonalFrame

was run with standard settings that estimated the rate of

recombination as well as being run with recombination fixed at

none. Single runs of ClonalFrame included 400,000 iterations

after which 200,000 iterations were excluded for burn-in. The

results from ClonalFrame were consistent for 4 replicate runs with

all runs yielding identical trees. ClonalFrame was also used to

estimate the ratio of the frequency of recombination to mutation

(r/h). Individual gene alignments were combined into a

ClonalFrame readable file using a custom script.

Calculation of the site by site variation in the ratio of non-

synonymous to synonymous nucleotide substitution rates (dN/dS)

was estimated using the fixed effects likelihood method (FEL) [38]

as implemented in the web based Datamonkey software suite [39].

Following selection of the optimal evolutionary model (012232) by
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Datamonkey codons were reported to be positively or negatively

selected at a significance level of 0.05. The code string 012232 is a

reversible model of nucleotide substitution indicating the number

of distinct parameters for the relative rates of A«C, A«G, A«T,

C«G, C«T, G«T, respectively. We chose the FEL approach

because it directly estimates non-synonymous and synonymous

substitution rates across sites and has been shown to better capture

the patterns of rate variation when compared to counting methods

and random effects models and does not suffer from a relatively

higher false positive rate of the random effects models when

sequence numbers are low, as in our data [38].

Results

General Description of Salmonlla-LEE Genomic Island
The locus of enterocyte effacement was detected in the

sequences of the two S. enterica subspecies salamae strains (S1296

and S1635) (Table 1). It is inserted at the 3’ end of tRNAPhe (pheV)

adjacent to the yqgA gene upstream and a putative arylsulfatase

(ars) downstream (Figure 1). The total length of the genomic island

in S1296 from the 3’ end of pheV to the tandem repeat region at

the 3’ end of espH is 49, 371 bp. A total of 54 open reading frames

(ORFs) are present within the GI, 36 of which encode the LEE

core. A large flanking region encoding 18 ORFs is present at the 5’

end of LEE in both Salmonella strains S1296 and S1635. The G+C

content of the entire GI is 40.0% while the G+C content of the

LEE encoding portion is 37.4% with only six genes in the entire

GI at or above the typical Salmonella G+C content of ,52%

(Figure 1 and Table 2). There are four tandem repeats within the

SESS LEE of sizes 42, 36, 21, and 114 bp, with copy numbers of

3.8, 2.0, 1.9, and 2.3, respectively. No repeat of the tRNAPhe was

detected at the 3’ end of the genomic island but a partial repeat of

this tRNA was detected between the flanking sequences and core

LEE gene SESS_03617.

Flanking Region of LEE
The majority of the 18 ORFs within the flanking region of the S.

enterica subspecies salamae serovar Sofia LEE (SESS LEE) island

could not be assigned a function by homology transfer. Both

strains S1296 and S1635 have the same complement of genes in

the LEE flanking regions which vary between the strains primarily

by a small number of single nucleotide polymorphisms. The first

gene in the LEE flanking region (SESS1296_03598), downstream

from pheV is a CP4 type integrase. Another integrase

(SESS1296_03610) is present near the midpoint of the flanking

region and an amino terminus remnant of another integrase

(SESS1296_03615) is present near the 3’ end of the flanking

region. Approximately, 47% of the SESS LEE flanking region

shares substantial homology with two clusters of genes from a

putative genomic island inserted at a tRNAPhe in S. enterica

Table 1. LEE and non-LEE containing strains used in this study.

Strains containing LEE
Genome
sequencea

tRNA insertion
point Taxon Identifier Accession Number

E. coli ATEC O119:H9:K61 0181-6/86 selC Eco_O119 AJ633129

E. coli STEC O157:H7 Sakaib + selC Eco_O157 NC_002695

E. coli O55:H7 CB9615 + selC Eco_O55 NC_013941

E. coli EPEC O127:H6 E2348/69 + selC Eco_O127 NC_011601

E. coli O111:H- 11128 + pheV Eco_O111 NC_013364

E. coli BSTEC O26:H 413/89-1 pheU Eco_O26_413 AJ277443

E. coli O26:H11 11368 + pheU Eco_O26_11368 NC_013361

E. coli REPEC O15:H- 83/39 pheU Eco_O15 AF453441

E. coli BSTEC O103:H2 RW1374 pheV Eco_O103_RW1374 AJ303141

E. coli O103:H2 12009 + pheV Eco_O103_12009 NC_013353

E. coli ATEC O8:H- 3431-4/86c pheU Eco_O8 AJ633130

E. albertii TW07627 + n/a Eal_TW07627 NZ_ABKX00000000

C. rodentium DBS100 n/a Cro_DBS100 AF311901

C. rodentium ICC168 + n/a Cro_ICC168 NC_013716

S. enterica subsp. salamae Sofia S1296 + pheV Sen_S1296 JQ747523

S. enterica subsp. salamae Sofia S1635 + pheV Sen_S1635 JQ747540

Strains used for housekeeping genes only

S. enterica subsp. enterica Typhimurium LT2 + Sen_STM NC_003197

S. enterica subsp. enterica Typhi CT18 + Sen_TY NC_003198

S. enterica subsp. arizonae 62:z4,z23:– RSK2980 + Sen_Ariz NC_010067

Vibrio cholerae O1 biovar El Tor N16961 + Vch_N16961 NC_002505 &
NC_002506

Salmonella bongori NCTC 12419 + Sbo_NCTC12419 NC_015761

Shigella sonnei Ss046 + Sso_Ss046 NC_007384

aCompleted or draft genome sequence available and used for housekeeping gene phylogeny.
bE. coli STEC O157:H7 str. Sakai is the representative strain for the other E. coli O157 LEE.
cCorrected likely sequence error that caused a frame shift mutation by deleting a C at position 208 in the CDS encoding cesA.
doi:10.1371/journal.pone.0041615.t001
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Table 2. Genes in the SESS LEE genomic island.

