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Abstract

Motivation: One of the main goals in systems biology is to learn molecular regulatory networks

from quantitative profile data. In particular, Gaussian graphical models (GGMs) are widely used

network models in bioinformatics where variables (e.g. transcripts, metabolites or proteins) are

represented by nodes, and pairs of nodes are connected with an edge according to their partial cor-

relation. Reconstructing a GGM from data is a challenging task when the sample size is smaller

than the number of variables. The main problem consists in finding the inverse of the covariance

estimator which is ill-conditioned in this case. Shrinkage-based covariance estimators are a popu-

lar approach, producing an invertible ‘shrunk’ covariance. However, a proper significance test for

the ‘shrunk’ partial correlation (i.e. the GGM edges) is an open challenge as a probability density

including the shrinkage is unknown. In this article, we present (i) a geometric reformulation of the

shrinkage-based GGM, and (ii) a probability density that naturally includes the shrinkage

parameter.

Results: Our results show that the inference using this new ‘shrunk’ probability density is as accur-

ate as Monte Carlo estimation (an unbiased non-parametric method) for any shrinkage value, while

being computationally more efficient. We show on synthetic data how the novel test for signifi-

cance allows an accurate control of the Type I error and outperforms the network reconstruction

obtained by the widely used R package GeneNet. This is further highlighted in two gene expression

datasets from stress response in Eschericha coli, and the effect of influenza infection in Mus

musculus.

Availability and implementation: https://github.com/V-Bernal/GGM-Shrinkage

Contact: p.l.horvatovich@rug.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In systems biology and bioinformatics an important objective is to

explore molecular associations (e.g. gene regulatory or protein inter-

action networks) based on molecular profiles. Among the most

popular statistical models for biological networks are Relevance net-

works (RNs) (Butte and Kohane, 2003), Gaussian graphical models

(GGMs) (Edwards, 2000) and Bayesian networks (BNs) (Friedman

et al., 2000).

GGMs are widely used for network learning because, unlike

RNs, they measure the strengths of direct relationships (avoiding in-

direct, spurious associations). When compared with BNs, GGMs are

computationally feasible (even for large networks) and have similar
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statistical performance (Werhli et al., 2006). In particular, GGMs

employ partial correlations to represent probabilistic dependences

(e.g. relationships among genes, proteins or metabolites) by measur-

ing linear relationships between pairs of variables while condition-

ing over the remaining ones (i.e. the effects from all other variables

are adjusted, resulting in a measure of direct relationships). In this

way, a GGM’s structure consists of nodes representing the random

variables with an edge connecting a pair of nodes according to its

partial correlation (e.g. whether it is statistically significant).

The reconstruction of a GGM requires the inverse of the covari-

ance matrix. It is therefore important that the covariance estimator

is (i) invertible and (ii) well-conditioned (i.e. that the inversion does

not magnify estimation errors). For the sample covariance estimator

Ĉ
SM

with p variables and sample size n, three main cases can be

identified (Ledoit and Wolf, 2004): it is invertible and well-

conditioned if n� p, it is invertible but ill-conditioned if n is com-

parable to p, and it is not invertible if n� p. This set up is referred

to as a high-dimensional problem, ‘small n, large p’ or just as

‘n� p’. The analysis of molecular profiles in biology usually

involves a large set of variables (e.g. genes, proteins and metabolites)

and a relatively small sample size (e.g. biological replicates or time

points). In this case, there are two popular frameworks for learning

GGMs from quantitative molecular profile data. On one hand,

Glasso (Friedman et al., 2008) is based on estimating the covarian-

ce’s inverse using a L1 penalty (i.e. some of the matrix entries are

estimated as zero), and is complemented with model selection strat-

egies. On the other hand, GeneNet (Schäfer and Strimmer, 2005a)

estimates a modified covariance matrix by using an (invertible) esti-

mator based on shrinkage (Ledoit and Wolf, 2004). The latter has

the advantage of providing P-values (Strimmer, 2008a, b) and this

article will focus on this approach.

Covariance estimators based on shrinkage are useful in the high-

dimensional case as they produce a more stable (but biased) estima-

tor. They consist of a convex linear combination of the (unbiased)

sample covariance estimator Ĉ
SM

with a target estimator T (e.g. a

diagonal matrix). The result is a well-conditioned estimator, and its

inverse can be used to compute the ‘shrunk’ partial correlations.

