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Abstract
With increasing age, functional connectomes become dissimilar across normal individuals, reflecting heterogenous aging 
effects on functional connectivity (FC). We investigated the distribution of these effects across the connectome and their 
relationship with age-related differences in dopamine (DA) D1 receptor availability and gray matter density (GMD). With 
this aim, we determined aging effects on mean and interindividual variance of FC using fMRI in 30 younger and 30 older 
healthy subjects and mapped the contribution of each connection to the patterns of age-related similarity loss. Aging effects 
on mean FC accounted mainly for the dissimilarity between connectomes of younger and older adults, and were related, 
across brain regions, to aging effects on DA D1 receptor availability. Aging effects on the variance of FC indicated a global 
increase in variance with advancing age, explained connectome dissimilarity among older subjects and were related to aging 
effects on variance of GMD. The relationship between aging and the similarity of connectomes can thus be partly explained 
by age differences in DA modulation and gray matter structure.
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Introduction

Aging produces changes in the coupling between sponta-
neous oscillations of the blood oxygen level-dependent 
(BOLD) signal (Andrews-Hanna et al. 2007; Damoiseaux 
et al. 2008; Ferreira et al. 2016), which is commonly termed 
functional connectivity (FC). FC decreases in advanced 
age within the default-mode network (Mevel et al. 2013) 
as well as within the cingulo-opercular and fronto-parietal 
circuitries, while in visual and somatomotor networks both 
stability (Chan et al. 2014; Geerligs et al. 2015a) and reduc-
tions (Mowinckel et al. 2012; Stumme et al. 2020) have been 
found. FC increases have also been reported between left and 
right hippocampus (Salami et al. 2014, 2016). These results 
indicate that the effects of aging are heterogeneous across 
connections, and suggest the existence of a shift in the pat-
tern of functional connections with increasing age, rather 
than a global, homogeneous change.

The set of functional connections for all possible pairs 
of regions from a parcellation covering the brain compre-
hensively constitutes a functional connectome. This can be 
represented as a graph consisting of a set of nodes (regions) 
linked by edges (functional connections), and its FC values 

Supplementary Information  The online version contains 
supplementary material available at https​://doi.org/10.1007/s0042​
9-020-02205​-4.

 *	 Benjamín Garzón 
	 benjamin.garzon@ki.se

1	 Aging Research Center, Karolinska Institutet, Stockholm, 
Sweden

2	 Department of Radiation Sciences, Umeå University, Umeå, 
Sweden

3	 Umeå Center for Functional Brain Imaging, Umeå 
University, Umeå, Sweden

4	 Department of Integrative Medical Biology, Umeå 
University, Umeå, Sweden

5	 Max Planck UCL Centre for Computational Psychiatry 
and Ageing Research, University College London, London, 
UK

6	 Aging Research Center, Tomtebodavägen 18A, 171 65 Solna, 
Sweden

http://orcid.org/0000-0002-4647-7280
http://crossmark.crossref.org/dialog/?doi=10.1007/s00429-020-02205-4&domain=pdf
https://doi.org/10.1007/s00429-020-02205-4
https://doi.org/10.1007/s00429-020-02205-4


744	 Brain Structure and Function (2021) 226:743–758

1 3

can be arranged in a (symmetric) matrix. Given two con-
nectomes, we can define Pearson’s correlation coefficient 
between the subjects’ sets of FC values as a measure of their 
similarity. A substantial portion of the connectome is stable 
and unique to each individual (Finn et al. 2015; Geerligs 
et al. 2015b): using this measure of similarity, two meas-
urements (performed on different days) of the functional 
connectome of a certain individual tend to be more similar 
than the connectomes of different individuals, allowing to 
identify individuals based solely on their connectome with 
considerable accuracy (Finn et al. 2015).

Aging is accompanied by a loss of similarity between the 
connectomes of younger and older adults as well as between 
the connectomes of older subjects (Geerligs et al. 2015b). 
In view of the aforementioned heterogeneity of FC across 
connections, assessing and mapping the magnitude of age-
related differences in mean FC and interindividual FC vari-
ance across individuals can help quantify the contribution 
of each connection to these similarity reductions. This will 
facilitate the understanding of the source of age-related con-
nectome dissimilarity and the assessment of its implications 
for cognitive function.