Locus Tag MW Residues % G+C Genea Productb T3SSc h+Sald h-Sale

SESS1296_03597 n/a n/a n/a pheV tRNA Phe

SESS1296_03598 48,082 423 54.3 Bacteriophage integrase

SESS1296_03599 25,687 230 46.7 Putative phosphatase/
phosphohexomutase

SESS1296_03600 18,902 163 44.0 Predicted carbamoyl
transferase

SESS1296_03601 43,931 387 45.3 Putative carbamoyl
transferase

SESS1296_03602 8,724 75 42.7 Hypothetical protein

SESS1296_03603 32,476 292 51.5 Putative transcriptional regulator

SESS1296_03604 16,255 149 47.9 Hypothetical protein

SESS1296_03605 14,066 116 40.2 Hypothetical protein

SESS1296_03606 18,208 162 41.6 Putative HCP family
secreted effector

SESS1296_03607 9,022 80 45.8 Hypothetical protein

SESS1296_03608 6,862 63 51.9 Hypothetical protein

SESS1296_03609 14,850 134 45.0 Hypothetical protein

SESS1296_03610 41,393 370 58.0 Putative integrase

SESS1296_03611 9,992 91 55.3 Hypothetical protein

SESS1296_03612 163,610 1398 35.6 Conserved hypothetical
protein

SESS1296_03613 79,817 706 49.9 Putative transcriptional regulator

SESS1296_03615 9,631 81 43.2 Putative phage integrase

SESS1296_03616 26,596 232 31.6 Putative DNA-binding
transcriptional activator
of the LuxR/FixJ family

SESS1296_03617 9,690 87 36.4 orf29f T3SS + 0.231 (0.033) 0.143 (0.027)

SESS1296_03618 8,098 74 35.6 escF Major needle component + 0.15 (0.027) 0.141 (0.026)

SESS1296_03619 16,000 138 35.5 cesD2 Chaperone for EspD 0.126 (0.017) 0.051 (0.012)

SESS1296_03620 35,342 331 44.6 espB Translocator 0.377 (0.024) 0.285 (0.02)

SESS1296_03621 39,266 375 45.2 espD Translocator 0.256 (0.017) 0.197 (0.015)

SESS1296_03622 20,381 191 40.8 espA Translocator 0.198 (0.02) 0.183 (0.019)

SESS1296_03623 39,792 347 32.0 sepL Switches translocator/
effector secretion

0.134 (0.011) 0.059 (0.008)

SESS1296_03624 45,390 409 36.3 escD T3SS component + 0.157 (0.011) 0.043 (0.006)

SESS1296_03625 108,364 1015 44.8 eae Adhesin (intimin) 0.253 (0.011) 0.176 (0.01)

SESS1296_03626 17,701 157 35.0 cesT Chaperone for Tir 0.065 (0.011) 0.028 (0.007)

SESS1296_03627 56,721 544 49.6 tir Secreted effector 0.436 (0.02) 0.323 (0.017)

SESS1296_03628 14,901 129 41.3 ler Positive regulator 0.162 (0.026) 0.079 (0.019)

SESS1296_03629 9,835 85 33.3 escE T3SS component + 0.327 (0.047) 0.066 (0.021)

SESS1296_03630 12,062 103 33.0 cesA Chaperone for EspA
and EspB

0.267 (0.033) 0.102 (0.021)

SESS1296_03631 23,339 200 33.2 orf4 f T3SS component + 0.195 (0.019) 0.059 (0.01)

SESS1296_03632 26,838 228 33.9 escL T3SS component + 0.304 (0.023) 0.15 (0.016)

SESS1296_03633 24,166 218 32.1 escR T3SS component + 0.074 (0.01) 0.033 (0.007)

SESS1296_03634 9,722 88 34.1 escS T3SS component + 0.063 (0.016) 0.027 (0.012)

SESS1296_03635 28,644 259 33.8 escT T3SS component + 0.112 (0.012) 0.04 (0.007)

SESS1296_03636 39,183 346 33.0 escU T3SS component + 0.102 (0.01) 0.044 (0.007)

SESS1296_03637 17,167 154 29.4 rorf3 (etgA) Predicted lytic
transglycosylase

0.156 (0.02) 0.059 (0.013)

SESS1296_03638 12,598 114 30.7 grIR Negative regulator 0.208 (0.024) 0.084 (0.017)

SESS1296_03639 15,981 135 35.3 grIA Positive regulator 0.14 (0.019) 0.049 (0.01)

SESS1296_03640 17,398 151 36.4 cesD Chaperone for EspD 0.077 (0.014) 0.031 (0.009)
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subspecies arizonae RSK2980 (SARI) (Figure S2). All the genes in

the SARI genomic island are annotated as hypothetical, but

adjacent to the tRNA insertion point is a putative integrase as well

as an integrase remnant downstream. Two of the putative

integrases share identity with homologs in the SARI genomic

island as well as the two largest ORFs in the SESS LEE flanking

region (SESS1296_03612 and SESS1296_03613), one of which is

a transcriptional regulator. The region of the SARI genome

sharing identity with the trasncriptional regulator does not encode

a single ORF but rather several smaller ORFs with identity to

SESS1296_03613.

