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Abstract: To make canopy information measurements in modern standardized apple orchards,
a method for canopy information measurements based on unmanned aerial vehicle (UAV) multimodal
information is proposed. Using a modern standardized apple orchard as the study object, a visual
imaging system on a quadrotor UAV was used to collect canopy images in the apple orchard,
and three-dimensional (3D) point-cloud models and vegetation index images of the orchard were
generated with Pix4Dmapper software. A row and column detection method based on grayscale
projection in orchard index images (RCGP) is proposed. Morphological information measurements of
fruit tree canopies based on 3D point-cloud models are established, and a yield prediction model for
fruit trees based on the UAV multimodal information is derived. The results are as follows: (1) When
the ground sampling distance (GSD) was 2.13–6.69 cm/px, the accuracy of row detection in the orchard
using the RCGP method was 100.00%. (2) With RCGP, the average accuracy of column detection based
on grayscale images of the normalized green (NG) index was 98.71–100.00%. The hand-measured
values of H, SXOY, and V of the fruit tree canopy were compared with those obtained with the UAV.
The results showed that the coefficient of determination R2 was the most significant, which was 0.94,
0.94, and 0.91, respectively, and the relative average deviation (RADavg) was minimal, which was
1.72%, 4.33%, and 7.90%, respectively, when the GSD was 2.13 cm/px. Yield prediction was modeled
by the back-propagation artificial neural network prediction model using the color and textural
characteristic values of fruit tree vegetation indices and the morphological characteristic values of
point-cloud models. The R2 value between the predicted yield values and the measured values
was 0.83–0.88, and the RAD value was 8.05–9.76%. These results show that the UAV-based canopy
information measurement method in apple orchards proposed in this study can be applied to the
remote evaluation of canopy 3D morphological information and can yield information about modern
standardized orchards, thereby improving the level of orchard informatization. This method is thus
valuable for the production management of modern standardized orchards.

Keywords: orchard; apple tree; canopy information; unmanned aerial vehicle (UAV); multispectral;
multimodal

1. Introduction

The canopy is the first part of the fruit tree exposed to light and the external environment
and is the main place for photosynthesis and respiration. The shape, structure, volume, leaf area
index, vegetation index, and other information of the fruit tree canopy not only reflect the growth
status and yield potential of fruit trees [1] but also are important for decision-making about orchard
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canopy pruning [2,3], irrigation and fertilization [4], precision spraying [5], flowering management [6],
and other key production steps [7].

Traditional fruit tree canopy information mainly relies on manual measurement methods based on
previous experience. Based on field sampling data of orchard canopy information, survey results are
extrapolated to the management scale and are used for reference [8]. Such traditional measurement and
research methods have played an important role for quite a long time. With the development of intensive
agriculture, traditional manual measurement methods have come to exhibit limitations in the rapid and
accurate measurement of fruit tree canopy parameters. A low level of orchard informatization leads
to problems such as low orchard production efficiency, low level of intelligent orchard management,
and heavy pollution due to the large amounts of water, fertilizers, and pesticides/herbicides used.
These shortcomings seriously restrict the development of precision production management in modern
standardized orchards. It is urgently required to study canopy information measurement technologies
in modern standardized orchards to lay a good foundation for the production management of modern
standardized orchards.

With the development of sensor technology, the combination of unmanned aerial vehicles (UAVs)
and visual imaging technology [9] allows the realization of nondestructive measurement of canopy
information across large orchards, which can enable scientific and reliable decision-making for orchard
production management. Hence, studying this technology will be key to the development of modern
standardized orchards.

The main methods of measuring canopy information in large, modern standardized orchards are
vehicle-mounted measurement systems [1,10] and UAV measurement systems [2,3,11]. A measurement
system integrates ultrasound, a digital camera, a stereo camera, a time-of-flight (TOF) camera,
a multispectral camera, a hyperspectral camera, two-dimensional (2D) light detection and ranging
(LIDAR), three-dimensional (3D) LIDAR, high-resolution X-rays, and other technologies [7] to
gather information about the orchard canopy 3D geometry, physiological indicators, and yield.
Vehicle-mounted measurement systems have better measurement accuracy than UAV measurement
systems, but they have lower measurement efficiency and a higher measurement cost than UAV
measurement systems. Vehicle-mounted measurement systems are more suitable for the real-time
orchard management practices, such as canopy target spraying [12], canopy pruning [2,3], and fruit
positioning and picking [13], whereas the UAV measurement system is more suitable for information
evaluation in orchard management, such as about canopy geometric morphology [14], biomass [15],
diseases [16], water stress [17], vegetation indices [18], and yield [19,20].

At present, UAV visual imaging systems allow the establishment of multimodal information,
such as orthophotographic maps, vegetation index images, digital surface models (DSMs), and 3D
point-cloud models in large orchards, which have laid a good foundation for canopy information
measurements in orchards. Scholars in this field have carried out a large body of research on two aspects:
orchard canopy information extraction methods and orchard management. Studying UAV-based
orchard canopy information extraction methods, Zarco-Tejada et al. [14] used orthorectification and
DSMs of olive orchards to remotely evaluate the height of fruit trees. Koc-San et al. [11] used a
UAV to collect citrus orchard images and proposed an automatic extraction method based on the
circular Hough transform model for images and DSMs in citrus orchards. Comba et al. [21] used a
UAV to collect 3D point-cloud models of orchards and proposed a method for 3D point-cloud model
characteristic value extraction in hilly-terrain orchards. UAV measurement systems can also be used for
orchard management, such as fruit tree canopy pruning, which can increase canopy light interception
and canopy surface area and promote new growth of fruit trees, making fruits more readily pickable
and possibly increasing the yield of the trees. To evaluate the effect of pruning on litchi orchards,
Johansen et al. [3] used UAV to measure tree structure, such as canopy circumference, width, height,
area, and plant projection coverage. Additionally, early diagnosis of orchard diseases and insect pests
can improve the control effect of pests and diseases in orchards and can improve the quality and yield
of fruits. To this end, through a UAV, Garcia-Ruiz et al. [16] collected multispectral canopy images in
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citrus orchards and established a diagnostic model of Huanglongbing (HLB) disease (citrus greening) in
citrus orchards, which allowed them to classify fruit trees by HLB disease status. Through a UAV visual
system, Park et al. [22] collected high-resolution thermal images of a peach orchard and established a
diagnostic model for fruit tree water stress to guide the orchard irrigation management. As a UAV
plant protection sprayer can improve the accuracy of target spraying and reduce the application
amount, Cheng et al. [5] proposed an automatic segmentation method for canopy images in orchards
and established an accurate spraying method based on canopy area. Meanwhile, UAV measurement
technology has also been applied in a large body of research in field crops or plants, such as on cotton
yield measurement [19], corn height measurement [23], barley biomass measurement [15], wheat height
measurement [24], sorghum growth status measurement [25], sunflower yield measurement [26],
field weed detection [27], and rapeseed yield measurement [20]. UAV measurement technology is
highly efficient and nondestructive and is suitable for large-scale measurement of information about
orchards and field crops. Compared with the ground measurement method [28], this technology is
more suitable for applications in large, modern precision agricultural production management.