In the hypothetical case that we were able to sample the 
individual lifespan trajectories of a neurobiological measure 
at two different ages (e.g., younger and older adulthood), 
a group difference in the mean of the variable of interest 
might be observed, with its magnitude depending on the 
aggregate evolution of the individual time courses. In addi-
tion, unless these trajectories evolved in a parallel fashion, a 
difference in the variance of the two groups would be likely 
to be observed, with the magnitude being conditional on 
the spread of the trajectories (Fig. 1). An increase with age 
in between-subject variance can be noteworthy because, 
assuming that this increase is not mainly driven by cohort 
differences or selection bias, it may reflect maintenance 
(Nyberg et al. 2012; Fandakova et al. 2015) in some sub-
jects and not in others due to the existence of protective 
and/or risk factors related to the neurobiological measure. 
In the present work, we studied how aging effects (i.e., age 
differences, under the assumption that they are primarily 
reflecting aging processes) on mean and variance of FC 
are distributed across the connectome and relate to the age 
dependence observed in connectome similarity.

Which are the neurobiological mechanisms behind the 
increasing connectome dissimilarity with age? Among the 
host of changes occurring in the human brain as part of nor-
mal aging, the existence of dopaminergic deficits is one of 
the main causal hypotheses for age-related differences in 
FC (Ferreira et al. 2016). Pharmacological and neuroimag-
ing research has associated dopamine (DA) and functional 
connectivity in specific circuits: the cortico-striato-thalamic 
system (Honey et al. 2003), caudate-medial temporal lobe 
(Nyberg et al. 2016), fronto-parietal pathways (Rieckmann 

et al. 2011), and fronto-striatal pathways (Wallace et al. 
2011). In prefrontal-cortex in particular, the role of DA may 
be to modulate the signal-to-noise ratio of neuronal firing 
(Servan-Schreiber et al. 1990), facilitating the stabilization 
of neural representations (Durstewitz and Seamans 2008). 
On the other hand, there is a well-established, mainly from 
cross-sectional studies, gradual loss of DA markers (DA 
transporter, and D1 and D2 receptors) from early through 
late adulthood (Bäckman et al. 2010). Further, computa-
tional modelling has linked age-related DA deficits with 
increases in individual differences in activation patterns and 
functional neural architecture (Li and Lindenberger 1999; 
Li et al. 2001; Li and Sikström 2002), and pharmacological 
manipulations of dopaminergic neurotransmission modulate 
the organization of large-scale functional networks (Cole 
et al. 2013; Carbonell et al. 2014). Therefore, DA decline 
is an obvious candidate driving some of the age-related 
decreases in connectome similarity highlighted above. 
Another candidate to explain these differences is the con-
spicuous reduction in volume of cortical and subcortical 

Fig. 1   Hypothetical trajectories of FC in two different connections. 
We quantified between-group differences in both mean FC (indicated 
by the red dots) and standard deviation (indicated by the red segments 
arising from the red dots) as two dimensions to characterize aging 
effects. When sampled cross-sectionally, parallel trajectories (top) 
will result in similar variance between younger and older participants, 
whereas a spread in trajectories will result in increased variance with 
age (bottom)
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gray matter structures known to occur in healthy aging, 
which shows marked regional heterogeneity (Raz et al. 2005; 
Kennedy et al. 2009; Groves et al. 2012).

In a sample of younger (19–32  years) and older 
(66–72 years) healthy subjects, we mapped aging effects 
on the mean and variance of FC of over 30,000 functional 
connections. Using this decomposition, we sought to iden-
tify the individual contribution of the different anatomi-
cal connections and functional networks to the patterns of 
connectome similarity loss with increasing age. Positron 
emission tomography (PET) imaging with the D1 receptor 
ligand [11C] SCH23390, a tracer allowing quantification of 
D1 receptor availability in cortical and subcortical regions, 
was used to probe the association between age-related dif-
ferences in regional D1 receptor availability and age-related 
differences in FC across connections. Likewise, we assessed 
the association between age-related differences in gray mat-
ter density (GMD) measured with structural MRI and the 
corresponding regional age-related differences in FC. The 
FC analyses were done separately using datasets from three 
fMRI experiments performed on the same participants (two 
cognitive tasks and a resting-state acquisition).