Over the last decade, the shrinkage approach to reconstruct GGMs

has had a considerable use in biological/medical research

(Beerenwinkel et al., 2007; Benedetti et al., 2017; Keller et al., 2008;

Ma et al., 2007; Saha et al., 2017). In particular, the widely used R

package GeneNet received more than 1200 citations to date

(Supplementary Fig. S1), and methodologically is one of the most

important GGM approaches in system biology (Faust and Raes,

2012; Lemm et al., 2011; Markowetz and Spang, 2007).

However, a proper significance test of the ‘shrunk’ partial corre-

lations requires the inclusion of the shrinkage value in an analytical

form, which is an open and challenging task not addressed so far.

The importance of an accurate test becomes greater for large net-

works, since a GGM with p variables implies testing pðp� 1Þ=2
edges, the reconstruction becomes a multiple testing problem. Thus,

even a slight bias in the test translates into an error that is repeated

systematically. Moreover, if the bias is not independent of n or p,

studies performed under different conditions are not comparable.

For example, in Schäfer and Strimmer (2005b), the authors

employed the standard density of the partial correlation, and

reported that for small number of samples (e.g. n<30) the test has a

low power. In addition, a recent study (Omranian et al., 2016)

found that the method returns a rather small fraction of true

positives.

To overcome the above-mentioned limitations, we aim to obtain

a probability density that includes the shrinkage effects. The new

test of significance must be valid for any shrinkage value, providing

a proper control of the false positives (FPs) and the use of multiple

testing corrections.

2 Materials and methods

This section introduces some background theory about GGMs, as

well as the shrinkage approach for covariance estimation. This is

followed by a description of how the test of significance is per-

formed in GeneNet, together with its shortcomings. Next, to over-

come the aforementioned pitfalls, the inference problem is

translated under a geometrical perspective. This is achieved by using

some seminal ideas that go back to the work of R.A. Fisher in the

early 1900s. Finally, it is shown how these ideas permit the inclusion

of the shrinkage into the inference in the form of a ‘shrunk’ prob-

ability density.

As part of the notation throughout the text capital letters are

used to represent random variables (e.g. X), uppercase bold letters

for matrices (e.g. C), and lowercase bold letters for vectors (e.g. x
!

).

We use the lowercase q for the partial correlation coefficient, and

the uppercase P for the matrix of partial correlations.

2.1 Gaussian graphical models
A GGM is an undirected graphical model represented by a matrix P

of partial correlation coefficients (Whittaker, 1990). The partial cor-

relation is a measure of the linear relationships between pairs of var-

iables that corrects the effect coming from all the others (i.e. it

measures full-conditional relationships). In this way, the coefficient

Pij stands for the partial correlation between variables i and j, and

can be written as

Pij ¼ �
Xijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xii

ffiffiffiffiffiffiffi
Xjj

pq (1)

where X is the inverse of the p� p covariance matrix C (Edwards,

2000). However, estimating C from data is not trivial when the sam-

ple size n is smaller than the number of variables p. For example, let

D be a p� n data matrix with the observations arranged in col-

umns. The maximum likelihood estimator Ĉ
ML

is given by

Ĉ
ML ¼ 1

n
DcDc

t (2)

where Dc is the p� p centered matrix obtained by subtracting from

each row/variable of D its mean value, and the superscript t refers to

the transpose. In this case, neither Ĉ
ML

, nor the unbiased estimator

Ĉ
SM ¼ n=n�1Ĉ

ML
(i.e. the sample covariance) are positive definite.

As some of the eigenvalues can be zero these estimators are not ne-

cessarily invertible.

Ledoit and Wolf (2003, 2004) proposed a shrinkage-based esti-

mator which consists of a convex combination of the form

Ĉ
k ¼ 1� kð ÞĈSM þ kT (3)

where T is a target estimator (e.g. a diagonal matrix of variances),

and k is the shrinkage value, which is between 0 and 1. The authors

choose k to minimize the mean square error (MSE) (i.e. to optimize

the tradeoff between the variance coming from Ĉ
SM

and the bias

from T). A short overview on shrinking toward different target

matrices can be found in Schäfer and Strimmer (2005a). In this sense

it is guaranteed that Ĉ
k
, as defined in Equation (3), is well-

conditioned in the ‘small n, large p’ scenario, and its inverse can be

used to compute the ‘shrunk’ partial correlations. However it has
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the disadvantage that the shrinkage effect (i.e. k) propagates to the

partial correlations via Equation (1). Although Ĉ
k

is a less variable

(but biased) estimator with respect to Ĉ
SM

, the ‘shrunk’ partial cor-

relation is distorted in a non-trivial manner.