As modern standardized orchards must accommodate agricultural machinery and equipment,
they need a large enough row spacing and plant spacing. A typical characteristic of modern standardized
orchards is neat rows and columns, yet the presence of a few small trees or dead trees between fruit
trees could affect the benefit of canopy segmentation. In this study, taking an apple orchard as the
study object, a UAV visual imaging system was used to generate 3D point-cloud models and vegetation
indices of the apple orchard. Automatic row and column detection methods were established based on
vegetation index images, thereby achieving rapid segmentation. Based on the fruit tree point-cloud
models, measurement methods for height, projection area, and projection volume, as well as yield
prediction models, were established to achieve a remote evaluation of orchard canopy information.
This paper provides a theoretical basis and technical reference for canopy information measurement in
modern standardized orchards and will be helpful in orchard management.

2. Materials and Methods

2.1. UAV Measurement System for Canopy Information of Orchards

The UAV measurement system for modern standardized apple orchards mainly consisted of a
Parrot Bluegrass UAV, Parrot Sequoia multispectral cameras, Pix4Dcapture flight control software,
Pix4Dmapper postprocessing software, and a graphics workstation. The main technical parameters
of the Parrot Bluegrass UAV were as follows: maximal take-off mass (MTOM) is 1.85 kg, battery life
of 25 min, Parrot Skycontroller 2 with a control range of 2 km, and a vertical camera equipped with
a built-in global positioning system (GPS), global navigation satellite system (GLONASS), altimeter,
ultrasonic sensor, and optical flow vertical camera. The main technical parameters of the Parrot
Sequoia multispectral camera are as follows: an RGB camera with the resolution of 16 megapixels
(4608 × 3456 px); four global-shutter spectral-channel single-band cameras, including green (GRE,
550± 40 nm), red (RED, 660± 40 nm), red-edge (REG, 735± 10 nm), and near-infrared (NIR, 790± 40 nm),
each with the resolution of 1.2 megapixels (1280 × 960 px) and the frame rate of 1 frame/s, it has four
environmental light sensors, these sensors have the same band-pass filter as four single-band cameras,
and pictures could be calibrated automatically according to the light conditions. The main functions
of the Pix4Dcapture flight control software were as follows: UAV flight map selection, flight path
planning, flight altitude, flight speed, horizontal coverage, vertical coverage, and other parameter
settings, along with the display function of real-time status information parameters, such as the UAV
battery, Parrot Skycontroller battery, memory, GPS, and operation processes. The main functions
of the Pix4Dmapper postprocessing software were generating 3D point-cloud models, orthographic
images, and DSM and vegetation index images based on the images collected by the UAV. The main
technical parameters of the graphics workstation (HP Zhan 99 by Hewlett-Packard Corporation, Beijing,
China) were as follows: a 6-core 12-thread Intel (R) Xeon (R) E-2176 M CPU @ 2.70 GHz, 32 GB of
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RAM, Intel (R) UHD Graphics P630 GPU and NVIDIA Quadro P600 4G graphics card. The operating
system was Windows 10 Professional Workstation Edition, 64 bit. The software for calculating the
3D morphological information of the fruit tree canopy was Matlab 2017a (MathWorks Corporation,
Natick, MA, USA).

The workflow of the UAV measurement system for canopy information in a modern standardized
apple orchard is as follows: The first step was image acquisition. According to the selected orchard
measurement area, Pix4Dcapture created a flight (including flight map boundary selection, flight path
planning, flight altitude, flight speed, horizontal coverage, vertical coverage, and other parameter
settings), the Parrot Bluegrass performed this flight, and the Parrot Sequoia multispectral camera
collected multispectral images at each planned waypoint. The second step was the point-cloud
output. Pix4Dmapper was used to read images collected by the flights, and according to the GPS
information (longitude, latitude, altitude) of each waypoint, Pix4Dmapper carried out processing
procedures, such as computing keypoints, computing matches, calibration, matching, and point-cloud
densification, and finally output the PLY file of the point-cloud model of the orchard. The third step
was the vegetation index output. According to GRE, RED, REG, and NIR orchard canopy orthophotos,
Pix4Dmapper was used to generate various vegetation index images (such as normalized difference
vegetation index (NDVI), normalized green (NG), green chlorophyll index (CIG), and renormalized
DVI (RDVI)), and the orchard vegetation index images were output in JPG format (the type of
vegetation index was set manually according to the actual situation). The fourth step was a row
and column detection in the orchard canopy. The orchard point-cloud models and vegetation index
images were read in Matlab, and the grayscale projection method based on 2D vegetation index
images was used to realize the automatic row and column detection and segmentation of 2D/3D
orchard canopy images. The point-cloud model of each fruit tree was saved in a 2D cell array.
The fifth step was to calculate canopy information. According to the point-cloud model of each
fruit tree, various morphological characteristic parameters were calculated, such as canopy height,
canopy projection area, and circumscribed volume of the canopy. According to the vegetation
index of each fruit tree, various color characteristic parameters were calculated, such as the first-,
second-, and third-order color moments. Textural characteristic parameters were calculated, such as
contrast, cross-correlation, energy, and inverse differential moment. The sixth step was fruit yield
prediction and analysis. With the fruit tree morphological characteristic parameters, color characteristic
parameters, and textural characteristic parameters as inputs, the back-propagation artificial neural
network (BPANN) prediction model performed fruit yield prediction, and the UAV measurement
accuracy of the morphology and yield information of the fruit trees was evaluated and analyzed.

2.2. UAV Measurement Tests for Gathering Orchard Canopy Information

2.2.1. Measurement of Multimodal Information about the Orchard Canopy

In this study, the apple orchard test site for canopy multimodal information measurement was in
Yaojiazhuang, Guandao Town, Shandong Province, China (E 120.6352◦, N 37.1716◦). The measurement
test time was from September 15, 2019 to September 25, 2019, when apple trees are at the mature stage.
The variety in the apple orchard was Yanfu 3, and the tree age in the measured area was 8–9 years.
The measured area was 140 m × 25 m (length × width), including five rows of fruit trees; the row
spacing of the fruit trees was 5 m, and; the plant spacing was 4 m. There were few dead trees or young
plants in the measured area of this orchard. Because there was plenty of sunlight between 10:00 a.m.
and 2:00 p.m. on a sunny day, the impact of tree shadow on image processing was relatively small, so
the UAV flight time was between 10:00 and 14:00. The parameters of the Parrot Bluegrass flights are
shown in Table 1. The respective flight heights were specified as 22, 32, 43, 53, and 64 m, and the ground
sampling distances (GSDs) were 2.13, 3.31, 4.39, 5.43, and 6.69 cm/px. The flight speed was specified as
Normal, with the averages of 2.6, 3.7, 4.9, 6.1, and 7.3 m/s. The expected flying time was 5 min 52 s,
2 min 50 s, 1 min 46 s, 1 min 32 s, and 1 min 20 s, respectively. The image front overlap was specified
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as 80%, and the image side overlap was 80%. The camera was a Parrot Sequoia, which contained a
16-megapixel RGB camera and four 1.2-megapixel spectral channel single-band cameras with a global
shutter. The ground control adopted a Parrot Skycontroller 2 controller and Pix4Dcapture flight control
software. During the study period, the sky was clear with very few clouds and a wind speed of less
than 8 m/s, which met the requirements for remote sensing by UAV.

