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Short-term forecast of pertussis incidence is helpful for advanced warning and planning resource needs 
for future epidemics. By utilizing the Auto-Regressive Integrated Moving Average (ARIMA) model 
and Exponential Smoothing (ETS) model as alterative models with R software, this paper analyzed 
data from Chinese Center for Disease Control and Prevention (China CDC) between January 2005 and 
June 2016. The ARIMA (0,1,0)(1,1,1)12 model (AICc = 1342.2 BIC = 1350.3) was selected as the best 
performing ARIMA model and the ETS (M,N,M) model (AICc = 1678.6, BIC = 1715.4) was selected as 
the best performing ETS model, and the ETS (M,N,M) model with the minimum RMSE was finally 
selected for in-sample-simulation and out-of-sample forecasting. Descriptive statistics showed that the 
reported number of pertussis cases by China CDC increased by 66.20% from 2005 (4058 cases) to 2015 
(6744 cases). According to Hodrick-Prescott filter, there was an apparent cyclicity and seasonality in the 
pertussis reports. In out of sample forecasting, the model forecasted a relatively high incidence cases 
in 2016, which predicates an increasing risk of ongoing pertussis resurgence in the near future. In this 
regard, the ETS model would be a useful tool in simulating and forecasting the incidence of pertussis, 
and helping decision makers to take efficient decisions based on the advanced warning of disease 
incidence.

As a respiratory disease caused by Bordetella pertussis, pertussis (also known as whooping cough or 100-day 
cough) is one of the leading causes for serious illnesses in babies, children, teens, and adults. According to the 
2015 revised Chinese National Guidelines on Diagnosis and Management of Cough, pertussis is considered as a 
common cause of prolonged cough illness in adolescents and adults while frequently being associated with other 
symptoms of whooping cough1. Although pertussis is recognized as one of the most common vaccine preventable 
diseases, yet it still causes nearly 300,000 deaths in children each year worldwide2. In United Kingdom, a high 
incidence rate of pertussis infection was reported in 37% of school-aged children between 2001 and 20062. In 
United States, 48,277 cases of pertussis were reported in the most recent peak year of 2012 with many more cases 
still unreported3. In China, little is known about the occurrence of pertussis due to the scarcity of a large-scale 
investigation of the incidence of pertussis. A recent study from the capital of Shaanxi province which is located in 
the northwest of China, reported that only 5.31% of the confirmed pertussis cases were properly diagnosed, with 
a misdiagnosis rate as high as 94.69%4.

Accurate simulation and forecasting of the incidence of an infectious disease exert a significant impact on 
resource utilization and planning for future epidemics. However, epidemics of pertussis cannot be easily identi-
fied or managed, as some other respiratory pathogens often cause similar symptoms like pertussis. In addition, 
the change of disease incidence is influenced and constrained by changing trends, periodic changes, and random 
disturbances like other infectious diseases5. Therefore, it is necessary to identify some effective accurate disease 
forecasting models to predict disease incidence based on the historical data. Specially, time series analysis, which 
comprises methods for analysing time series data to extract meaningful statistics and other characteristics of the 
data, is naturally required in this field.
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Time series analysis means to implement a model to predict future values based on the previously observed 
values. Time series analysis consists of several approaches like the Exponential Smoothing (ETS model), 
Auto-Regressive and Moving Average Model (ARMA model), Neural Network model and some other models 
are subject to intense methodological developments in recent years6–9. Some of these models, such as the ARIMA 
(or seasonal ARIMA) model and the ETS model taking both overall trends and seasonal changes into account 
were considered useful tools in modeling time series with trend, cyclicity and seasonality10,11. Accordingly, these 
models were appropriate for analyzing pertussis incidence in China. Inspired by the advantages of these models, 
these methods were considered to optimal for forecasting the pertussis incidence in mainland China.

Materials and Methods
Data resource. The data of pertussis was obtained from the Chinese Center for Disease Control and 
Prevention (China CDC) [http://www.chinacdc.cn/], and the Bulletin of the Ministry of Health (from China VIP 
database) [http://lib.cqvip.com/], and the data from January 2005 to June 2016 were assembled as monthly counts 
of the reported cases.

Statistical Analysis. As the most well-known branch of decision supporting tools in clinical epidemiology, 
time series having being increasingly exploited in epidemiological research in recent years. Since ETS model and 
ARIMA model have become more popular in time series in recent years as mentioned above9,12, in this study, the 
two were implemented as the epidemiological analysis methods.