In addition to the identity between the SESS LEE and a

genomic island in SARI two clusters of ORFs appear to have

common origins based on co-occurrence in other organisms

detected in the BLAST search results (Figure 1). The first cluster of

ORFs spanning SESS1296_03599 to SESS1296_03601 share a

high level of identity with sequences found in other proteobacteria

including several strains of Pseudomonas aeruginosa as well as

Marinobacter and Methylobacter. Two of the ORFs in this cluster

(SESS1296_03600 and SESS1296_03601) are the likely carboxyl-

terminus and amino-terminus of a possible pseudogene resulting

from a frame shift mutation in a putative carbomyl transferase.

This putative pseudogene is adjacent to and co-occurs with a

putative phosphotase/phosphohexomutase. The second cluster of

ORFs for which homolgs co-occur in other organisms includes a

putative integrase (SESS1296_03610) and a hypothetical protein

(SESS1296_03611). These ORFs co-occur in other S. enterica

including serovar Weltevreden and in Citrobacter youngae ATCC

29220.

As stated previously, only a limited number of ORFs could be

assigned a function based on sequence identity. Putative

transcriptional regulatory proteins are encoded by three of the

ORFs but no regulatory elements could be directly assigned to

these ORFs. The transcriptional regulator proximal to the core

LEE region in S1635 (SESS1635_03831 an ortholog of

SESS1296_03616) contains a 14 amino acid in-frame internal

deletion when compared to the orthologous protein in S1296.

Besides those functionally assigned genes discussed above,

SESS1296_03606 was identified as a putative HCP family

secreted effector because of high level of identity (,75%) to

comparably annotated proteins in other Enterobacteriales, but the

function of this protein or export by a type VI secretion system are

both uncertain.

Salmonella-LEE Region Overview
The SESS LEE encodes the majority of the genes (36 of the

standard 41 genes) orthologous to the typical Escherichia and

Citrobacter LEE and therefore the homology extends beyond the

T3SS. The insertion of SESS LEE at pheV matches one of the

three previously observed tRNA insertion points. Genes typically

present in Escherichia and C. rodentium LEE are organized into five

operons and this arrangement has been largely conserved in the

SESS LEE (Figure 2). Although the orthologous genes are

arranged in the appropriate operons, these operons have been

rearranged such that operons TIR and LEE4 were reverse

complemented and moved to the 5¢ end of LEE1, rather than the

more typical arrangement at the 3’ end of LEE3. The putative

recombination junctions between the operons are the regions

where the five genes typically seen in other LEE regions were lost

in the SESS LEE region. These genes include espG and rorf1

normally upstream of LEE1, cesF and map upstream of the TIR

operon, and espF downstream of LEE4. Two tandem repeats also

occur near the putative recombination junctions with one repeat

54 bases upstream of tir (36 bp period size and copy number of 2)

and a second repeat within the 3’ end of espH (114 bp period size

and copy number of 2.3). There was insufficient similarity between

intergenic regions of SESS LEE and the other known LEE to infer

specific recombination break points.

The level of genetic diversity (h) was calculated for every

individual gene alignment with and without the SESS LEE

included in the alignments (Table 2). A comparison of h for the 36

LEE gene alignments lacking the SESS LEE demonstrated a

variable but generally low level of diversity (median h= 0.0634,

mean h= 0.074, standard deviation 0.033). This low level of

Table 2. Cont.

Locus Tag MW Residues % G+C Genea Productb T3SSc h+Sald h-Sale

SESS1296_03641 56,789 519 35.6 escC T3SS component + 0.072 (0.007) 0.028 (0.005)

SESS1296_03642 17,436 152 31.6 sepD Switches translocator/
effector secretion

0.181 (0.021) 0.074 (0.015)

SESS1296_03643 20,471 188 33.5 escJ T3SS component + 0.122 (0.015) 0.029 (0.008)

SESS1296_03644 12,866 120 37.8 rorf8 (escI) T3SS component + 0.165 (0.023) 0.098 (0.016)

SESS1296_03645 8,586 92 49.3 sepZ (espZ) Secreted effector 0.495 (0.055) 0.353 (0.045)

SESS1296_03646 13,909 118 26.3 orf12 f T3SS component + 0.215 (0.026) 0.046 (0.013)

SESS1296_03647 75,251 676 36.8 escV T3SS component + 0.078 (0.006) 0.028 (0.004)

SESS1296_03648 48,475 444 42.0 escN T3SS ATPAse + 0.086 (0.008) 0.034 (0.005)

SESS1296_03649 14,925 127 30.2 orf15 f T3SS component + 0.262 (0.028) 0.063 (0.013)

SESS1296_03650 16,829 141 30.5 orf16 f Secretion of translocators 0.37 (0.034) 0.15 (0.022)

SESS1296_03651 33,795 296 33.3 sepQ (escQ) T3SS component + 0.302 (0.02) 0.125 (0.013)

SESS1296_03652 28,680 261 45.6 espH Secreted effector 0.386 (0.035) 0.277 (0.029)

aGene names modified from Table 1 in Pallen et al. [11] with alternative names.
bProduct names derived from annotation of SESS1296 and modified from Table 1 in [11].
cStructural components of the T3SS are indicated with (+).
dDiversity (h) for the listed LEE gene from all alignments including the two Salmonella LEE with standard deviations listed in parentheses.
eDiversity (h) for the listed LEE gene from all alignments excluding the two Salmonella LEE with standard deviations listed in parentheses.
fSalmonella variants of LEE genes with ‘‘orf’’ designations utilize locus tags as gene names.
doi:10.1371/journal.pone.0041615.t002
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diversity has been observed in previous studies of E. coli and C.