Table 1. Flight, camera, and ground control parameters.

Pix4Dcapture Values

Flight altitude 22 m, 32 m, 43 m, 53 m, 64 m

Flight speed Normal: 22 m (2.6 m/s), 32 m (3.7 m/s), 43 m (4.9 m/s), 53 m (6.1 m/s), 64 m
(7.3 m/s)

Image overlap Front overlap: 80%; side overlap: 80%
Camera Parrot Sequoia, 16 million pixels, image format: JPG

Ground control Pix4Dcapture: flight planning, Parrot Skycontroller 2
Weather Clear, little wind

2.2.2. Preprocessing of Multimodal Information of Orchard Canopy

In this study, Pix4Dmapper software was used to generate 3D point-cloud models of the orchard
and vegetation index orthographic images with GRE, RED, REG, and NIR orchard canopy images
collected in the measured area. The main process included reading UAV measurement images,
specifying coordinate systems, initial processing, and generation of point-clouds, textures, orthophotos,
and indices. Pix4Dmapper parameter settings are shown in Table 2. Based on the structure-from-motion
(SfM) principle [29], Pix4Dmapper carries out computing keypoints, computing matches, calibration,
matching, and point-cloud densification on images, and it finally outputs the PLY file of the orchard
point-cloud model, orthographic images, and various JPG files of vegetation index images.

Table 2. Summary of parameters used for SfM processing in Pix4Dmapper.

Pix4Dmapper Parameters

Coordinate Systems Image coordinate system: WGS 84 (EGM 96 Geoid); unit: m
Output coordinate system: WGS 84/UTM zone 51N (EGM 96 Geoid)

Initial Processing

Keypoint image scale: Full
Calibration Method: Standard

Internal Parameters Optimization: All
External Parameters Optimization: All

Rematch: Auto, yes

Point cloud densification

Image scale: 1/2 of original image size
Point density: Optimal

Minimum number of matches: 3
Export format: PLY

DSM, orthographic image, and indices Indices: NG, NR, NDVI, GNDVI, DVI, CIG, OSAVI, RDVI, WDRVI, NLI

Figure 1a shows an image of the 3D point-cloud model from the top view (XOY perspective) of
the measured area of the apple orchard. Figure 1b shows the 3D point-cloud model from the side view
(YOZ perspective) of the measured area in the apple orchard. Figure 1c–l, respectively, show the NG,
normalized red (NR), NDVI, green NDVI (GNDVI), CIG, DVI, optimized soil-adjusted VI (OSAVI),
RDVI, nonlinear VI (NLI), and wide-dynamic-range VI (WDRVI) images of the measured area in the
apple orchard (grayscale of vegetation index images, convert the index value to 0–255). The formulas
to calculate the vegetation indices are shown in Table 3.
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Table 3. Vegetation indices and their calculation formulas.

Vegetation Index Formula Vegetation Index Formula

NG GRE/(NIR + RED + GRE) NR RED/(NIR + RED + GRE)
NDVI (NIR − RED)/(NIR + RED) GNDVI (NIR − GRE)/(NIR + GRE)
DVI NIR − RED CIG NIR/GRE − 1

OSAVI 1.16 (NIR − RED)/(NIR + RED + 0.16) RDVI (NIR − RED)/(NIR + RED) 1/2

NLI (NIR2
− RED)/(NIR2 + RED) WDRVI (0.2NIR − RED)/(0.2NIR + RED)

Sensors 2020, 20, x 6 of 23 

 

Minimum number of matches: 3 

Export format: PLY 

DSM, orthographic image, and 
indices 

Indices: NG, NR, NDVI, GNDVI, DVI, CIG, OSAVI, RDVI, WDRVI, 
NLI 

Figure 1a shows an image of the 3D point-cloud model from the top view (XOY perspective) of 
the measured area of the apple orchard. Figure 1b shows the 3D point-cloud model from the side 
view (YOZ perspective) of the measured area in the apple orchard. Figure 1c -Figure 1l, respectively, 
show the NG, normalized red (NR), NDVI, green NDVI (GNDVI), CIG, DVI, optimized soil-adjusted 
VI (OSAVI), RDVI, nonlinear VI (NLI), and wide-dynamic-range VI (WDRVI) images of the 
measured area in the apple orchard (grayscale of vegetation index images, convert the index value to 
0–255). The formulas to calculate the vegetation indices are shown in Table 3. 

 

(a) Point-cloud model of the orchard (XOY perspective, top view) 

  

(b) Point-cloud model of the orchard (YOZ perspective, side view) 

 

(c) NG 

 

(d) NR 

Figure 1. Cont.



Sensors 2020, 20, 2985 7 of 21
Sensors 2020, 20, x 7 of 23 

 

 

(e) NDVI 

 

(f) GNDVI 

 

(g) CIG 

 

(h) DVI 

 

(i) OSAVI 

 

(j) RDVI 

Figure 1. Cont.



Sensors 2020, 20, 2985 8 of 21
Sensors 2020, 20, x 8 of 23 

 

 

(k) NLI 

 

(l) WDRVI 

Figure 1. Three-dimensional point-cloud models and vegetation index images of the apple orchard. 

Table 3. Vegetation indices and their calculation formulas. 

Vegetation 
Index 

Formula Vegetation Index Formula 

NG GRE/(NIR + RED + GRE)  NR RED/(NIR + RED + GRE)  

NDVI (NIR - RED)/(NIR + RED)  GNDVI (NIR - GRE)/(NIR + GRE)  

DVI NIR-RED CIG NIR/GRE-1 

OSAVI 1.16 (NIR - RED)/(NIR + RED + 
0.16)  

RDVI (NIR-RED)/(NIR + RED) 1/2 

NLI (NIR2 - RED)/(NIR2 + RED)  WDRVI (0.2NIR - RED)/(0.2NIR + 
RED)  

2.3. Row and Column Detection Methods of the Orchard Canopy 

In this study, the row and column detection method of the orchard was proposed: the row and 
column detection method based on grayscale projection in orchard index images (RCGP). The PLY 
data of a 3D point-cloud model of the orchard consist of several 3D coordinates, while the JPG data 
of a vegetation index is a 2D image. The data formats of the two are thus inconsistent. To achieve 
unified row and column segmentation across the two types of data, it is necessary to perform a 
conversion of segmentation positions. In this study, the segmentation performance of the RCGP was 
analyzed. The RCGP based on grayscale projection in orchard index images was selected, and 
through the row and column segmentation position conversion, the unified segmentation of the 
orchard multimodal data was achieved. 

In the first step, a vegetation index image was grayscale processed, and the cumulative grayscale 
value for each row was calculated using Equation (1), while the cumulative grayscale value for each 
column was calculated using Equation (2). In the second step, the cumulative grayscale values for the 
rows were searched to find the local peaks by probability density estimation, as shown in Equation (3), 
based on the principle of kernel density estimation, which were taken as the row segmentation 
positions and were saved to the array L2D. In the third step, the cumulative grayscale values for the 

Figure 1. Three-dimensional point-cloud models and vegetation index images of the apple orchard.