2.2 Empirical null fitting—parametric test in GeneNet
GeneNet (Schäfer and Strimmer, 2005a) is a state of the art

approach for inferring shrinkage-based GGMs. It estimates Ĉ
k

with

an analytical expression for k that minimizes the MSE, as explained

in Section 2.1. The partial correlations obtained by Equation (1)

with Ĉ
k

consist of a mixture of edges from the null and real effects.

Following the notation in (Schäfer and Strimmer, 2005a) the distri-

bution across edges f qð Þ is assumed to be a mixture density of the

form f qð Þ ¼ p0f0 qð Þ þ 1� p0ð Þf1 qð Þ, where p0 is the proportion of

the null edges, f0 qð Þ is the probability density for q ¼ 0, and f1 qð Þ
the probability density for the real effects (q 6¼ 0). Next, the infer-

ence is carried out by empirical null fitting (ENF).

ENF aims to correct for implicit ‘imperfections’ in experimental

setups by identifying an empirical f0 qð Þ. For this, it is necessary to

find a region where f0 qð Þ dominates over f1 qð Þ. A necessary condi-

tion known as the zero assumption, is that f1 qð Þ should vanish near

to q ¼ 0, which holds when p0 � 0:90 (Efron, 2012). This con-

strains ENF to the case of sparse networks. Despite its advantages,

ENF is susceptible to errors due to the difficulty in choosing a ‘non-

contaminated’ region. For more details about ENF we refer the read-

er to Efron (2004, 2005).

The test for significance exploits the fact that under simulation

studies (for small k) the distribution of the ‘shrunk’ partial correl-

ation is close to the standard partial correlation (i.e. without shrink-

age) given by Fisher (1924) as

f0 qð Þ ¼
1

Beta 1
2 ;

k�1
2

� � ð1� q2Þðk�3Þ=2 (4)

The authors use it as a substitute of the unknown ‘shrunk’ dens-

ity. In this way, k is found by maximizing the (truncated) likelihood

over a domain where presumably the zero assumption holds.

However, as the shrinkage effects are not included, the P-values are

suboptimal.

In particular, inferring a GGM of p variables implies a multiple

testing problem as pðp� 1Þ=2 tests have to be performed. This

becomes more important when modeling biological networks with

hundreds or thousands of variables. Thus, the use of a probability

density including the distortion from k becomes crucial. Otherwise,

even a slight deviation from it would translate in a bias that is

repeated systematically when computing the P-values and the corre-

sponding multiple testing correction.

2.3 The geometry of partial correlation
In this subsection, we show how the shrinkage value k can be taken

into account. To this end, we make use of geometrical considera-

tions and the concept of subject space. Subject space is a scheme

where random variables are represented as vectors in a coordinate

system with one axis per observation/experiment (Wickens, 2014).

In this way, p random variables with n samples translate into p vec-

tors in an n-dimensional space. Under this scheme, probabilistic

relationships (e.g. correlations) can be interpreted geometrically.

For the purpose of illustration consider three random variables

X; Y, and Z with expectation zero (E X½ � ¼ E½Y� ¼ E½Z� ¼ 0). Their

respective vector representations are denoted by x
!
; y
!
; z
!

. The

correlation r between X and Y (a measure of linear dependence) is

related to the angle between the vectors (see Fig. 1a), and can be

written as

rXY ¼

Pn
i¼1

xi � x
�� �

yi � y
�� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

xi � x
�� �2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

yi � y
�� �2

s ¼ x
! � y!

kx!k2ky
!k2

(5)

where k	!k2 denotes the usual Euclidean norm, and x
! � y! ¼

kx!k2ky
!k2 cosð/x

!
; y
!Þ and /x

!
; y
!

stands for the angle between x
!

and y
!