rodentium LEE [12]. As expected, proteins not part of the T3SS

structure such as espZ, tir, espA, espB, and espH had the highest levels

of diversity. Addition of SESS LEE genes to the alignments

resulted in a substantive increase in diversity but this increase was

Figure 2. Comparison of the operon arrangements between SESS LEE and E. coli LEE. Core LEE genes from E. coli O157:H7 Sakai and
Salmonella are connected by lines indicative of segments that match in a tblastx comparison. Genes and arrows indicating the extent of the LEE
operons are colored to facilitate comparison. Genes outside the operons are colored gray and those genes present in E. coli but absent in Salmonella
are colored red. Filled arrows are drawn to scale and accurately positioned based on the genome sequences they depict.
doi:10.1371/journal.pone.0041615.g002

Figure 1. Schematic of the genomic island containing LEE. The extent of the genomic island is marked by the solid gray line and the bounding
genomic genes outside the genomic island are marked in yellow. Genes that are not part of the LEE region are marked in grey. Genes that form the
T3SS are shown in green, the pheV tRNA insertion point is marked by a small red arrow with the remainder of the LEE region in blue. Redundant text
from the locus tags has been removed to simplify the figure. The full locus tag of those genes designated with a 4 digit number would read
SESS1296_0XXXX. The operon structure of the LEE region is indicated by black arrows. Gene functions are abbreviated, putative integrase (INT),
putative transcriptional regulator (TR), putative secreted effector (SE). Groups of genes for which homologs co-occur in other organisms are indicated
by curly brackets. Possible pseudogenes are marked with (*). G+C content calculated with a 100 bp window is depicted by the graph below the
diagram with maximum (upper line = 61%) and minimum (lower line = 24%) values designated. Typical G+C content of 52% for Salmonella genomes
is depicted by the dashed red line. Four tandem repeat regions are depicted by small red boxes. A plot of genetic diversity (h) calculated for each LEE
gene using a Watterson estimate is represented as a spot below the relevant gene.
doi:10.1371/journal.pone.0041615.g001
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proportional with most genes roughly doubling in diversity

(median h= 0.134, mean h= 0.136, standard deviation 0.030).

Phylogeny of the SESS LEE Type III Secretion System
The evolutionary constraint of a functional structure and the

previously observed low levels of genetic diversity [9,12] make the

T3SS an attractive target for phylogenetic analysis. Therefore, to

understand the genealogical relationship between the SESS LEE

and those from E. coli, E. albertii, and C. rodentium, the coding

sequences of T3SS genes were used to generate a concatenated

gene alignment matrix (Table 2). A concatenated gene matrix was

selected as the phylogenetic method because of the limited genetic

diversity between many of the taxa. Genetic diversity analysis

calculated with and without the SESS LEE genes demonstrated a

consistent difference of approximately h= 0.065 across all of the

genes of the T3SS matrix (Table 2 and Figure S3). The escF gene

stands out from the other T3SS genes in having the least change in

diversity raising it by only h= 0.018 upon addition of SESS genes

to the alignment matrix.

Phylogenetic analysis of the LEE T3SS was determined by

Bayesian inference (BI) and results presented as a midpoint rooted

tree (Figure 3). For comparison, the phylogeny was also calculated

by maximum likelihood (ML) which yielded the same branching

pattern. The BI consensus tree demonstrates substantial diver-

gence between the SESS LEE region and the other previously

known enterobacterial LEE with high posterior probabilities

supporting most of the branching patterns. Both BI and ML

analysis suggest the relationship between E. coli O157:H7 Sakai/

O55:H7 CB9615, E. coli O119:H9:K61 0181-6/86, and O127:H6

E2348/69 is unclear. Overall, this tree splits the LEE T3SS into

five clades (Figure 3) with clades I-IV including the previously

described LEE forming a distinctive lineage from the SESS LEE.

The level of genetic diversity within these clades is generally low

with clade I having the highest level of diversity due to the

difference between E. coli O111:H- 11128 and the other members

of this clade. Calculation of diversity within clade I excluding E.

coli O111:H- 11128 yields è = 0.0068. The level of diversity

between the two SESS LEE variants is greater than between the

two Citrobacter variants in clade IV and about half that of the LEE

T3SS in clade II. LEE T3SS regions derived from C. rodentium

clearly segregate as separate lineage from the Escherichia which in

turn diverges between E. albertii TW07627/E. coli O8:H- 3431-4/

86 from all the other Escherichia. The remaining E. coli LEE T3SS

genes split into two clades that generally correlate with the tRNA

insertion point. The taxa within clade II diverge into two clusters

that concur with the pheU and pheV tRNA insertion points while

taxa in clade I diverge between selC and pheV tRNA insertion

points.

Comparison with the housekeeping gene tree (Figure 4)

indicates that the genealogy derived from the housekeeping genes

is substantively different from that observed for the LEE T3SS

genes. The rooted housekeeping gene tree demonstrates that the

lineage including Salmonella/Citrobacter and the Escherichia lineage

diverged from a common ancestor some time ago. In contrast to

the housekeeping gene tree, it is clear that the C. rodentium LEE

T3SS is much closer to that found in Escherichia than it is to

Salmonella. In addition, the housekeeping gene phylogeny suggests

that the relationship between E. coli strains containing LEE bears

little resemblance to the phylogeny of the LEE T3SS region itself

(Figure 3). For example, E. coli O127:H6 E2348/69 forms a

separate lineage of E. coli yet the LEE T3SS present in this strain is

a member of clade I. Only the close relationship between E. coli

O157:H7 Sakai and O55:H7 CB9615 is consistent between both

housekeeping and LEE T3SS trees.