2.3. Row and Column Detection Methods of the Orchard Canopy

In this study, the row and column detection method of the orchard was proposed: the row and
column detection method based on grayscale projection in orchard index images (RCGP). The PLY
data of a 3D point-cloud model of the orchard consist of several 3D coordinates, while the JPG data of
a vegetation index is a 2D image. The data formats of the two are thus inconsistent. To achieve unified
row and column segmentation across the two types of data, it is necessary to perform a conversion
of segmentation positions. In this study, the segmentation performance of the RCGP was analyzed.
The RCGP based on grayscale projection in orchard index images was selected, and through the row
and column segmentation position conversion, the unified segmentation of the orchard multimodal
data was achieved.

In the first step, a vegetation index image was grayscale processed, and the cumulative grayscale
value for each row was calculated using Equation (1), while the cumulative grayscale value for each
column was calculated using Equation (2). In the second step, the cumulative grayscale values for the
rows were searched to find the local peaks by probability density estimation, as shown in Equation (3),
based on the principle of kernel density estimation, which were taken as the row segmentation positions
and were saved to the array L2D. In the third step, the cumulative grayscale values for the columns
were searched to find the local peaks, which were taken as the column segmentation positions and
were saved to the cell array C2D{i}:

GL(i) =
n∑

j=1

I(i, j), (1)

GC( j) =
m∑

i=1

I(i, j), (2)

f̂h(GL) =
1

nh

n∑
i=1

K(
GL −GL(i)

h
), (3)

where I is the grayscale image of the vegetation index; (i, j) are the image coordinates; m is the number
of image rows; n is the number of image columns; GL(i) is the cumulative grayscale value of the ith

row; and GC(i) is the cumulative grayscale value of the jth column; f̂h(GL) is the probability density
value of GL; h is the bandwidth, and; K is the kernel function.
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As shown in Equations (4) and (5), the row segmentation position obtained by the grayscale
projection method was converted into a 3D point-cloud model, which could adopt the same row
and column segmentation position, thereby realizing the unified row and column segmentation
positions with the multimodal data of the orchard. Conversely, the row and column segmentation
position obtained by kernel density estimation from the 3D point-cloud model was also converted into
vegetation index images:

L3D(i) =

∣∣∣L2D(i)
∣∣∣×m3D

m2D
, (4)

C3D{i}(j) =

∣∣∣C2D{i}( j)
∣∣∣×n3D

n2D
, (5)

where L2D is the array of row segmentation positions obtained by the grayscale projection method;
i is the row segmentation position number; m2D is the number of rows in a vegetation index image,
with the unit of px; m3D is the Y-axis length of the 3D point-cloud model, with the unit of m; L3D is the
array of row segmentation positions (converted values) of the 3D point-cloud model; C2D{i} (j) is the
array of column segmentation positions obtained by the grayscale projection method; j is the column
segmentation position number; n2D is the number of columns of the vegetation index image, with the
unit of px; n3D is the X-axis length of the 3D point-cloud model, with the unit of m; and C3D{i} (j) is the
array of column segmentation positions (converted values) of the 3D point-cloud model.

2.4. Methods for Characteristic Value Extraction for Multimodal Data of the Orchard Canopy

To measure orchard canopy information, the morphological characteristic values of fruit trees
were extracted through the 3D point-cloud model of the orchard, and the canopy color and textural
characteristic values were extracted through the vegetation indices of the orchard.

2.4.1. Calculation Method for Morphological Characteristic Values of Fruit Trees

In this study, the morphological characteristic values of fruit trees extracted mainly included
height H, projected area SXOY, and volume V. The height H is the canopy height of an apple tree,
and the maximum vertical height of the Z-axis in a point-cloud model is the canopy height of the
highest fruit tree, as shown in Equation (6). The canopy shape of fruit trees is complex, so it is difficult
to accurately calculate the canopy volume. There exists a large error in the calculation of the volume
using the enclosed volume outside the 3D grids. This is mainly because though the orchard point-cloud
models generated by the UAV measurement system have dense point-clouds in the XOY perspective,
the point-clouds in the YOZ and XOZ perspectives and other lateral perspectives are relatively sparse.
There are also other influencing factors, such as noise interference. In this study, based on the shapes of
fruit trees in the measured area, the volume of the canopy was approximated using an outer enclosed
ellipsoid circumscribing the canopy. As the point-cloud projection from the XOY perspective had the
characteristic of rotation invariance, the point-cloud projection boundary of the XOY perspective was
used to calculate the surrounding area SXOY, as shown in Equation (7). Given that the average trunk
height of the fruit trees in the measured area was 0.6 m, the volume of the canopy-circumscribing
ellipsoid was calculated using Equation (8). The number of canopy point-clouds Pij of each fruit tree
was counted by Equation (9).

H = Zmax−Zmin, (6)

SXOY =
1
2

N∑
i=1

[xiyi+1 − yixi+1], (7)

V =
4
3
π
(H − 0.6)

2
SXOY
π

, (8)
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Pi j =

C{i}( j)∼C{i}( j+1)∑
L(i)∼L(i+1)

PointCloud, (9)

where H is the canopy height of a fruit tree, with the unit m; Zmax is the maximum value on the Z-axis
of the point-cloud model of any single apple tree, with the unit m; Zmin is the minimum value on the
Z-axis of the point-cloud model of any single apple tree, with the unit m; SXOY is the projection area of
a single apple tree’s canopy point-cloud model in the XOY plane, with the unit m2; N is the number of
convex hull vertices; xi is the x coordinate of the ith vertex; xj is the x coordinate of the jth vertex; yi
is the y coordinate of the ith vertex; yj is the y coordinate of the jth vertex; xi+1 is the x coordinate of
the (i + 1)th vertex; yi+1 is the y coordinate of the (i + 1)th vertex; V is the equivalent volume of the
circumscribed ellipsoid of the canopy, with the unit m3; Pij is the number of point-clouds in the ith row
and jth column of the fruit tree canopy; C{i} (j) is the value of the initial point on the X-axis of the ith

row and jth column; C{i} (j + 1) is the value of the initial point on the X-axis of the ith row and (j + 1)th

column;; L(i) is the initial point on the Y-axis of the ith column; and L(i + 1) is the initial point on the
Y-axis of the (i + 1)th column.

2.4.2. Calculation Method for the Color Characteristic Values of Fruit Trees

The extracted color characteristic values of fruit trees mainly included the first-, second-,
and third-order color moments [30]. The calculation formulas are Equations (10)−(12). The color
moment is a simple and effective way to express color characteristic values. Since the color information
is mainly distributed in low-order moments, the first-, second-, and third-order moments are sufficient
to express the color distributions in vegetation index images. There is good evidence that color
moments can effectively represent the color distribution in images. The advantages of this method are
that it does not require color space quantization and the characteristic vector has a low dimension.

µ =
1

m× n

j=1:n∑
i=1:m

p(i, j), (10)

σ =

 1
m× n

j=1:n∑
i=1:m

(p(i, j) − µ)2


1
2

, (11)

s =

 1
m× n

j=1:n∑
i=1:m

(p(i, j) − µ)3


1
3

, (12)

where µ is the first-order color moment of the image; σ is the second-order color moment of the image;
S is the third-order color moment of the image; p(i, j) is the color value of the image pixel at the
coordinate (i, j); m is the number of rows in the image, and; n is the number of columns in the image.