Materials and methods

Study participants

Participants were 30 younger (mean age = 24.2, 
SD = 3.4 years, 13 men and 17 women) and 30 older (mean 
age = 70.8, SD = 2.7 years, 18 men and 12 women) healthy 
volunteers who were recruited through local media adver-
tisements. This sample was initially acquired to investigate 
age-related differences in a number of facets of decision-
making. The main findings of the analyses of the behavio-
ral data and fMRI tasks have been reported elsewhere (de 
Boer et al. 2017, 2019), while in the present study we focus 
on connectivity, neuromodulatory and structural measures. 
Sample size and power were calculated considering behav-
ioral and task-based fMRI effects in similar studies of deci-
sion-making (Guitart-Masip et al. 2012, 2014; Chowdhury 
et al. 2013).

Participants were paid a fixed amount for their participa-
tion in the study, and additionally a variable amount that 
depended on their performance in the battery. Based on 
self-reports, all participants were free of neuropsychiatric 
disorders, other significant medical conditions and current 
or previous substance abuse. The Regional Research Ethics 
Committee in Umeå (Sweden) approved the research proto-
col of the study. All participants provided written informed 
consent and underwent structural and functional MRI and 
PET scanning.

MRI data acquisition

Subjects were imaged on a Discovery MR750 3 T scanner 
(General Electric, Milwaukee, WI, USA), equipped with a 
32-channel phased-array head coil. T1-weighted 3D FSPGR 
images were obtained with a 1 × 1 × 1 mm3 voxel size 
(TI = 450 ms, TR = 8.17 ms, TE = 3.19 ms, FoV = 25 cm, 
flip angle of 12°). Functional scans were acquired with a 
gradient echo-planar imaging sequence (TR = 2000 ms, 
TE = 30 ms, FoV = 25 cm, 37 axial slices, flip angle of 80°, 
slice thickness = 3.4 mm with 0.5 mm spacing) with voxel 
size of 2 × 2 × 3.9 mm3. The first ten EPI volumes were 
discarded to ensure that steady-state tissue longitudinal 
magnetization was reached. Three functional acquisitions 
were performed in the same scanning session, one in resting 
state (RS) and two during decision-making tasks in which 
subjects responded to visual stimuli by pressing a button to 
obtain rewards. For the RS scan, subjects were instructed 
to remain awake with their eyes open and fixated on a cross 
(170 volumes, 5.7 min). In the second acquisition subjects 
completed the two–armed bandit (TAB) task (660 volumes, 
22 min; (Chowdhury et al. 2013). In the third acquisition, 
subjects performed the go-nogo (GNG) valenced task (630 
volumes, 21 min; (Guitart-Masip et al. 2011). There were 
differences in performance between younger and older adults 
in the two tasks. The aging effects in the TAB task have 
already been reported (de Boer et al. 2017) and the effects 
in the GNG are in preparation.

MRI data preprocessing

The data were preprocessed with SPM12 (http://www.fil.
ion.ucl.ac.uk/spm) and the Data Processing Assistant for 
Resting-State fMRI: Advanced Edition (DPARSFA, version 
2.3) (Yan 2010), running on MATLAB R2017b (Mathworks, 
Natick, USA).

Structural scans were segmented into gray matter, white 
matter, and cerebrospinal fluid (CSF) (Ashburner and Fris-
ton 2005). The Diffeomorphic Anatomical Registration 
using Exponentiated Lie Algebra (DARTEL) algorithm 
(Ashburner 2007) was used to create a study-specific ana-
tomical template, followed by its affine transformation to the 
Montreal Neurological Institute (MNI) template. Segmen-
tation of the cerebellum was obtained using Freesurfer 5.3 
(Fischl et al. 2002), to be used in the subsequent analysis of 
PET data.