ARIMA model. Originally proposed by Box and Jenkins in the early 1970s, ARIMA model has been viewed as 
one of the most effective models for describing and forecasting time series13,14. An ARIMA model contains three 
components: The “AR” stands for autoregressive, the “I” stands for Integration and the “MA” stands for moving  
average. Generally, some time series have some form of cyclicity or seasonality trends (i.e., yearly or monthly). 
To illustrate these periodically changed data, a seasonal ARIMA model is thus adopted for modeling such data 
sets. A seasonal ARIMA model would be designed as ARIMA (p,d,q)(P,D,Q)s, (p =   non-seasonal AR order, 
d =  non-seasonal differencing, q =  non-seasonal MA order, P =  seasonal AR order, D =  seasonal differencing,  
Q =  seasonal MA order), and s =  time span of repeating seasonal pattern. In R software, the seasonal ARIMA 
model automatically selected the parameters for the best performing model according to either the minimum of 
Akaike information criterion (AIC), the corrected Akaike information criterion (AICc) or the Bayesian infor-
mation criterion (BIC)15,16. In the second step, the simulating and forecasting results are given by the chosen 
model. Finally, the Ljung-Box Q test was used to diagnose whether the residual error sequence was a white-noise 
sequence.

ETS model. The ETS model considers the error, trend and seasonal components of a given time series and 
evaluates 30 possible alterative models prior to selecting the best performing model to simulate the data17. The 
major three parameters are the error, trend and seasonal components which can be additive (A), multiplicative 
(M) or none (N). The best performing model is chosen according to either the minimum of AIC, AICc or BIC. 
As an automatic forecasting model incorporating the foundations of exponential smoothing, the ETS technique 
provided the forecast package for the R software outlined by Hyndman18, the Ljung-Box Q test was also used to 
diagnose whether the residual error sequence was a white-noise sequence.

The analytic procedure of pertussis incidence. In this paper, the analytic procedure of pertussis inci-
dence in mainland China is divided into the following steps: The first step is the pre-processing step, to make the 
time series set stationary, and to choose the alternative models being considered, and to introduce the criteria 
that will be used to determine how well the alternative models performed. To remove short-term (monthly) fluc-
tuations and determine the long term time-series over multiple years, the Hodrick-Prescott filter method is per-
formed as the cyclical and seasonal decomposition method in this paper19–21. The ARCH-LM test is also provided 
to verify the existence of ARCH effects. The second step is the model processing step to perform in-sample simu-
lating and forecasting, by running the “the “auto.arima()” code in R software, the best performing model ARIMA 
model with either the minimum of AIC, AICc, BIC is automatically selected, the Ljung-Box Q tests is performed 
to diagnose whether the residual error sequence the of the best performing models is white-noise sequence; For 
ETS modeling, the best performing ETS model is also automatically selected by following the principle of mini-
mum of AIC, AICc or BIC. With the implementation of auto regressive conditional heteroscedasticity (ARCH) 
Lagrangian multiplier (LM) test, the structural break of the residuals is identified to determine the existence of 
volatility in the series. With testing goodness of in-sample simulating and forecasting, the optimal model with 
either the minimum of The Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute 
Deviation (MAD) or Mean Absolute Percentage Error (MAPE) test is finally determined between the best per-
forming ARIMA model and the best performing ETS model. The third step is to perform an out-of-sample fore-
casting with the optimal model.

The study was approved by the Affiliated Hospital of Chengdu University. As aggregated data with no per-
sonal information were involved. All statistical analysis is conducted through R software (version 3.2.3, The R 
Foundation for Statistical Computing, Vienna, Austria)17.

Role of the funding and data sources. The opinions reported in this paper are those of the authors, 
which are independent from the funding sources, and no endorsement from China CDC or other official organ-
izations is intended or should be inferred.
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Results
General information. According to the monthly reported incidence rates in China, no more than 10, 000 
cases of pertussis are reported every year, which is much less than many other countries22, and the disease inci-
dence is also much less than other infectious diseases like hand-foot-mouth disease in China23. In spite of the 
relative low incidence rates compared to other infectious disease, the incidence rates of pertussis had increased 
by 66.20%, from 4058 in 2005 to 6744 in 2015 in the last decade (Fig. 1). While using the Hodrick-Prescott filter 
method to remove short-term (monthly) fluctuations, a substantial rise was observed from 2013–2015, followed 
by a slight decrease from 2005–2013 (Fig. 2). In 2015, the reported number of cases reached 6744, with a 266.92% 
increase rate compared with the lowest number of cases reported in 2013 (1743 cases).