2.4.3. Calculation Method for the Textural Characteristic Values of Fruit Trees

Grayscale symbiosis matrices or gray-level co-occurrence matrices (GLCMs) were used to express
the textural characteristic values of vegetation index images. Haralick et al. [31] were the first to convert
grayscale values into textural information based on GLCMs. GLCMs have the advantages of simple
processing, good discrimination, and strong adaptability. They have become an important method
for analyzing image textural characteristic values [31]. The characteristics of GLCMs mainly include
contrast (CON), correlation (COR), angular second-order moment (ASM), and entropy; the calculation
formulas are Equations (13)−(16). CON reflects the image clarity and texture depth, and its value
indicates the local grayscale correlation in an image. COR is a measure of the similarity of spatial
GLCM elements in the row or column direction, and its value indicates the local grayscale correlation
in an image. ASM reflects the uniformity of grayscale distribution and the thickness of texture in
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an image. The more concentrated the grayscale distribution in an image or the coarser the texture,
the greater the ASM value; conversely, the more discrete the grayscale distribution or the finer the
texture, the lower the ASM value. INM reflects the homogeneity of image texture and measures the
local change of image texture; the larger the inverse difference moment, the smaller the change in
image texture between different regions, and the greater the local uniformity. These variables are
calculated as follows:

CON =

j=0:N−1∑
i=0:N−1

∣∣∣i− j
∣∣∣2p(i, j), (13)

COR =

j=0:N−1∑
i=0:N−1

(i× j× p(i, j)) −
j=0:N−1∑
i=0:N−1

i× p(i, j)
j=0:N−1∑
i=0:N−1

j× p(i, j)

j=0:N−1∑
i=0:N−1

p(i, j)(i−
j=0:N−1∑
i=0:N−1

i× p(i, j))2 ×
j=0:N−1∑
i=0:N−1

p(i, j)( j−
j=0:N−1∑
i=0:N−1

j× p(i, j))2

, (14)

ASM =

j=0:N−1∑
i=0:N−1

p(i, j)2, (15)

INM =

j=0:N−1∑
i=0:N−1

p(i, j)

1 +
∣∣∣i− j

∣∣∣ , (16)

where CON is the image contrast; COR is the image correlation; ASM is the angular second moment of
the image; INM is the inverse difference moment; (i, j) are two different grayscale values; p(i, j) is the
normalized probability of the occurrence of pixel pair (i, j); and N is the grayscale level of the image.

2.5. Measurement Models and Data Analysis Methods for Orchard Canopy Information

2.5.1. Results and Analysis Methods for Row and Column Detection in the Orchard Canopy

Next, the segmentation accuracy (correction rate) and false/erroneous recognition rate of the row
and column detection method based on RCGP were statistically analyzed; the calculation formulas are
Equations (17) and (18). Specifically, the segmentation performance based on the NG vegetation index
images was calculated when GSD was 2.13, 3.31, 4.39, 5.43, and 6.69 cm/px.

C =
NC
N
× 100%, (17)

E =
NE
N
× 100%, (18)

where C is the correction/accuracy rate, reported as %; NC is the number of correctly segmented regions;
N is the number of total regions; E is the erroneous recognition (false recognition) rate, reported as %;
and NE is the number of erroneously recognized regions (including repeat recognition regions and
erroneously recognized regions).

2.5.2. Results and Analysis Methods for the Measurement of Orchard Morphological
Characteristic Values

First, a tape measure was used to manually measure the total height of the canopy, trunk height,
canopy width, and fruit yield of the apple tree in the measurement area. Each measurement was done
three times, and the average value was taken. Based on the average width of a canopy, the area of
canopy projection was calculated. According to Equations (6)–(8), the volume of the circumscribing
ellipsoid of the apple tree canopy was calculated as the measured circumscribing volume of the apple
tree canopy.
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Through the methods in Section 2.4.1, the 3D point-cloud model of the orchard was extracted.
The height of fruit tree H, the projected area SXOY, and the volume V were extracted. The correctness
(accuracy) of fruit tree morphological characteristic values was calculated when GSD was 2.13, 3.31,
4.39, 5.43, and 6.69 cm/px. The coefficient of determination (R2), root mean square error (RMSE),
and relative average deviation (RAD) were used to analyze the measurement errors of fruit tree
morphological characteristic values.

2.5.3. Results and Analysis Methods for Orchard Yield Measurement

In this study, BPANN was used for modeling. Specifically, the independent variables in the model
included three morphological characteristic values, three color characteristic values, and four textural
characteristic values. NG, NR, NDVI, GNDVI, DVI, CIG, OSAVI, RDVI, WDRVI, and NLI were used
for extracting color characteristic values and textural characteristic values. The actual measured value
of fruit yield was taken as the dependent variable. Statistical analysis was performed on the model
accuracy of fruit yield measurement when GSD was 2.13, 3.31, 4.39, 5.43, and 6.69 cm/px. To evaluate
the accuracy of the model and test the performance of the model in fruit yield prediction, the R2, RMSE,
and RAD were used.

3. Results and Discussion

3.1. Characteristic Extraction from Multimodal Data of the Orchard Canopy

The grayscale image of the NG index was used for row and column detection in the orchard.
Figure 2a shows the Y-axis grayscale projection of the orchard vegetation index image, which is the
cumulative grayscale value for all the rows in the grayscale image of the index NG. The peak and valley
values of the Y-axis cumulative grayscale values are marked with red and blue circles, respectively,
and the local peak values of the Y-axis cumulative grayscale values were taken as the row segmentation
positions. The row segmentation positions were saved into the array L; the images of each row’s area
were also saved. Likewise, the X-axis in the image for each row’s area was in turn grayscale projected,
and the local peak values in the cumulative grayscale values and their corresponding X-values were
searched. As shown in Figure 2b, the local peak values of the X-axis cumulative grayscale values for
each row are marked with red circles, and the local grayscale peak values of the X-axis were taken as
the column segmentation positions, which were saved into the cell array C{i}.

The measured area in this study had a total of five rows, and there were, respectively, 30, 31, 32,
33, and 34 apple trees in rows 1 to row 5. This gave a total of 160 apple trees, including eight dead trees
that had only a trunk or had few leaves. Figure 3 shows the row and column detection results based
on grayscale projection in orchard index images. Based on the RCGP method, the row segmentation
positions were accurately detected (accuracy rate 100%) under various GSDs.

In this study, the correction/accuracy rate C and the erroneous-recognition rate E were calculated
with Equations (17) and (18). Statistical analysis of the RCGP method was performed, and the
performance of column detection when GSD was 2.13, 3.31, 4.39, 5.43, and 6.69 cm/px was compared.