Functional scans were first slice-time corrected and rea-
ligned to correct for inter-scan head motion. To obtain a 
single measure of overall motion, at each time-point we 
calculated the framewise displacement (FD) from these 
parameters, as described in (Power et al. 2012). Average 
signal time-series were extracted from masks of white mat-
ter and CSF obtained in the aforementioned segmentation 

http://www.fil.ion.ucl.ac.uk/spm
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procedure. To remove non-neural confounds, the 6 motion 
parameters (translations and rotations) and their temporal 
derivatives, the square of these 12 time-courses and the 
white matter and CSF time-series, were regressed out from 
the signal of the corrected functional images at each voxel 
(Satterthwaite et al. 2013). We did not regress out the task-
evoked activity in accordance with several recent studies 
(Finn et al. 2015, 2017; Rosenberg et al. 2015; Lebedev 
et al. 2018) and to underscore that even when considering 
the correlations produced by it, there are still noticeable 
similarities between experiments.

There is no clear consensus regarding whether global 
signal regression (GSR) should be used as a strategy to 
reduce the effect of motion on connectivity measures 
(Murphy and Fox 2017). While this step may minimize 
the relationship between motion and connectivity, it may 
also introduce artifacts and remove common fluctua-
tions of neural origin (Ciric et al. 2017; Murphy and Fox 
2017). Therefore, we produced two preprocessed datasets, 
one with and another one without GSR, to ensure that 
our results did not depend on either motion or the use 
of GSR. The images were band-pass filtered in the band 
0.009–0.1 Hz to reduce low-frequency drifts and high-
frequency physiological as well as non-biological signals 
(Biswal et al. 1995). The processed functional scans were 
coregistered to the structural ones, normalized to MNI 
space using the transformations estimated previously 
and resampled to 2 × 2 × 2 mm3. Next, the images were 
smoothed with a Gaussian kernel of 4 mm full width at 
half maximum (FWHM). Finally, the data were scrubbed 
by removing frames with FD above a certain threshold for 
their corresponding time point, as well as the previous and 
the two next images (Power et al. 2012). For the GNG and 
TAB we used an FD threshold of 0.3 mm and only partici-
pants with 300 or more images left after scrubbing were 
considered for further analyses. For the RS data, which 
had considerably shorter duration, we used a slightly more 
lenient FD threshold of 0.4 mm and kept subjects with 
more than 130 images left after scrubbing, as the criteria 
used for the GNG and TAB datasets would otherwise have 
left too little data for analysis.

Mean FD after scrubbing was largely reduced in all 
cases, as was the difference between mean FD for the two 
age groups. It was still significantly different between 
younger and older adults for the GNG task (two sample t 
test, t = − 2.17, p = 0.04), but not for the TAB (two sample 
t test, t = − 1.30, p = 0.20) or the RS dataset (two sample 
t test, t = 1.54, p = 0.13). Whole-sample mean FD prior to 
scrubbing was significantly or nearly significantly larger for 
the tasks than for the RS data (two sample t test, GNG-
RS: t = 2.07, p = 0.04, TAB-RS: t = 1.90, p = 0.06), but not 
significantly different between the two tasks (GNG-TAB: 
t = 0.01, p = 0.99).

Computation of functional connectomes

Average preprocessed signal time-series were extracted 
for each of 278 regions of interest (ROIs) from a function-
ally defined parcellation (Shen et al. 2013, Supplementary 
Fig. 1A). We excluded ROIs with large signal loss due to 
susceptibility artifacts (Geerligs et al. 2015b). For each 
subject, the average of all functional images was obtained 
and a mask was created by thresholding this average at 20% 
of mean signal intensity. Seventeen ROIs overlapping this 
mask in less than 50% of the ROI volume were excluded, 
leaving 261 ROIs with sufficient signal in the three fMRI 
acquisitions. The excluded ROIs were located in temporal, 
orbitofrontal and occipital regions and are shown in Sup-
plementary Fig. 1B. A functional connectome was computed 
as the set of Pearson’s correlation coefficients r between 
time-series of all pairs of nodes after applying the Fisher 
transform z = arctanh(r) to render these into z-scores (Fisher 
1921), since subsequent analyses assumed a normal distribu-
tion for FC values. A connectome was then represented as a 
symmetrical matrix of 261 × 261 entries, totaling 33,930 dif-
ferent connections (node pairs). We computed a functional 
connectome for each subject and each dataset (GNG/TAB/
RS) separately, and the subsequent analyses were performed 
independently for each dataset.