. In the multivariate case, the pairwise correlations can be

arranged in a symmetric matrix (i.e. the correlation matrix). This

matrix is the covariance matrix of the standardized random varia-

bles, and its pairwise association are in ½�1;1�.
Whenever the target matrix T in Equation (3) is chosen as the

diagonal matrix of variances, it results in scaling the off-diagonal

elements of Ĉ
SM

by a constant factor ð1� kÞ, while the diagonal

remains unchanged. This applies as well to the correlation matrix

with a shrinkage towards the identity matrix; symbolically

rk
ij ¼ 1� kð Þrij 8 i 6¼ j, and 1 otherwise. In this case, the maximal

correlation is 6ð1� kÞ, and (near) multi-collinearity is avoided. In

subject space, this decorrelation means that the angles between the

vectors increase while their lengths remain equal to one, generating

the new xk
!
; yk
!
; zk
!

.

On the other hand, the (standard) partial correlation q is a meas-

ure of linear dependence between two random variables after condi-

tioning over all others. Geometrically, conditioning X (and Y) over

the variable Z is equivalent to projecting the vector x
!

(and y
!

) onto a

plane v?Z orthogonal to z
!

. Therefore, q is the cosine of the angle

between the projected vectors on v?Z as shown in Figure 1b. The

Fig. 1. Geometry of the partial correlation. The vectors x
!

, y
!

and z
!

represent

the random variables X, Y and Z in subject space. In Panel (a), the correlation

r between X and Y is the cosine of a. In Panel (b), the partial correlation be-

tween X and Y can be interpreted as the cosine of the angle b. That is the co-

sine between the projection of x
!

and y
!

onto a plane orthogonal to z
!

. The

shrinkage effect consists in that the vectors x
!

, y
!

and z
!

are transformed to

xk
!
; yk
!

and zk
!

such that their lengths remain 1, and only the angles between

each other change. In other words, the transformed vectors become less cor-

related. In Panel (c), the geometrical effect of the shrinkage consists in chang-

ing the projection plane v?z to v?zk

. In Panel (d), the ‘shrunk’ partial

correlation qk between X and Y is the cosine of the angle bk. That is the cosine

between the projections of xk
!

and yk
!

onto v?zk
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new vectors (i.e. xk
!
; yk
!

) are now projected onto a new plane (i.e.

v?zk
), propagating the shrinkage effects as shown in Figure 1c and d.

At this point we recognize that the same geometric arguments used

in Fisher (1924) to obtain the distribution of the (standard) partial

correlation hold. From here on we will adapt that reasoning to our

context.

We start by highlighting that rk ¼ 1� kð Þr is invariant under

rotations of the axes (like r). In other words, given a rotation of the

coordinates, the shrunk (and standard) correlation remains un-

changed. Now, suppose that the coordinate system rotates making

one of its axes coincides with zk
!

(the new conditioning variable).

Then, conditioning over Zk becomes equivalent to removing (from

xk
!

and yk
!

) the component in the zk
!

direction. Thus, the vectors are

projected onto a plane v?Zk
that is orthogonal to zk

!
. Consequently,

rk is modified when it is conditioned over Zk to give the ‘shrunk’

partial correlation qk; symbolically qk ¼ rkjZk. The distribution of

rkjZk is the distribution of rk obtained by removing one sample

(decreasing its degrees of freedom by one). This process can be

repeated by rotating the axes once more to condition over the next

variable, and the argument is generalizable by replacing Z with a set

of p� 2 variables fZ1;Z2; :; Zp�2g. Finally, the vectors have been

conditioned over the p� 2 other variables, and qk ¼
rkjfZ1;Z2; :; Zp�2g follows the distribution of rk obtained after

removing p� 2 samples.