In Figure 4, when using the RCGP detection method and GSD values of 2.13, 3.31, 4.39, 5.43,
and 6.69 cm/px, the average correction/accuracy rates of column detection in the grayscale image
of NG index were 100.00%, 98.71%, 98.77%, 99.38%, and 100.00%, respectively, and the average
erroneous-recognition rates were 1.94%, 4.42%, 3.78%, 3.76%, and 3.23%. With the RCGP detection
method, the accuracy rate and misrecognition rate in column detection were not significantly affected
by GSD.
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According to the column detection statistics, the main reason for false recognition by RCGP lay in
the misidentification of the border area. Because the orchard point-cloud model generated by the UAV
was matched according to the key points of the images collected from different waypoints, there were
very few leaves on the dead trees, resulting in very few point-clouds generated in these locations/areas,
which in turn affected the performance of the 3D detection method. On the other hand, the RCGP
detection method detected the dead trees with few leaves, so the column detection performance using
this method was optimal, accurate, and stable.
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3.2. Calculation and Error Analysis of Orchard Canopy Morphological Information

With the RCGP row and column detection method, the row and column segmentation positions
in vegetation index images were determined. The row and column segmentation positions in the 3D
point-cloud model were obtained using Equations (4) and (5). The unified segmentation positions in
the fruit tree region were used. The morphological parameters of the fruit tree canopy were calculated
using Equations (6)–(9), the color characteristic values of the vegetation indices of the fruit tree canopy
were calculated using Equations (10)–(12), and the textural characteristic values of the vegetation
indices of the fruit tree canopy were calculated using Equations (13)–(16).

Figure 5a shows the detection results for the fruit tree canopy height H, where the highest point
and lowest point in each fruit tree area were detected, and the distance between the two points was
the height of the fruit tree, as shown in Figure 5b. Figure 5c shows the detection results for SXOY,
the projected area of the fruit tree canopy, which is the area enclosed by the projected boundary of the
point-cloud model in the XOY perspective, the red circle and the column mark the boundary convex
hull point set. Taking the coordinates with average values of the X-axis and Y-axis of the point-cloud
model as the center point, the equivalent circle of canopy projection was drawn (the black circle in
Figure 5c). The area of this circle is equal to SXOY. In this study, the average value of the trunk of the
fruit trees was 0.6 m, and the shape of the canopy was similar to that of an ellipsoid. Hence, based on
the tree height H, the height of the trunk, and the projected canopy area SXOY, the volume of the
canopy-circumscribing ellipsoid of fruit tree was calculated, as shown in Figure 5d.

Statistical analysis was performed on the measurement results of morphological parameters of
the fruit tree canopy, including H, SXOY, and V, as shown in Table 4. When GSD was 2.13, 3.31, 4.39,
5.43, and 6.69 cm/px, upon comparing the hand-measured H values of the canopy and the values
measured with the UAV, the R2 value was, respectively 0.94, 0.92, 0.91, 0.88, and 0.85; the RMSE was
0.08 m, 0.10 m, 0.09 m, 0.10 m, and 0.14 m; and the RADavg was 1.72%, 1.77%, 1.78%, 2.67%, and 3.42%.
Upon comparing the hand-measured values of SXOY of the fruit tree canopy and the values measured
with the UAV, the R2 value was, respectively, 0.94, 0.91, 0.86, 0.86, and 0.79; the RMSE was 0.72 m2,
0.94 m2, 1.10 m2, 1.13 m2, and 1.39 m2; and the RADavg was 4.33%, 5.98%, 7.19%, 7.75%, and 9.87%.
Upon comparing the hand-measured values of V of the fruit tree canopy and the values measured
with the UAV, R2 was 0.91, 0.86, 0.85, 0.83, and 0.80, respectively; RMSE was 1.41 m3, 1.63 m3, 1.64 m3,
1.91 m3, and 2.21 m3; and RADavg was 7.90%, 8.28%, 11.90%, 12.61%, and 13.69%. Thus, the statistical
results showed that GSD had a significant impact on the accuracy and correlation of the calculated 3D
morphological parameters in the point-cloud model of the orchard: as GSD increased, R2 decreased
and RMSE increased. When GSD was 2.13, 3.31, 4.39, 5.43, and 6.69 cm/px, the point-cloud density
in the 3D point-cloud model was, respectively, 364.77 points/m3, 75.55 points/m3, 32.01 points/m3,
17.22 points/m3, and 8.65 points/m3. As GSD directly affected the density of the orchard point-cloud
model, the average point-cloud density had a significant decreasing trend as GSD increased, resulting
in an increasing error in the measurement of canopy morphological parameters. GSD had a greater
impact on the measured values of SXOY and V, and a small amount of noise caused a large error in
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measurements. Specifically, the RADmax range of SXOY was 19.48–35.78% and the RADmax range of V
was 37.36–55.99%.Sensors 2020, 20, x 15 of 23 

 

(a) Detection of fruit tree height H 

   

(b) Detection of H for a single 
fruit tree 

(c) Detection of SXOY for a 
single fruit tree 

(d) Detection of V for a 
single fruit tree 

Figure 5. Detection of morphological characteristic values of orchard canopy. 

Statistical analysis was performed on the measurement results of morphological parameters of 
the fruit tree canopy, including H, SXOY, and V, as shown in Table 4. When GSD was 2.13, 3.31, 4.39, 
5.43, and 6.69 cm/px, upon comparing the hand-measured H values of the canopy and the values 
measured with the UAV, the R2 value was, respectively 0.94, 0.92, 0.91, 0.88, and 0.85; the RMSE was 
0.08 m, 0.10 m, 0.09 m, 0.10 m, and 0.14 m; and the RADavg was 1.72%, 1.77%, 1.78%, 2.67%, and 3.42%. 
Upon comparing the hand-measured values of SXOY of the fruit tree canopy and the values measured 
with the UAV, the R2 value was, respectively, 0.94, 0.91, 0.86, 0.86, and 0.79; the RMSE was 0.72 m2, 
0.94 m2, 1.10 m2, 1.13 m2, and 1.39 m2; and the RADavg was 4.33%, 5.98%, 7.19%, 7.75%, and 9.87%. 
Upon comparing the hand-measured values of V of the fruit tree canopy and the values measured 
with the UAV, R2 was 0.91, 0.86, 0.85, 0.83, and 0.80, respectively; RMSE was 1.41 m3, 1.63 m3, 1.64 m3, 
1.91 m3, and 2.21 m3; and RADavg was 7.90%, 8.28%, 11.90%, 12.61%, and 13.69%. Thus, the statistical 
results showed that GSD had a significant impact on the accuracy and correlation of the calculated 
3D morphological parameters in the point-cloud model of the orchard: as GSD increased, R2 
decreased and RMSE increased. When GSD was 2.13, 3.31, 4.39, 5.43, and 6.69 cm/px, the point-cloud 
density in the 3D point-cloud model was, respectively, 364.77 points/m3, 75.55 points/m3, 32.01 points/m3, 
17.22 points/m3, and 8.65 points/m3. As GSD directly affected the density of the orchard point-cloud 
model, the average point-cloud density had a significant decreasing trend as GSD increased, resulting 
in an increasing error in the measurement of canopy morphological parameters. GSD had a greater 
impact on the measured values of SXOY and V, and a small amount of noise caused a large error in 

Figure 5. Detection of morphological characteristic values of orchard canopy.