Similarity between functional connectomes

We computed the similarity between connectomes as Pear-
son’s correlation coefficient (as FC values were normally 
distributed for the reason explained above) between the 
entries in the upper triangular part of the corresponding 
matrices, excluding the diagonal. One value of similarity 
was computed for each pair of subjects in the sample and 
displayed in a matrix of subjects x subjects, ordered by age. 
To display the degree of similarity between the observations 
in the dataset, we used multidimensional scaling (MDS, esti-
mated with the R function cmdscale), a technique that allows 
visualization in a two-dimensional plot of multidimensional 
observations by preserving the dissimilarity (distance) in 
their original space.

Voxel‑based morphometry

The gray matter segments computed for preprocessing the 
functional data were multiplied by the Jacobian of the non-
linear transformations estimated by the DARTEL procedure 
(also known as modulation) to produce voxel-based morpho-
metry maps, which approximate local GMD (Ashburner and 
Friston 2000). Average GMD was then calculated for each 
node of the parcellation.
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PET data acquisition

PET images were obtained using a Discovery 690 PET/CT 
(General Electric, WI, US) scanner. A low-dose helical CT 
scan (20 mA, 120 kV, 0.8 s/revolution) provided data for 
PET attenuation correction. Participants were injected with 
a bolus of 200 MBq [11C]SCH 23,390, a radioligand that 
binds to dopamine D1 receptors. A 55 min dynamic acqui-
sition commenced at time of injection (9 frames × 2 min, 
3 frames × 3 min, 3 frames × 4.20 min, 3 frames × 5 min). 
Attenuation-, scatter- and decay-corrected 256 × 256-pixel 
transaxial PET images were reconstructed to a 25 cm field-
of-view employing the Sharp IR algorithm (6 iterations, 24 
subsets, 3.0 mm Gaussian post filter). Sharp IR is an advanced 
version of the OSEM method for improving spatial resolution, 
in which detector system responses are included (Ross and 
Stearns 2010). The FWHM resolution is 3 mm. The proto-
col resulted in 47 tomographic slices per time frame, yielding 
0.977 × 0.977 × 3.27 mm3 voxels. Images were decay-corrected 
to the start of the scan and de-identified using dicom2usb 
(http://dicom​-port.com/). To minimize head movement dur-
ing the imaging session, the subject’s head was fixated with 
an individually fitted thermoplastic mask (Positocasts Ther-
moplastic; CIVCO medical solutions, IA, US).

PET data preprocessing

PET data were preprocessed with in-house-developed soft-
ware (imlook4d version 5.00, https​://dicom​-port.com/produ​
ct/imloo​k4d/). The PET time series were coregistered to the 
structural scans with the FMRIB’s Linear Image Registra-
tion Tool (FLIRT, (Jenkinson et al. 2002)) from the FMRIB 
Software Library 5.0.9 (FSL, http://fsl.fmrib​.ox.ac.uk/). The 
warps obtained from the DARTEL normalization procedure 
were then used to coregister the 278 ROIs from the parcel-
lation previously described to the PET time series that were 
aligned with the structural scans. Binding potential (BP) 
was calculated by subtracting 1 to distribution volume ratios 
(DVR) obtained by applying the Logan method (Logan et al. 
1990) with time window between 18 and 55 min to average 
time-activity curves extracted from all voxels in each ROI. 
A cerebellum ROI (previously segmented from the structural 
scans) was used as reference, because its tissue is devoid of 
DA D1 receptors (Hall et al. 1994). Given that the cerebel-
lum was used as a reference for the calculation of BP, ROIs 
in this region were excluded from later analyses involving 
this measure.