The distribution for rk is found via the transformation rk ¼
ð1� kÞr over Equation (4) leading to

ð1

�1

f0 rð Þdr ¼
ð 1�kð Þ

� 1�kð Þ
f0

rk

1� kð Þ

 !
drk

1� kð Þ ¼ 1 (6)

and is naturally defined in ½�ð1� kÞ; ð1� kÞ� with the form

f0
k rkð Þ ¼

1� kð Þ2 � rkð Þ2
� �ðk�3Þ=2

Beta 1
2 ;

k�1
2

� �
1� kð Þ ðk�2Þ

(7)

The expectation is E rk½ � ¼ 1� kð ÞE r½ �, and its variance var rk½ � ¼
1� kð Þ2var r½ � is reduced as 1� kð Þ2 
 1. As a consequence of the

geometric arguments above the density for the ‘shrunk’ partial

correlation qk ¼ rkj fZ1;Z2; :; Zp�2g in the well posed case n� p

is also described by Equation (7) with k ¼ n� 1� ðp� 2Þ. In the ill-

posed case n < p, k can be estimated via maximum likelihood esti-

mation (MLE) (Supplementary Section S2) as it has no clear geomet-

rical meaning. Some examples of the shrinkage effect are provided

in the Supplementary Section S1. Further mathematical details can

be found in Fisher (1915) and Hotelling (1953).

3 Implementation

In what follows we will compare two inference methods. First, ENF

with Equation (4) currently implemented in GeneNet version 1.2.13

(see Section 2.2). Second, the parametric approach proposed here, to

which we will refer as Shrunk MLE (see Supplementary Section S2).

We will employ as the gold standard a computationally expensive

estimation of P-values based on Monte Carlo (MC) (see

Supplementary Section S3). MC estimation is a non-parametric and

unbiased method; however, for large networks it is time costly

which limits its use in many applications.

3.1 Synthetic data
Simulations are performed with R version 3.4.0, and GeneNet ver-

sion 1.2.13. The later allows to generate GGMs with a fixed per-

centage of partial correlations (Schäfer and Strimmer, 2005a).

3.2 Stress response in Escherichia coli
This dataset consists of E.coli microarray gene-expression from

Schmidt-Heck et al. (2004). The authors studied the stress temporal

response after the expression of recombinant human superoxide dis-

mutase (SOD) at 8, 15, 22, 45, 68, 90, 150 and 180 min. SOD ex-

pression was induced by isopropyl b-D-1-thiogalactopyranoside

(IPTG), which is a lactose analog inducer of the lac operon. In the

original study the authors identified 102 out of 4289 protein coding

genes as differentially expressed at transcript level in one or more

samples after induction. Data pre-processing included log2-ratio

transformation with respect to the first time point. The final dataset

consists of expression values for transcripts corresponding to 102

genes with 9 time points, and was obtained from the R package

GeneNet version 1.2.13.

3.3 Infection response in Mus musculus
The following dataset comes from a study of transcript interactions

in a mouse (M.musculus) model of influenza infection (Steed et al.,

2017). It is available at https://www.ebi.ac.uk/arrayexpress/experi

ments/E-MTAB-5337, and consists of RNA-seq transcript expres-

sion data of mouse lungs. The study focuses on the role of the Irgm1

gene in mice of 8–12 weeks of age with samples at four time points

(0, 3, 6, and 10 days after infection). We pre-processed it by filtering

out probes with low counts (i.e. fractions per million (FPM) < 1).

From the duplicate probes we kept the one with the highest FPM. A

total of 539 genes were differentially expressed at the 10% level

false discovery rate (FDR) and their expression values were log2-

transformed.

4 Results

4.1 Analysis of simulated data
In this section, we demonstrate the superior performance of the

improved approach Shrunk MLE by comparing it to: (i) ENF, and

(ii) MC P-value estimation. A total of 4574 datasets were simulated

(see Supplementary Table S1). First, we perform a qualitative study

under the null hypothesis H0 : q ¼ 0. Second, we cross compare the

reconstruction for sparse networks (i.e. small percentage of true pos-

itives) in terms of the FPs, and the positive predictive value (PPV).

Third, two real quantitative molecular profile datasets are used to

examine the results from a biological point of view. Supplementary

Table S2 gives an overview of definitions used in the evaluation.