The SXOY of the fruit tree canopy had a higher measurement error than H, which was mainly
because the SXOY values were calculated from the actual measured widths of fruit trees. Although the
width of the fruit tree was the average of multiple measurements, the width of a fruit tree could easily
be measured wrong by hand, leading to a certain difference from the calculated value. In the UAV
measurement method, as long as the fruit tree area is accurately segmented, the canopy boundary
point set can be quickly found through the boundary point spacing search method. Although SXOY

can be calculated from the boundary convex hull point set, it requires an accurate point-cloud model.
The fruit tree canopy V had a higher measurement error than H and SXOY, which was mainly due to the
use of canopy-circumscribing ellipsoids to approximate the canopy volume of fruit trees. There were
errors in both UAV measurements and manual measurements of H and SXOY, which led to a relatively
large error in V.
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Table 4. Analysis of the measurement results of morphological characteristic parameters of the
orchard canopy.

Morphological
Parameter GSD R2 RMSE RADmax RADmin RADavg

H

2.13 cm/px 0.94 0.08 m 8.04% 0.03% 1.72%
3.31 cm/px 0.92 0.10 m 9.74% 0.00% 1.77%
4.39 cm/px 0.91 0.09 m 9.51% 0.00% 1.78%
5.43 cm/px 0.88 0.10 m 8.04% 0.04% 2.67%
6.69 cm/px 0.85 0.14 m 10.93% 0.01% 3.42%

SXOY

2.13 cm/px 0.94 0.72 m2 19.48% 0.09% 4.33%
3.31 cm/px 0.91 0.94 m2 24.72% 0.00% 5.98%
4.39 cm/px 0.86 1.10 m2 38.87% 0.03% 7.19%
5.43 cm/px 0.86 1.13 m2 40.54% 0.02% 7.75%
6.69 cm/px 0.79 1.39 m2 35.78% 0.05% 9.87%

V

2.13 cm/px 0.91 1.41 m3 37.36% 0.36% 7.90%
3.31 cm/px 0.86 1.63 m3 35.91% 0.38% 8.28%
4.39 cm/px 0.85 1.64 m3 35.78% 0.14% 11.90%
5.43 cm/px 0.83 1.91 m3 49.79% 0.16% 12.61%
6.69 cm/px 0.80 2.21 m3 55.99% 0.35% 13.69%

3.3. Orchard Yield Prediction and Error Analysis

Three color moment characteristic values and four textural characteristic values of the fruit tree
canopy vegetation indices and four morphological characteristic values of the 3D point-cloud model
were used as the input characteristic variables in the orchard yield prediction model. The actual
measured yield values of fruit trees were taken as the model output variables for constructing the fruit
yield prediction model. The canopy vegetation indices of fruit trees were NG, NR, NDVI, GNDVI,
DVI, CIG, OSAVI, RDVI, WDRVI, and NLI (Table 3). Six input modes were used for the fruit yield
prediction model, named Inputs 1–6. Specifically, Input 1 included 10 input characteristics, i.e., color
moment characteristic values and textural characteristic values of one vegetation index and the 3D
morphological characteristic values. Input 2 included four input characteristics: the 3D morphological
characteristic values of the fruit trees. Input 3 included 30 input characteristics, i.e., color moment
characteristic values of all 10 vegetation indices. Input 4 included 40 input characteristics, i.e., textural
moment characteristic values of 10 vegetation indices. Input 5 included 70 input characteristics,
i.e., color moment characteristic values and textural moment characteristic values of all 10 vegetation
indices. Input 6 included 110 input characteristics, i.e., color moment characteristic values and textural
moment characteristic values of all 10 vegetation indices and the morphological characteristic values
of the 3D point-cloud model.

BPANN was used to establish the fruit yield prediction model. A three-layer network structure
was used, where the excitation function from the input layer to the hidden layer was a tansig function
and that from the hidden layer to the output layer was a purelin function. The learning function
was a function of gradient descent with momentum weight, and the training function was the
Levenberg–Marquardt algorithm. The empirical formula h = sqrt(m + n) + a was used to calculate and
select the node number of the hidden layer, where h is the number of hidden layers in the BPANN,
m is the number of input layers, n is the number of output layers, and a is the adjustment constant
(a = 1–10). The percentages of training, validation, and testing data of BPANN model is 60%, 15%,
and 25%, respectively. The performance of the fruit yield prediction model under different GSDs was
statistically analyzed.

When GSD was 2.13, 3.31, 4.39, 5.43, and 6.69 cm/px, for Input 1, in which the characteristic values of
vegetation indices NG, NR, NDVI, GNDVI, DVI, CIG, OSAVI, RDVI, WDRVI, and NLI were separately
used in the BPANN prediction model, R2 ranged from 0.59–0.73, 0.54–0.63, 0.44–0.59, 0.51–0.67, 0.48–0.68,
0.40–0.65, 0.49–0.66, 0.43–0.77, 0.44–0.59, and 0.48–0.63, respectively (Figure 6a); RAD ranged from
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12.18–15.86%, 13.59–18.69%, 15.49–19.33%, 13.12–16.59%, 12.32–18.95%, 12.82–19.48%, 13.60–18.74%,
10.47–17.15%, 16.76–19.45%, and 14.26–18.31% (Figure 6b); RMSE ranged from 9.94–12.23 kg, 11.65–13.10
kg, 12.17–14.68 kg, 10.91–13.90 kg, 10.79–14.21 kg, 11.37–14.74 kg, 12.90–15.45 kg, 9.18–14.10 kg,
12.76–16.85 kg, and 11.53–14.88 kg. The statistical data showed that when the color moment characteristic
values, textural characteristic values, and 3D morphological characteristic values of one vegetation
index were input into the yield prediction model, the correlation between the predicted yield value
and the measured value was not significant, and the differences in the prediction performance between
various vegetation indices were not significant. The main reason was that one vegetation index has
limited information, and the correlation between fruit yield and fruit tree morphology is not significant
enough, which led to the inadequate performance of the fruit yield prediction model.
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Figure 6. Performance parameters of the fruit yield prediction model using various vegetation indices.

When GSD was 2.13, 3.31, 4.39, 5.43, and 6.69 cm/px, for Input 2, the R2 of the BPANN prediction
model was, respectively, 0.67, 0.62, 0.61, 0.59, and 0.55 (Figure 7a); RAD was 13.51%, 15.97%, 17.21%,
17.47%, and 17.31% (Figure 7b); and RMSE was 10.92 kg, 11.84 kg, 12.12 kg, 12.78 kg, and 12.85 kg.
Statistical analysis showed that when the fruit tree morphological characteristic values were used to
predict the fruit yield, the model correlation was not significant, and as GSD increased, the performance
of this prediction model worsened, with an increase in the RAD. This was mainly because GSD affected
the accuracy of the orchard 3D point-cloud model, which led to an increase in the calculation error of
the morphological characteristic values; additionally, the morphological characteristic values are not
the only determinants of fruit yield.
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When the GSD was 2.13, 3.31, 4.39, 5.43, and 6.69 cm/px, for Input 3, the R2 of the BPANN
prediction model was, respectively, 0.88, 0.83, 0.86, 0.75 and 0.83, as shown in Figure 7a; the RAD values
were respectively 8.74%, 9.01%, 8.56%, 12.15% and 10.17%, as shown in Figure 7b; and the RMSE values
were respectively 7.71 kg, 7.94 kg, 7.20 kg, 9.69 kg and 8.29 kg. The statistical data showed that when the
color characteristic values of fruit tree vegetation indices were used to predict the fruit yield, the model
correlation was significant; only when the GSD was 5.43 cm/px, the significance was relatively low.
Under different GSDs, the performance of the prediction model was similar. The performance of the
prediction model outperformed that of Input 1, where single index characteristic values were used for
model prediction. The color characteristic values of the fruit tree canopy vegetation index can be used
to predict the yield of fruit trees.