Modelling of age‑related effects on mean 
and variance of imaging measures

We modelled aging effects on mean and interindividual 
variance of imaging data yjs from subject s, where yjs can 

be the FC estimate in connection j , BP estimate in region 
j or GMD estimate in region j ( j indexes regions or con-
nections, depending on the variable being modelled, and 
represents a superscript, not an exponent). The data were 
modelled as normally distributed with mean and the log 
of the standard deviation as linear functions of as (the 
participant’s age referenced to 20 years), plus a term FDs 
accounting for the effect of head motion on the imaging 
measures.

The value of as is referenced so that the values of the 
intercepts � can be easily interpreted as corresponding to 
20-years old subjects, and the values of the slopes � the 
annual increment or decrement in mean or log standard 
deviation above the intercept value. The log transformation 
in Eq. 4 ensures positivity, i.e., �j

s

(

as
)

= exp(�sj

�
+ �

sj
� ⋅ as) . 

Positive (negative) values of �� imply that the standard 
deviation at 20 years of age, exp(�sj

�
), increases (decreases) 

by a factor of exp(�sj� ) for each additional year. Head 
motion during functional scans has been shown to affect 
not only FC measures (Power et  al. 2012) but also to 
behave like an individual trait (Van Dijk et al. 2012) that 
approximates movement during structural scans, known to 
affect structural estimates (Reuter et al. 2015; Savalia et al. 
2017). In summary, we propose a model where both mean 
and variance of FC are dependent on age (controlling for 
in-scanner head motion), with the aim of estimating how 
mean and variance vary with age across different brain 
connections. As Fig. 1 illustrates, these parameters should 
be informative about the trends and spread of the underly-
ing trajectories of FC, always keeping in mind that they 
are obtained from cross-sectional data.

The same model structure was used to model FC, BP, 
and GMD. We inferred parameter values using maximum 
a posteriori estimation with weakly informative priors 
that were normal and symmetric around 0 to avoid biases 
toward a particular direction (e.g., when estimating the 
effects of aging � ). Model fitting was done with the opti-
mizing function from the rstan package 2.17.3 (http://mc-
stan.org/).

Finally, with the purpose of assessing the consistency of 
the estimates across fMRI datasets, for each possible pair of 
experiments we computed Pearson’s correlation coefficients 
between the values of �� (or ��).

(1)yj
s
= zj

s
+ �⋅FDs,

(2)zj
s
∼ N

(

�j
s

(

as
)

, �j
s

(

as
))

,

(3)�j
s

(

as
)

= �sj
�
+ �sj

�
⋅ as,

(4)log �j
s

(

as
)

= �sj
�
+ �sj

�
⋅ as.
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Anatomical distribution of connection parameters

To facilitate the visualization and comprehension of 
�� and ��, we partitioned the parcellation in the brain 
stem and nine structures in each hemisphere (thalamus, 
putamen, caudate, insula, cerebellum, and the temporal, 
parietal, frontal and occipital lobes). The Atlasquery tool 
from FSL was used to calculate the probability of a cer-
tain ROI being a member of the different labelled regions 
in the MNI Structural Atlas, or the Harvard–Oxford Sub-
cortical Structural Atlas for the brain stem label. Each 
ROI was assigned to the region with the highest prob-
ability. Then we plotted the values of �� and �� laid out in 
respective matrices arranged by these anatomical regions.

We also partitioned the parcellation according to a 
decomposition in 20 networks (Laird et al. 2011) retrieved 
from http://www.brain​map.org. BrainMap (Fox et  al. 
2005) is an online database of brain activation coordi-
nates and structured metadata describing the experimental 
conditions from a large number of neuroimaging studies. 
The database has been used to yield an extensive set of 
activation maps, decomposed via independent component 
analysis into a set of task-based co-activation networks 
which can be related to particular cognitive domains 
and mimic the intrinsic connectivity networks (ICNs) 
that can be measured in resting-state acquisitions (Smith 
et al. 2009). The original dataset of 20 co-activation net-
work maps contains two artifactual maps, which were 
removed. Detailed descriptions and illustrations of the 18 
co-activation network maps can be found in (Smith et al. 
2009) and (Laird et al. 2011); in the present article we 
follow the same numbering as in those publications (see 
Supplementary Table 1 for a short description). For each 
ROI in the parcellation, we extracted the average value 
within the ROI of each of the co-activation network maps 
and multiplied it by ROI size, producing a score for each 
network-ROI combination. We then assigned each ROI 
to the network with highest score. We plotted the values 
of aging effects �� and �� laid out in respective matrices 
arranged by these 18 networks.