Figure 2a and b display the average histograms for the P-values

retrieved by each method. Figure 2c and d show the two null-

densities f0 qk
� �

and f0
k qk
� �

presented as Equations (4) and (7). In

the first case, the degrees of freedom k was obtained via MLE under

simulated H0, in the second case via ENF. Here it can be observed

that f0 qk
� �

has larger tails than f0
k qk
� �

. This is further illustrated by

Q-Q plots in Supplementary Figure S2, where the P-values’ quantiles

are expected to be on the diagonal line if they agree with the theoret-

ical quantiles (from a uniform distribution in ½0; 1�). Figure 3 shows

the number of significant partial correlations obtained by each

method while varying the sample size n. Figure 3a and b show the

results using (un-adjusted) P-values under H0 at a ¼ 0:05 and a ¼
0:01 respectively. It can be observed that ENF does not recover the

proportion of expected FPs. Figure 3c and d show the FPs for
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different ratios p=n in sparse networks. In this scenario, ENF learns

considerably more FPs than the other methods. In Figure 4, we com-

pare the false positive rate (FPR) with respect to the gold standard in

a grid of p and n. For Shrunk MLE the performance is equivalent to

MC when n > 10 and p > 40, while ENF differs in almost every

case. The PPV for different n is presented in Figure 5 for adjusted P-

values (Benjamini and Hochberg, 1995). See Supplementary Figures

S3 and S4 for the PPV with unadjusted P-values, and an additional

Type I error plot. In general, a relatively low PPV is expected as d is

small (i.e. there are few positives compared with the number of

tests). We observe that the performance of Shrunk MLE is similar to

the gold standard MC even for very large k. Additionally, Shrunk

MLE requires a much shorter computational time, as can be seen in

the Supplementary Table S3.

4.2 Analysis of experimental data
4.2.1 Effects of human SOD protein expression on transcript

expression in E.coli

Here we employ our new approach to analyze E.coli microarray

gene-expression data from Schmidt-Heck et al. (2004). The final

data consist of transcripts corresponding to 102 genes with 9 time

points. We treated the data as static (ignoring its temporal nature)

following the original analysis (Schäfer and Strimmer, 2005a).

Figure 6 shows that MC, and our approach (Shrunk MLE) learn

nearly the same amount of edges using P-values, differing in 20 out

of 258 connections (�7.75%).

ENF learns 220 additional edges (�85.3% more than MC). We

observe that after BH adjustment the amount of edges in Shrunk

MLE is too low to make any conclusion due to the small sample size

(see Figs 3–5). Therefore, the analysis is continued with un-adjusted

P-values. For every method the most significant connections were

lacA-lacZ, lacY-lacZ and lacA-lacY. The lac operon involves precise-

ly these three genes induced by IPTG. Shrunk MLE and MC retrieve

74 connected genes, and ENF 88 at a ¼ 0:05. These genes were

assessed for gene ontology (GO) enrichment using PANTHER

Classification System (http://geneontology.org/) (Ashburner et al.,

2000; Mi et al., 2017) with a FDR < 0.05. The result shows that

our method identifies a significant enrichment of stress response

(GO: 0006950, fold enrichment ¼ 2.57, FDR ¼ 3.87 10�2). In con-

trast, this GO term is not significant for ENF (fold enrichment ¼
9.81, FDR ¼ 1.27 10�1) suggesting that the enrichment of the genes

related to the treatment stimulus was diluted. The most significant

GOs obtained with Shrunk MLE, ENF, as well as the hubs present

in the network structures are reported in Supplementary Table S4a–

c, respectively. The GGM structure can be seen in Supplementary

Figure S5.

4.2.2 Effects of infection with the influenza virus on gene expression

in M.musculus

Here we study transcript interactions in a public RNA-seq data

from a mouse (M.musculus) model of influenza infection (Steed

et al., 2017). The final data consists of 539 genes and 24 samples.

Figure 7 shows that MC (considered as the gold standard), and

Shrunk MLE learn nearly the same number of edges using P-val-

ues, differing only in 37 out of 11 870 connections (�0.312%). It

also shows that the agreement using BH-adjusted P-values is

(a) (b)

(c) (d)

Fig. 3. False positives. This figure shows the number of FPs obtained with

different sample size n. The number of FPs are shown in Panels (a) and (b)

under H0: no partial correlation (i.e. the percentages of true correlations d is

zero). Inference is carried out from simulated data for p ¼ 100 and n ranging

from 10 to 150 in steps of size 10. The black horizontal line represents the

expected number of FPs under H0, tested at a ¼ 0.05 and 0:01 respectively (i.e.