When GSD was 2.13, 3.31, 4.39, 5.43, and 6.69 cm/px, for Input 4, the R2 of the BPANN prediction
model was, respectively, 0.56, 0.57, 0.58, 0.66, and 0.66 (Figure 7a); RAD was 16.03%, 17.59%, 13.66%,
12.91%, and 12.47% (Figure 7b); and RMSE was 13.13 kg, 12.78 kg, 12.71 kg, 11.25 kg, and 12.10 kg.
The statistical analysis showed that when the textural characteristic values of fruit tree vegetation
indices were input to predict the fruit yield, the model correlation was not significant. As GSD increased,
the prediction model performance improved. This was mainly because GSD affects the textures of
orchard vegetation index images, so as GSD increased, the canopy area in the vegetation index image
became more blurred, while the edges became clearer. However, using the textural characteristic
values of vegetation indices to predict the yield of fruit trees has a relatively large error, so textural
characteristic values cannot be applied to yield prediction of fruit trees.

When GSD was 2.13, 3.31, 4.39, 5.43, and 6.69 cm/px, for Input 5, the R2 of the BPANN prediction
model was, respectively, 0.88, 0.88, 0.84, 0.83, and 0.83 (Figure 7a); RAD was 8.57%, 7.85%, 9.23%, 10.23%,
and 10.10% (Figure 7b); and RMSE was 8.35 kg, 6.74 kg, 8.18 kg, 8.62 kg, and 8.28 kg. The statistical
analysis showed that when the color characteristic values and textural characteristic values of fruit tree
vegetation indices were input to predict the fruit yield, the model correlation was significant; as GSD
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increased, the performance of this prediction model worsened. The model performance was similar
to that of Input 3. Hence, the color characteristic values and textural characteristic values of canopy
vegetation indices can be used to predict fruit yield, but considering the prediction performance,
textural characteristic values can be ignored, and the color characteristic values of canopy vegetation
indices can be used by themselves to predict fruit yield.

When GSD was 2.13, 3.31, 4.39, 5.43, and 6.69 cm/px, for Input 6, the R2 of the BPANN prediction
model was, respectively, 0.88, 0.87, 0.86, 0.83, and 0.84 (Figure 7a); RAD was 8.10%, 8.05%, 9.03%, 9.56%,
and 9.76% (Figure 7b); and RMSE was 6.90 kg, 7.03 kg, 7.25 kg, 7.96 kg, and 7.93 kg. The statistical
analysis showed that when the color characteristic values and textural characteristic values of fruit tree
vegetation indices and the morphological characteristic values of the point-cloud model were input to
predict fruit yield, the model correlation was significant, and the prediction model performance was
similar to that of Input 3 and Input 5. Therefore, the input characteristics of Input 6 can be applied to
fruit yield prediction.

Based on the above analysis, using the color characteristic values of canopy vegetation indices of
fruit trees to predict the yield of fruit trees performed better than using the textural and morphological
characteristic values. This was mainly because given the UAV measurement mode used in this
study, the generated orthophoto images of orchard canopy had a large amount of color characteristic
information, while the textural characteristic values of the canopy were relatively blurred, so the amount
of information they bore was relatively small. On the other hand, the morphological characteristic
values were affected by the accuracy of the 3D point-cloud model, and the morphological characteristic
values could not adequately predict the fruit yield. Thus, using color characteristic values of multiple
vegetation indices to predict yield performance is superior to using that of one vegetation index,
which is mainly due to the screening of vegetation indices in this study, in which vegetation indices
with more obvious characteristic advantages were selected. Multiple vegetation indices contained
more canopy information and thus had better prediction performance. This method can be applied to
yield prediction of any modern standardized apple orchards.

4. Conclusions

This study proposes a UAV multimodal information-based method for the measurement of canopy
morphological information and for yield prediction of apple orchards. The main conclusions are
as follows:

1. In this study, a row and column detection method based on grayscale projection in orchard
index images, RCGP, is proposed. It allows row and column segmentation using multimodal
information of fruit tree canopies in modern standardized apple orchards. The results showed that
using the RCGP method, the correction/accuracy rate of row detection in the orchard was 100.00%.
Using the RCGP method, when GSD was 2.13, 3.31, 4.39, 5.43, and 6.69 cm/px, the average
correction/accuracy rates of column detection based on the grayscale images of NG index were,
respectively, 100.00%, 98.71%, 98.77%, 99.38%, and 100.00%, and the average misrecognition rates
were 1.94%, 4.42%, 3.78%, 3.76%, and 3.23%. The RCGP detection method can detect dead trees
with few leaves, so the column detection performance using this method was accurate and stable.

2. A method for measuring canopy morphological information of fruit trees based on the 3D
point-cloud model of orchards is established. The results show that when GSD was 2.13, 3.31,
4.39, 5.43, and 6.69 cm/px, comparing the hand-measured values of fruit tree canopy height
H and the UAV-measured values yielded an R2 of 0.85–0.94, a RMSE of 0.08–0.14 m, and a
RADavg of 1.72–3.42%; comparing the hand-measured values of fruit tree canopy SXOY and the
UAV-measured values yielded an R2 of 0.79–0.94, a RMSE of 0.72–1.39 m2, and a RADavg of
4.33–9.87%; comparing the hand-measured values of fruit tree canopy V and the UAV-measured
values yielded an R2 of 0.80–0.91, a RMSE of 1.41–2.21 m3, and a RADavg of 7.90–13.69%.

3. The BPANN prediction models for measuring orchard yield are established, when the color
moment characteristic values and textural moment characteristic values of all 10 vegetation
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indices and the morphological characteristic values of the 3D point-cloud model were input to
predict fruit yield, the results show that when GSD was 2.13, 3.31, 4.39, 5.43, and 6.69 cm/px,
the R2 of the BPANN prediction model was, respectively, 0.88, 0.87, 0.86, 0.83, and 0.84, RAD was
8.10%, 8.05%, 9.03%, 9.56%, and 9.76% and RMSE was 6.90 kg, 7.03 kg, 7.25 kg, 7.96 kg, and 7.93 kg.
The model correlation was significant, which can be applied to fruit yield prediction.

The row and column detection method proposed in this study is suitable for segmentation using
multimodal canopy data in modern standardized orchards, which lays a good foundation for orchard
canopy information measurement. The information of canopy morphological and vegetation index
characteristic values could be extracted at the same time by this method, which provided more effective
information for fruit yield prediction and improves the accuracy of fruit yield prediction. This study
established a canopy morphological measurement method and a yield prediction method for fruit trees,
which can provide a theoretical basis and technical reference for canopy information measurements
in modern standardized orchards and will be valuable in the production management of modern
standardized orchards.
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