Associations between FC, BP, and GMD

We sought to link aging effects in FC, BP and GMD. First, 
for each node in the parcellation included in the analysis 
of aging effects on FC, we computed the average value of 
�� and �� for all connections containing that node (ROI), 
henceforth referred to respectively as ‘average nodal �� ’ and 
‘average nodal �� ’, thereby obtaining an average aging effect 
for the mean and the standard deviation of FC for each node. 
As explained previously, we also estimated values of �� and 
�� for both BP and GMD in each node of the same parcella-
tion. Then we computed Pearson’s correlation coefficients 
between average �� for FC and �� for either BP or GMD 
and plotted these relationships, and we did likewise for �� . 
We also set up linear models with average nodal �� for FC 
as dependent variable and both �� for BP and �� for GMD 
as independent variables to check whether these regressors 
accounted for independent portions of the variance in the 
dependent variable.

All statistical analyses were conducted with R version 
3.5.1 (https​://www.r-proje​ct.org/).

Results

MRI and PET data preprocessing

The three datasets (GNG/TAB/RS) were preprocessed with 
the same standard pipeline to obtain three FC matrices (rep-
resenting functional connectomes) for each subject. Some 
subjects failed to meet the criteria for acceptable levels 
of motion in the fMRI experiments studying FC and were 
excluded from the analyses (10 for the TAB, 3 for the GNG 
and 5 for the RS experiment). The characteristics of the 
included subjects are presented in Table 1. Henceforth, for 
the sake of brevity we mainly present results for the GNG 
task dataset unless indicated otherwise (for this task had the 
smallest number of excluded subjects), but we also comment 
on the consistency across experiments for the main findings, 
principally when there was disagreement between them. The 
results presented correspond to the datasets preprocessed 
without GSR, and in the last section we make remarks about 
discrepancies arising when using GSR.

Table 1   Demographic 
characteristics for the whole 
sample, the fMRI acquisitions, 
and the PET assessment

TAB two-arm bandit task, GNG go-nogo task, RS resting-state

All TAB GNG RS D1 PET

Number of subjects 60 50 57 55 58
Younger Total (M/F) 30 (13/17) 28 (12/16) 30 (13/17) 30 (13/17) 30 (13/17)

Age mean (SD) 24.2 (3.4) 24.4 (3.5) 24.2 (3.4) 24.2 (3.4) 24.2 (3.4)
Older Total (M/F) 30 (18/12) 22 (14/8) 27 (17/10) 25 (17/8) 28 (17/11)

Age mean (SD) 70.8 (2.7) 70.9 (2.6) 70.8 (2.7) 70.9 (2.7) 71.0 (2.7)

http://www.brainmap.org
https://www.r-project.org/
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BP values quantifying D1 receptor availability were 
obtained for all except two participants that did not complete 
the PET scans. The structural scans were processed using a 
standard voxel-based morphometry pipeline, yielding vox-
elwise maps of GMD of adequate quality for all subjects.

Similarity between functional connectomes

The matrix in Fig. 2a shows the similarity (Pearson’s cor-
relation coefficients) between the functional connectomes 
of all pairs of subjects for the GNG task, and the scat-
terplot in Fig. 2b portrays the MDS representation of the 
dataset. MDS is a technique that allows visualization of 
multidimensional observations in a two-dimensional plot 
by preserving their dissimilarity (distance) in the original 
space (Hout et al. 2016). Similarities for pairs of older 
subjects tended to be lower than for pairs of younger sub-
jects, resulting in larger spread for the older with respect to 
the younger subjects in the MDS representation. Similari-
ties between younger and older subjects also tended to be 
lower than for pairs of younger or older subjects, clearly 
separating the two age groups in the MDS visualization. 
The difference between the average younger-younger simi-
larity and the average older-older similarity was 0.08 (two 

sample t test, t = 17.0, p < 2e − 10). The difference between 
average older-older similarity and older-younger similarity 
was 0.05 (two sample t test, t = 9.93, p < 2e − 10).