247.5 for a ¼ 0.05 and 49.5 for a¼0.01). Panels (c) and (d) show the number of

FPs for different proportions p=n when the percentages of non-zero correla-

tions is d ¼ 0.01. Here p ¼ 50, 100, 150, 200 and n ¼ 20. Three approaches are

compared: ENF (dot with dashed line), Shrunk MLE (square with dotted line),

and MC with 15 iterations (triangle with continuous line). Symbols (and bars)

represent the average (62 SE) over 25 repeated simulations. The upper hori-

zontal axis shows the average shrinkage intensity k rounded to two digits

(c) (d)

(a) (b)
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Fig. 2. Probability densities and P-values under H0. This figure shows a com-

parison of the standard f0 qk
� �

and ‘shrunk’ f0
k qk
� �

densities, and their P-values

under H0. Here Standard MLE denotes f0 qk
� �

(i.e. Equation 4) with k obtained

via MLE (as in Shrunk MLE). Panel (a) shows the average histogram of P-values

obtained with (i) Standard MLE (dark grey), (ii) Shrunk MLE (light grey) and (iii)

MC (white) with 15 iterations. Panel (b) replaces Standard MLE by ENF to esti-

mate k in f0 qk
� �

(currently used in GeneNet). The bin’s width is set to 0.05;

therefore, the first bin represents the amount of significant coefficients at the

5% level. The bin’s height corresponds to the mean over 25 simulations, and

the error bars (for ENF) to 62 SE. It can be seen that the P-values from ENF

(dark grey) are not uniformly distributed in [0, 1] under H0. Panels (c) and (d)

show the difference f0 qk
� �

� f0
k qk
� �

when k is found via MLE or via ENF, re-

spectively (see Section 2.1). Data were simulated with p ¼ 100, n ¼ 20 and

k ¼0.94. The critical value at a ¼ 0:05 (in dashed grey) is estimated by MC (with

100 iterations). It can be seen that f0 qk
� �

has larger tails than f0
k qk
� �
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�76.53%. This illustrates the fact that even small discrepancies in

the P-values might become large for the adjusted P-values, and can

be observed by comparing the PPVs in Figure 5 and Supplementary

Figure S3.

ENF learns considerably more edges (�200%) compared with

MC or to our method. As the large number of genes is uninformative

for GO enrichment analysis the edges were assessed in terms of true

positive rate (TPR) and FPR by using as ground truth the protein-

protein interaction STRING database (https://string-db.org/)

(Szklarczyk et al., 2017) (see Supplementary Table S5a). We observe

that while the TPR for Shrunk MLE and ENF are similar, the FPR is

lower for Shrunk MLE. Moreover, not a single additional connec-

tion found exclusively by ENF is reported in the STRING database.

The most significant GOs found with Shrunk MLE, and ENF are

reported in Supplementary Table S5b and c, and the GGM structure

in Supplementary Figure S6.

5 Discussion

GGMs assess linear relationships between pairs of variables (partial

correlations) from multivariate normal data. Some pitfalls inherent

to the model are that non-linear associations are not necessarily cap-

tured, and that the partial correlation is not a robust statistics (i.e. it

is susceptible to outliers), which becomes important when the sam-

ple size is small. The motivation for this work has been to improve

the inference of GGMs from quantitative molecular profile data

when sample size is small (e.g. 10–20), and there is large number of

variables (100–10 000). Inferring a GGM structure demands the in-

verse of the covariance matrix, which is ill-conditioned in the high-

dimensional scenario. Covariance estimators based on shrinkage are

broadly employed in these cases, resulting in an invertible matrix.

Previously, a parametric tests for GGMs was designed that calibra-

tes the P-values in a approximated way, using the standard density

and ENF. The inference becomes suboptimal because the shrinkage

(a) (b)

Fig. 5. Positive predictive value. This figure shows the PPV (PPV ¼ TP=P)

obtained with different sample sizes. The inference is carried out from simu-

lated data for p ¼100 with n ranging from 10 to 150 in steps of size 10, tested

at a ¼ 0.05. The Panels (a) and (b) show the PPV using Benjamini-Hochberg

(BH)-adjusted P-values for multiple testing with d ¼ 0.01 (or 49 correlations)

and d ¼ 0.03 (or 148 correlations). Three approaches are compared: ENF (dot

with dashed line), Shrunk MLE (square with dotted line), and MC with 15 itera-

tions (triangle with continuous line). Symbols (and bars) represent the aver-

age (62 SEs) over 25 repeated simulations. The upper horizontal axis shows

the average shrinkage intensity �k rounded to two digits

Fig. 6. Amount of significant edges related to the induced expression of SOD

in E.coli. Analysis of E.coli gene microarray expression data upon response

to induced SOD expression. The dataset includes 102 genes (Schmidt-Heck

et al., 2004). The estimator produces an optimal shrinkage k ¼ 0.18. Three

methods are compared at a ¼ 0.05: ENF, Shrunk MLE, MC with 40 iterations.