The likelihood that recombination may be affecting the

phylogenetic predictions for the T3SS data was examined with a

Figure 3. Phylograms of the consensus BI tree for the matrix of LEE T3SS genes. All diagrams are presented with long branches truncated
(//) and the branch length indicated above. The subtree in the box represents BI branching on a different scale from the larger tree. Taxa are colored
based upon the tRNA insertion point with selC in red, pheV in blue, pheU in green, and black for all other insertion points. Clades are indicated by
large Roman numerals above calculated level of genetic diversity (h) for all the members of the clade. The BI tree is midpoint rooted with posterior
probability values represented as a percentage at branch points. ML analysis yielded the same branching (although differential branch lengths) and
ML percentage bootstrap values are presented in parentheses () when this value differed from the percent posterior probability. Taxa enclosed by
braces had identical sequences to the adjacent taxa and were therefore removed from the phylogenetic analysis.
doi:10.1371/journal.pone.0041615.g003
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combination of statistical tests for recombination (Table 3). Tests

using Wv, maximum x2, and NSS indicated that the null

hypothesis of no recombination was rejected for all methods.

Therefore, ClonalFrame, a Bayesian inference method to recon-

struct the clonal relationship partitioned by individual genes was

run assuming no recombination or permitting the program to

estimate the recombination parameters from the data set (Figure 5).

The resultant 95% majority rule tree estimating recombination

matched most of the branching of the BI tree determined using

Mr. Bayes 3.2 but varied in the arrangement of those taxa in clade

I (those LEE inserted at selC). An alternative tree estimated by

ClonalFrame assuming no recombination yielded the same

branching pattern as observed for both BI and ML analysis.

Estimation of the ratio of the frequency of recombination to

mutation (r/h) was 0.0166 (95% confidence interval [0.0104–

0.024]) indicating that polymorphisms due to mutation exceeded

those due to recombination.

Calculation of non-synonymous/synonymous (dN/dS) ratios for

all of the codons in the T3SS matrix was used to determine if these

genes were under selective evolutionary pressure. Using the FEL

method 989 codons of 4420 were found to be under negative

selective pressure while only three codons were found to be under

positive selection. A graph of normalized dN/dS ratios for the

T3SS alignment matrix is provided in the supporting information

(Figure S3) reiterates this result and confirms previous observations

that the genes composing the T3SS are under negative selective

pressure [12].

Single Gene Trees
The genealogy of the T3SS of LEE was examined by BI of a

concatenated matrix of genes lacking an outgroup so it was

presented as a midpoint rooted tree. Although this data set did not

appear to be amenable to analysis by congruence of single gene

trees, phylogenies calculated with an outgroup do provide insights

on the order of descent. Therefore, to better understand the

genealogy of the T3SS region of LEE, rooted phylogenies were

prepared for escV, escF, escN, and escJ (Figure 6). These were the

same four LEE T3SS genes previously analyzed by Castillo et al.,

[12]. Paralogs for each of the selected LEE T3SS genes were

present in a well conserved T3SS common to most S. enterica.

The escV gene is a well-conserved structural component of the

T3SS that has been used previously for phylogenetic comparison

among LEE regions [9,12]. A paralog of escV which is conserved in

most S. enterica subspecies enterica, ssaV was selected to serve as an

outgroup for the escV phylogeny. This single gene alignment

contained several duplicate sequences which were removed,

resulting in a final alignment containing 13 taxa and the lowest

level of diversity of any of the single gene phylogenies. The

resulting BI rooted tree (Figure 6) replicates the arrangement of

taxa observed for the matrix of LEE T3SS genes with clade I

poorly resolved. Contrary to the arrangement observed for the

T3SS, the rooted phylogeny indicates that escV of E. coli

O119:H9:K61 0181-6/86 split from a common ancestor prior to

the split between the E. coli O157:H7 Sakai and O127:H6 E2348/

69. The escV genes from the SESS LEE strains are the sole

members of a second lineage in the escV genealogy. The other

branch has a line of descent splitting first between C. rodentium and

Escherichia then splitting the Escherichia between E. albertii

TW07627/E. coli O8:H- 3431-4/86 and the remainder of the E.

coli. Possible effects of recombination within the escV phylogeny

were tested statistically as for T3SS matrix (Table 3). Tests using

Wv and max x2 did not detect recombination in the escV alignment

but the NSS test detected recombination. Given the propensity for

NSS to yield a higher level of false positive results on some data

sets than the other methods it seems likely that recombination is

not a significant factor in the phylogeny of escV [34].

The single gene BI phylogeny containing a paralog of escN

(Salmonella gene ssaN) resulted in 13 taxa after the removal of

duplicate sequences. This phylogeny had a similar level of diversity

and showed a similar line of descent to that observed for escV.

There was one substantial difference at the point of divergence

between the taxa in clades I and II. In this case E. coli O103:H2

12009 (and duplicate E. coli O103:H2 RW1374) shares a common

ancestor with clade I taxa. The three statistical tests for

recombination rejected the null hypothesis for all methods

indicating that recombination was detected in the escN gene

alignment (Table 3).

The Salmonella T3SS gene ssaG was selected as the appropriate

outgroup for phylogenetic analysis of escF. This gene demonstrates

the highest level of diversity of the four individual genes analyzed

but interestingly has the least difference between the SESS escF

and the other previously known escF genes. Given this level of

diversity it is surprising that those taxa in clades I and II have very

little diversity with all members of clade II identical and within

clade I only E. coli O111:H- 11128 varies from the other taxa.