In-sample simulating and forecasting. By running the auto.ARIMA code, the seasonal ARIMA (0,1,0)
(1,1,1)12 model (AIC =  1341.99 AICc =  1342.2 BIC =  1350.3) was automatically selected as the best performing 
ARIMA model. According to its Ljung-Box Q test which was performed to assess the fitness of the ARIMA 

Figure 1. Yearly and monthly data of pertussis incidence numbers in mainland China from 2005 to 2015. 

Figure 2. Results from decomposing the monthly pertussis incidence time series using the Hodrick-
Prescott filter model with monthly smoothing parameter λ = 14,400. 
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(0,1,0) ×  (1,1,1)12 model, the residual error sequence was closer to achieve white noise (PBox-Ljung> 0.05 at 5, 10, 
20, 30 and 40 lags, see Table 1 and Fig. 3); While running the ETS code, ETS (M,N,M) model (AIC =  1675.0, 
AICc =  1678.6, BIC =  1715.4) was automatically selected as the best performing ETS model, the Ljung-Box Q 
testing result of the ETS (M,N,M) model showed that the residual error sequence was closer to achieve white 
noise as well (P Box-Ljung> 0.05 at 5, 10, 20, 30 and 40 lags, also see Table 1 and Fig. 4). By running the two best per-
forming models, the in-sample-simulating and forecasting results were given as shown in Fig. 5. The ARCH-LM 
testing results in Table 2 showed the ARCH effect, which existed in the original series, was minimalized to a great 
extent in residuals of both the ARIMA (0,1,0) ×  (1,1,1)12 model and the and the ETS (M,N,M) model. In the step 

ARIMA (0,1,0)(1,1,1)12 ETS(M,N,M)

Lags Chi-squared P values Lags Chi-squared P values

1 1.104 0.293 1 0.086 0.770

6 6.881 0.332 6 6.164 0.405

12 13.525 0.332 12 12.461 0.409

13 15.63 0.270 13 13.477 0.412

18 22.433 0.213 18 20.797 0.290

24 23.991 0.462 24 27.114 0.299

25 23.992 0.520 25 27.237 0.344

30 29.365 0.499 30 31.955 0.370

Table 1.  Ljung-Box Q tests of two best performing models.

Figure 3. Goodness tests of in sample simulating and forecasting of ARIMA (0,1,0)(1,1,1)[12] model. 
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of goodness test of in-sample simulating and forecasting, under the principle of the minimum of RMSE, MAE, 
MAD or MAPE the ETS (M,N,M), the ETS (M,N,M) model (see Table 3), which was proved to provide more 
accurate forecasts, was finally chosen as the optimal model and was thus presented for out-of-sample forecasting.

Out-of-sample forecasting. The forecasting results of pertussis incidence from July to December 2016 
in mainland China were given by running the optimal ETS (M,N,M) model, Table 4 and Fig. 6 present the 
out-of-sample forecasting results from July to December 2016.

Discussion
As a highly infectious respiratory illness, pertussis was a disease with high incidence rate before vaccination. 
However, with the development and widespread application of effective pertussis vaccines, dramatic changes hap-
pened in the epidemiology of pertussis globally24. In the United States, after the routine use of pertussis vaccine 
in 1943, the reported cases of pertussis dropped dramatically, and the number of cases was below 10, 000, which 
was the best in more than three decades (1965–2002). In China, pertussis immunization was introduced in the 
early 1960s, with three doses of whole-cell vaccine combined with diphtheria and tetanus toxoids (DTwP). Since 
1982, a booster dose injected at 18–24 months has been added4, and the number of reported cases has dramat-
ically decreased. However, in the recent resurgence of pertussis in many countries, a closer investigation on the 
aspects of pertussis causing its persistence should be prompted. Even with high vaccination rates, many coun-
tries have been reporting increasing pertussis cases in both the developed countries (the U.S, U.K, Netherlands, 
Portugal and Australia) and the developing countries (Cuba, Brazil, Mexico) in recent years22,25. Therefore, per-
tussis remains endemic worldwide which is still an important public health problem.

In this epidemiological study, the temporal trend of pertussis incidence in mainland China from 2005–2016 
is analyzed according to the data reported by China CDC. Based on the descriptive statistics, it is observed that 
China has retained a lower pertussis reported cases from 2005 to 2013, which has been below 1 case per 100,000, 

Figure 4. Goodness tests of in sample simulating and forecasting of ETS (M,N,M) model. 
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Figure 5. In-sample simulating and forecasting results of best performing models from each alterative 
model. 