Panel (a) Venn diagram of significant partial correlations (i.e. edges in the

GGM) recovered by each method with un-adjusted P-values. Panel (b) Venn

diagram of significant partial correlations recovered by each method with

BH-adjusted P-values
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Fig. 4. FPR cross-comparison. This figure shows a heatmap for the difference

in FPR under H0: no partial correlation with respect to the gold standard (MC).

The number of variables p range from 10 to 400, and the sample size n from 3

to 100. Panel (a) shows the heatmap for the FPR for ENF minus the FPR for

MC, averaged over 10 simulations (rounded to two decimals). Panel (b) show

the respective results for Shrunk MLE. The test is carried out at a ¼ 0.05 with

a shrinkage value fixed to k ¼ 0.3. The color scale represents the FPR differen-

ces in the p – n grid, where the larger the FPR difference the darker is the

corresponding grid cell. In general, Shrunk MLE outperforms ENF, and it is in

close agreement with MC for p > 40 and n > 10

Fig. 7. Amount of significant edges related to lung samples’ expression in

M.musculus. Analysis of M.musculus RNA-seq expression data from lung

samples (Steed et al., 2017). The estimator produces an optimal shrinkage

k �0.11. Three methods are compared at a ¼ 0:10; ENF, Shrunk MLE and MC

(with 40 iterations). Panel (a) Venn diagram of significant partial correlations

(i.e. edges in the GGM) recovered by each method with un-adjusted P-values.

Panel (b) Venn diagram of significant partial correlations recovered by each

method with BH-adjusted P-values
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effects are not included in the test density. Moreover, ENF is known

to be susceptible to errors as the selection of a non-contaminated re-

gion is difficult (i.e. it is restricted to sparse networks). An accurate

‘shrunk’ test is needed to complement the estimation with a proper

control of the Type I error (i.e. FPR), and multiple testing correc-

tions. In this way, experiments performed with different sample sizes

and/or number of compounds (nodes) become comparable.

Our empirical results support the idea that the standard density

has larger tails than the new ‘shrunk’ density. As a consequence (i)

under H0 the P-values deviate from U½0; 1�, and (ii) the FPs cannot

be controlled efficiently by multiple testing procedures. When it

comes to its biological interpretation the excessive number of FPs

might dilute the GO enrichment related to the treatment stimulus

(see E.coli example) thus obscuring the targeted effect of the

analysis.

To resolve this situation, we have derived the null distribution of

the ‘shrunk’ (i.e. regularized) partial correlation. In this sense, our

work represents an improvement over the parametric tests described

in Schäfer and Strimmer (2005a,b). To our knowledge, this is the only

approach with a theoretical test of significance that includes the

shrinkage effect. This was achieved by recalling some the geometrical

ideas about the partial correlation coefficient from the seminal work

of Fisher (1924). The improved approach presented here (i.e. Shrunk

MLE) is independent of the aforementioned drawbacks because it nat-

urally includes the shrinkage, and the degrees of freedom are esti-

mated independently of the real mixture. We have shown how the

test with Shrunk MLE (i) allows the inference for any shrinkage value

with accurate multiple testing corrections (e.g. control of the FDR),

(ii) it is as accurate as MC P-value estimation (a non-parametric ap-

proach considered to be the gold standard) while computationally

faster and (iii) it is not limited to sparse networks. The assessment

was carried out in terms of the number of learnt edges, and the PPV

(with and without adjustment). Particularly, for p > 40 and n > 10

the FPR is as accurate as MC (see Fig. 4). However, for dataset with

too small sample size (e.g. n ¼ 5 and p ¼ 20 in Fig. 4) the estimation

should be performed with MC.

Ideally, an analysis should include both the coefficient and its P-

value. However, without considering k, it is not trivial to conclude

by the ‘shrunk’ coefficient whether an association is strong or not.

Further studies are required to address this issue.
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