Examination of the phylogeny of the 9 taxa remaining after

duplicates were removed showed that the order of descent

depicted in this gene tree reiterates the LEE T3SS phylogeny.

Statistical tests did not detect recombination by any of three

methods employed (Table 3).

The single gene BI phylogeny containing a paralog of escJ

(Salmonella gene ssaJ) had 9 taxa after removal of duplicates and

varied considerably from the branching observed for the other

single gene phylogenies and the LEE T3SS. Except for the split

between SESS escJ and other known escJ this tree has a different

genealogy. The escJ phylogeny for the non-SESS taxa has a

common ancestor diverging into two sister lineages one containing

a polytomy between E. coli O119:H9:K61 0181-6/86, E. coli O111

11128, and E. coli O157:H7 Sakai/O55:H7 CB9615. The other

lineage has no similarity to previously described phylogenies. The

Figure 4. BI tree for the matrix of housekeeping genes. All diagrams are presented with long branches truncated (//) and the branch length
indicated above. ML analysis yielded the same branching (although differential branch lengths) with ML percentage bootstrap values presented in
parentheses () when this value differed from the percent posterior probability. The housekeeping genes from those taxa with LEE regions present in
the Genbank database but lacking associated genome sequence data were not analyzed and therefore are not depicted in tree.
doi:10.1371/journal.pone.0041615.g004

Table 3. Results of statistical tests for recombination.

Alignment Öù
a, b Max 42 NSS

T3SS genesc 0.000 0.000 0.000

escFc 0.841 0.894 0.137

escJc 0.044 0.783 0.764

escNc 0.000 0.001 0.0052

escVc 0.339 0.191 0.013

aP-value calculated with permutation test (5000 iterations).
bWindow size was set to 100.
cSalmonella sequences removed from alignments prior to calculation.
doi:10.1371/journal.pone.0041615.t003
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pairwise homoplasy index Öù marginally detected recombination

(P = 0.044) while the max 42 and NSS did not detect recombi-

nation.

Discussion

Although T3SS are common throughout the Enterobacteriace-

ae, the discovery of LEE, a notorious T3SS based pathogenicity

mechanism, in a non-pathogenic Salmonella is surprising. The

function of this newly discovered SESS LEE is currently unknown,

however as Salmonella subspecies salamae serovar Sofia is frequently

found in association with broiler chickens in Australia [1] and it

appears to be non-pathogenic to both humans and chickens

[40,41], it is likely that SESS LEE may play a role in attachment to

chicken intestinal mucosa or colonization of chickens. It is clear

that the SESS LEE island is a novel version of LEE and not just

another T3SS based on both gene content and operon structure. It

contains all but five of the LEE genes found in other well-

characterized LEE islands (Figure 2). Although key effector genes

typical of LEE such as eae and tir are present, three of the missing

genes are secreted effectors (espG, espF, and map), one is the

chaperone for EspF (cesF), and the function of last gene, rorf1, is

unclear. Previous mutational analysis knocked out each of the 41

genes in the C. rodentium LEE island then used cell culture and

mouse model systems to determine the impact of individual genes

on pathogenicity [10]. If the results from these experiments are

extended to the SESS LEE, then it would be expected that the

missing genes would result in some attenuation of early bacterial

colonization of the colon and reduced colonic hyperplasia but the

capacity for pedestal formation would not be lost. At this time

there is no experimental evidence that S. enterica subspecies salamae

strains from which LEE was derived are capable of forming

attaching and effacing lesions but this will be investigated in the

future.

Figure 5. A 95% majority rule tree estimated for the T3SS genes with ClonalFrame allowing the program to determine the effect of
recombination (A) or fixing the recombination rate at zero (B). Clades numbered I-V are indicated next to respective taxa. Taxa are colored
based upon the tRNA insertion point with selC in red, pheV in blue, pheU in green, and black for all other insertion points. The scale is time in
coalescent units.
doi:10.1371/journal.pone.0041615.g005
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In this study the genealogy of the LEE T3SS was determined by

BI of a head to tail concatenated, codon guided, gene alignment

matrix composed of all of the T3SS genes. A ML analysis was also

conducted to demonstrate a similar outcome from an alternative

phylogenetic method. Careful consideration must be given to the

analytical methodology when determining the genealogy of a

genomic island such as LEE which is mobilized by HGT in the

context of the detection of recombination by statistical tests.

Previous work by Castillo et al. [12] demonstrated incongruence

between the phylogenies of some genes in LEE, particularly when

comparing secreted effectors to the T3SS encoding genes. This

work also suggested that the T3SS genes of LEE shared a common

genealogy due to the linkage necessitated by encoding a functional

structure. Although a single gene can be used to describe the

phylogeny for a species (for the sake of this discussion species refers

to any multi-gene genetic unit from a genomic island to an entire

organism) it has been demonstrated that phylogenies based upon

multiple genes more accurately describe the species phylogeny

(reviewed in [42]). A species phylogeny derived from multiple

genes is typically calculated by concatenation of multiple genes

into a single alignment matrix from which a phylogeny is derived

or by congruence of multiple single gene trees. The optimal

methodology remains a matter of contention [43–45] but there is

unlikely to be a ‘‘one size fits all’’ solution. A concatenation

method was chosen because the low level of diversity and the

detection of recombination would make congruence of single gene

phylogenies problematic. Analysis by BI and ML of the T3SS

concatenation matrix yielded a tree with high posterior probabil-

ities/bootstrap values for all but one branch (Figure 3). Both of

these analyses calculated the phylogeny treating the alignment as a

single ‘‘supergene’’ with the BI analysis partitioned by each of the

three positions in the codon and ML method using a codon based

model. The robust nature of this analysis is supported by results of

the ClonalFrame analysis which is essentially a Bayesian analysis

partitioned by individual genes which accounts for recombination

events. ClonalFrame confirmed the statistical testing for recom-

bination and indicated that recombination was affecting the

phylogeny but demonstrated that the impact was not substantial

with only branches in clade I altered if recombination was not

factored into the calculation (Figure 5).