Original time series of pertussis 
incidence 

Residual of the ARIMA (0,1,0) 
(1,1,1)[12] model

Residual of the ETS(M,N,M) 
model

Lags() Chi-squared P values Lags() Chi-squared P values Lags Chi-squared P values

1 92.467 < 0.001 1 7.121 0.007 1 7.838 0.005

6 97.837 < 0.001 6 7.939 0.243 6 10.225 0.116

12 98.818 < 0.001 12 8.121 0.776 12 11.407 0.494

13 101.26 < 0.001 13 8.744 0.792 13 13.281 0.426

18 98.714 < 0.001 18 9.033 0.959 18 15.813 0.606

24 96.158 < 0.001 24 9.173 0.997 24 17.548 0.824

25 95.253 < 0.001 25 9.093 0.999 25 18.976 0.798

30 92.005 < 0.001 30 9.966 0.999 30 18.957 0.941

Table 2.  Testing results of ARCH-effects about original series and best performing ARIMA and ETS 
models.

Alterative models ME RMSE MAE MPE MAPE MASE

ARIMA (0,1,0)(1,1,1)12 2.900 61.689 39.151 − 0.433 21.819 0.415

ETS(M,N,M) (Optimal model) 4.844 52.202 37.810 0.003 17.490 0.401

Table 3.  Parameter estimation for best performing ARIMA and ETS models for pertussis incidence.

Time Forecasts 95% CI

Jul-16 599 [345, 853]

Aug-16 635 [320, 950]

Sep-16 436 [192, 679]

Oct-16 232 [89, 376]

Nov-16 222 [73, 371]

Dec-16 293 [82, 504]

Table 4.  Forecasting incidence cases of pertussis from July to December in 2016.
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lower than other countries22. In China, pertussis is always clinically diagnosed by physicians through laboratory 
methods such as culture and PCR, while serologic analysis is not commonly applied for diagnosis. Therefore, 
compared to other countries, its reported low incidence may be related to the adopted diagnostic criteria, sug-
gesting substantial underreporting. Even though pertussis remains endemic to China, a sharp rise of reported 
numbers appeared in 2014 and 2015, which was a relatively high level. Whether an upward trend in incidence will 
be observed in 2016 is still unclear. Therefore, it is necessary to explore flexible and fractional methods for pertus-
sis forecasting in a short term. In spite of time series models have been widely used in economics, environmental 
sciences and many other fields (eg. cerebrovascular diseases13, respiratory infections26,27, health care management, 
and so on28–30), know little about the flexibility of this model for time series analysis of the incidence of pertussis. 
Therefore, the requirement of this model is highlighted in this epidemiological study. Besides, an apparent cyclic-
ity and seasonality was observed in the pertussis reporting. According to out-of-sample forecasting, the model 
forecasts a relatively high incidence cases in 2016, which predicates an increasing risk of ongoing pertussis resur-
gence in mainland China in the near future, indicating that pertussis never goes away completely31,32.

The seasonality of pertussis has been reported in some other countries as well33,34. Though some scholars have 
explored the mechanisms of pertussis incidence behind temporal information where the seasonal variations were 
captured with the autocorrelation analysis, the mechanism of pertussis activity in China remains unclear, which 
highlights a need to identify the factors for clarifying and explaining the cyclicity and seasonality35,36. In this 
study, the HP filter method was added to detect the cyclic and seasonal variation pertussis incidence, and a clear 
yearly cyclic pattern and seasonal pattern in the report of pertussis cases was found. During the study period, 
the peaks of seasonal periodicity occurred annually. For instance, the reported cases remained high in June until 
September. From January to February of the following year, the incidence was at a low level until the next report-
ing circle. The results of this study are consistent with previous studies, which showed an obvious cyclic and 
seasonal trend of the times series.

Globally, many countries are reporting the increase in pertussis cases, and the results of this study suggest 
an increasing risk of ongoing pertussis resurgence in mainland China in the near future, though the pertussis 
flare-up is unlikely to happen with the developed preventive systems for pertussis. Therefore, it is still important 
to continually remind that pertussis never goes away completely. In addition, effective efforts for controlling the 
potential pertussis resurgence should focus on professional recommendations, and appropriate public health 
education or instructions for people with high risk and enhancement of incident monitoring. From the meth-
odological aspect, this study reveals that the selected ETS model is an assessable and flexible tool in forecasting 
the incidence of pertussis, and helping decision makers to provide advanced warning of future cases and further 
optimize distribution of resources based on the advanced warning of disease incidence.
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