The single gene phylogenies were performed to permit the

addition of an outgroup to the phylogenetic analysis in order to

clarify the order of descent. To the extent that it is possible to

compare these trees with those in Castillo et al. [12] the

phylogenies are similar but the previous work used a different

model (Tamara-Nei) with a neighbor joining analysis and included

duplicated taxa in all of the trees. It is common when examining

multiple genes to observe incongruities and this was the case for

the single gene alignments with the escJ tree demonstrating a

substantially different phylogeny than that observed for the escV,

escN, and escF gene trees (Figure 6). The cause of this incongruity is

uncertain and might be attributed to recombination, a variation in

the rate of mutation, or insufficient phylogenetically informative

data. Although nucleotide compositional bias can be an important

factor causing incongruence [46] it seems unlikely in this case

given the low level of nucleotide compositional bias determined for

the LEE genes (Figure S1). Given the low level of diversity

(particularly when calculated without the SESS genes), large

number of duplicated taxa removed from the alignments, and the

presence of polytomies in the escN and escJ trees use of the

concatenation method to overcome the low density of phyloge-

netic information in the single gene trees appears to be the optimal

method for this data set. Three of the single gene trees support the

major branching pattern observed in the midpoint rooted LEE

T3SS tree. Therefore, it is reasonable to assume that midpoint

rooted tree accurately reflect the order of descent so a putative

history for LEE based on the inclusion of the new SESS LEE

T3SS region would suggest that the ancestral LEE island moved

into the Enterobacteriaceae at some point in the more distant past.

This ancestral form then diverged between the lineages that

resulted in the current form of LEE in Salmonella and a second

lineage that diverged between the LEE island found in Citrobacter

and that found in Escherichia. This lineage then diverged between

the E. coli and E. albertii TW07627. The E. coli lineage then

diverged into two distinct groups that have been described

previously [9]. One problem with this suggested genealogy is the

tight clustering in clade III of E. coli O8:H- 3431-4/86 with E.

albertii TW07627 which differ from one another across the entire

T3SS matrix by only 70 base changes out of a total 13,260 bases

(è = 0.00528) in the curated alignment matrix. This level of

diversity is greater than that observed for clades II, IV, and V but

about half that of clade I. The LEE island in E. coli O8:H- 3431-4/

86 was identified as being inserted at pheU adjacent to yjdC and yjdJ

in a region of the chromosome lacking approximately 10 kb

encompassing lysU, yjdL, and cadABC. Given the level of diversity

within all of the clades and the genetic distance between clade III

and clades I/II a likely explanation of the origin of LEE in E. coli

O8:H- 3431-4/86 is that HGT has moved the entire island from

Citrobacter into Escherichia.

The S. enterica subspecies salamae genomic island described here

represents a new lineage of LEE. Castillo et al. [12] postulated

from GC content, substitution rates, and phylogenetic analysis that

the T3SS of LEE remained linked as a cluster throughout their

movement within the Enterobacteriaceae. In addition it was

postulated that those LEE genes with higher levels of diversity and

greater GC content such as map, tir, eae, espA, espD, espB, and espF

may be more recently acquired portions of the island. Therefore, it

was suggested that the LEE island assembly was a complex process

and that LEE has not been evolving as a single unit. In light of our

study, the SESS LEE region clearly reiterates the conservation of

the LEE T3SS as a linked cluster of genes observed by Castillo

et al. [12] but it also demonstrates that even the more diverse

genes like the secreted effectors were part of an ancestral version of

LEE. The mosaicism present in the Citrobacter/Escherichia LEE is

likely due to recombination that has occurred more recently than

the split between Salmonella and Citrobacter/Escherichia. The

conservation of overall operon structure combined with the level

of phylogenetic diversity between the SESS LEE island and the

previously described LEE islands suggests that the entire LEE

island may have moved into the Enterobacteriaceae as a single

unit and was then subjected to range of recombination events as it

moved through Citrobacter and Escherichia. This does not preclude

Figure 6. Rooted phylogenies for T3SS genes escV, escN, escF, and escJ. BI trees for the four T3SS genes described in Castillo et al.,
[12] are depicted with long branches truncated (//) and the total branch length indicated above. The subtree in the box represents BI
branching on a different scale from the larger trees. Taxa are colored by presence in the clades described in Figure 3 and 5 to facilitate comparison
between trees (clade I – purple, clade II – green, clade III – blue, clade IV – orange, clade V – red). Taxa enclosed by braces had identical sequences to
the adjacent taxa and were therefore removed from the phylogenetic analysis. Diversity values (è) below gene names are calculated excluding the
outgroup and those calculations also excluding the SESS LEE genes are in parentheses. Numerals at tree junctions are the percentage posterior
probability.
doi:10.1371/journal.pone.0041615.g006
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previously suggested models for the formation of LEE that begin

with a T3SS module followed by the addition of remaining LEE

genes. Based on previously known LEE islands, it was logical to

conclude that the LEE T3SS might have had a separate history

from the secreted effectors and other components. In the context

of the LEE island presented here there is less evidence for this

hypothesis and the greater diversity observed for the non-T3SS

sections of LEE is more likely to be evidence of recent

recombination rather than suggestive of the mechanism of initial

assembly of the LEE island.

The LEE island has been observed in a limited range of

locations in the genome. With the exception of LEE from C.

rodentium, most other LEE islands are inserted at tRNA genes pheV,

pheU, or selC. It is interesting to note that although E. albertii

TW07627 LEE is not inserted at a tRNA, it is located 16,003 bases

away from pheU. Analysis of sequences between and surrounding

LEE and pheU in the E. albertii TW07627 genome, suggests that

LEE was inserted at pheU then a later transposon insertion has

caused an inversion of the 16,003 bp region moving LEE away

from the pheU and reversing the orientation of LEE compared to

other LEE regions inserted at pheU. SESS LEE is inserted at pheV

as observed for E. coli strains O103:H2 (strains 12009 and

RW1374) and O111:H- 11128. Using adjacent yqpA and pheV as a

point of reference for comparing E. coli O103:H2 RW1374 and

SESS LEE islands both have a different set of flanking region

genes followed by LEE4 and TIR operons in the same orientation.

The LEE1, LEE2, and LEE3 operons of SESS LEE have been

inverted as a single cassette compared to E. coli O103:H2

RW1374. It is possible that the loss of cesF and map normally

present in the junction between the TIR and LEE3 operons may

have occurred when this recombination took place. Alternatively,

it is possible that this recombination coincided with the addition of

these genes to the LEE island. There is insufficient data to

speculate on whether espF, rorf1, and espG were lost from the SESS

LEE or inserted after the split between Salmonella LEE and LEE

from the other genera but the former seems more likely.

Conjecture on how or when espF, espG, cesF, map, and rorf1 may

have been lost assumes that these genes were present on the

ancestral form of LEE and were not acquired at some point after

the split between clade V and clades I-IV. Although the

preponderance of LEE regions isolated to date have been

arranged LEE1, LEE2, LEE3, TIR, and LEE4 the alternative

arrangement in the SESS LEE cannot be dismissed as the putative

ancestral operon arrangement.

Jores et al. [47] suggested an in-principle classification of LEE

islands by their point of insertion. Primarily, this classification

scheme was based on LEE being distributed between the selC

tRNA and pheV/pheU tRNA genes. Detailed analysis by Rumer et

al. [48] suggested that pheU was a likely ancestral insertion point of

LEE in E. coli with later horizontal transfer to the pheV. Although

LEE appears to have entered E. coli through insertion into the pheU

site, our phylogeny for LEE complicates any discussion on the

ancestral tRNA insertion point of LEE in the Enterobacteriaceae.

The two LEE islands closest to the ancestral LEE are derived from

Salmonella and C. rodentium. SESS LEE is inserted at pheV and C.

rodentium is not near pheU, pheV, or selC and is approximately

100,000 bp from any tRNA gene.

This work describes divergent isolates of the SESS LEE from

two S. enterica subspecies salamae serovar Sofia isolates derived from

different niches. Future analysis will attempt to examine the

distribution of this new lineage in the salamae subspecies as well as

the other less studied Salmonella subspecies. Although neither

expression nor in vivo activity has been demonstrated, the

existence of the SESS LEE calls into question all of the previous

hypotheses related to the origin and genealogy of a key virulence

determinant in human pathogens such as EPEC, EHEC, and

ATEC. The SESS LEE phylogeny suggests that LEE entered the

Enterobacteriaceae by HGT containing both the structural

components of the T3SS as well as the associated accessory

proteins and effectors. LEE was then subjected to significant

recombination particularly within the E. coli cells carrying it. The

phylogeny of the T3SS component of LEE including the SESS

LEE establishes five clades to which the known LEE can be

assigned.

Supporting Information

Figure S1 Nucleotide composition for all strains sub-
jected to phylogenetic analysis is represented schemat-
ically with diagrams generated by SeqVis 1.5. Analyses for

alignment matrices of all LEE region genes, T3SS genes, and the

housekeeping genes are shown in panels A, B, and C respectively.

Compositional heterogeneity is illustrated by a de Finetti plot of

the average nucleotide composition for each strain with A and T

nucleotides represented by W. A de Finetti plot is presented for

each of the three positions in the codon as indicated.

(TIF)

Figure S2 Comparison of the SESS genomic island
containing LEE with a genomic segment from S. enterica
subspecies arizonae. A segment of the S. enterica subspecies

arizonae genome from the tRNA-Phe (marked in red) at position

3,207,114 to a hypothetical protein terminating near position

3,245,373 of the genomic island is marked by the dark gray

arrows. The SESS LEE genomic island is depicted with T3SS

genes in green and other LEE genes in blue. SESS flanking region

genes are depicted in light gray. Redundant text from the SESS

locus tags has been removed to simplify the figure. The full locus

tags are presented for selected genes for subspecies arizonae genes

while the shortened 4 digit code was used for SESS genes as in

Figure 1. Gene functions are abbreviated, putative integrase (INT),

putative transcriptional regulator (TR), putative secreted effector

(SE). Those segments that match in tblastx comparisons are

indicated by the connecting lines

(TIF)

Figure S3 Graph of genetic diversity (h), ratio of non-
synonymous and synonymous changes, and G+C content
across the T3SS sequence alignment matrix. A schematic

depicting the extent of each gene in the curated T3SS alignment

matrix is presented above plots of genetic diversity (h) calculated

for all sequences in the alignment (blue line) or with sequences

from the two Salmonella strains removed (red line). Normalized

ratio of dN/dS and G+C content calculated with a 50 bp window

size.

(TIF)

Table S1 Accession numbers for housekeeping genes
from the Salmonella strains described in this research.

(DOCX)
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