Age‑related effects on mean and variance of FC

We estimated aging effects on mean ( �� ) and standard 
deviation ( �� ) of FC in each connection. �� values tended 
to be negative (GNG: 64.0% of connections; TAB: 67.2%; 
RS: 62.9%), indicating that in most connections mean FC 
was lower in older than in younger subjects, whereas �� 
values were overall positive (GNG: 76.2% of connections; 
TAB: 75.5%; RS: 74.6%), suggesting larger between-per-
son differences in FC among older adults.

The correlation between the estimates of the GNG and 
TAB tasks was high for �� and moderate for �� , which 
indicates that the aging effects we observed are relatively 
independent of the task the subjects performed during 
scanning (Table 2). The correlation between the estimates 
of the GNG and RS experiments was lower (presumably 
due to the considerably shorter length of the RS dataset), 
and comparable to the correlation between TAB and RS 
estimates.

Fig. 2   Similarity between connectomes in younger and older sub-
jects. a Similarity matrix for pairs of subjects in the sample, show-
ing an age-dependent pattern of similarity. Each entry corresponds to 
the connectome similarity between two subjects, defined as Pearson’s 
correlation coefficient between the FC values of all connections in the 
connectomes of those two subjects. b Multidimensional scaling visu-
alization of those subjects according to their similarity pattern. In this 
representation, the magnitude in the axes is arbitrary, but the distance 

between the points in the scatterplot indicates the degree of dissim-
ilarity between observations (without the values in each of the two 
axes necessarily having a specific interpretation). The younger and 
older groups are clearly separated, and at the same time older subjects 
are farther apart between them than younger subjects between them, 
implying that the connectomes of the older participants are more dis-
similar
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Anatomical distribution of connection parameters

Figure 3a, c summarizes the anatomical distribution of aging 
effects on FC, �� and �� , with connections grouped accord-
ing to their endpoint anatomical region, for the GNG experi-
ment (see Supplementary Figs. 3 and 4 for the TAB and RS 
experiments, respectively). Fronto-temporal, fronto-cere-
bellar and temporo-parietal connections had predominantly 
negative �� , whereas a considerable amount of intra-parietal 
connections showed large positive differences between age 
groups. The inspection of the values of �� revealed a general 
increase in FC variability with age with occipital, thalamic 
and cerebellar connections presenting larger age-related 
effects on variability compared with connections arising 
from other regions. There were no obvious hemispheric 
asymmetries.

An alternative arrangement according to the 18 BrainMap 
networks (Fig. 3b, d) showed that connections between net-
works 09 (superior parietal) and 16 (transverse temporal), 
or between networks 01 (limbic and medial temporal) and 
13 (default mode) presented with mostly negative �� values, 
whereas connections between networks 13 (default mode) 
and 17 (pre/postcentral) were mostly positive. The largest 
age differences in mean FC were found in inter-network 
rather than intra-network connections. The largest values 
of �� were concentrated in connections from networks 05 
(cerebellum-brainstem) and 12 (medial visual), and espe-
cially between 08 (sensorimotor) and 11 (lateral visual) or 
12 (medial visual).

Associations among aging effects in FC, D1 BP, 
and GMD

From the PET and structural scans, we calculated average 
BP and GMD values in each ROI of the parcellation, and 
modelled aging effects on mean and standard deviation of 
BP and GMD as we had done for the FC values. �� was 

negative for both GMD and BP in all ROIs. �� was positive 
in 56.8% of ROIs for GMD and 79.9% of them for BP.

We investigated whether the aging effects in FC were 
related to those in BP and GMD across ROIs. Average nodal 
�� for FC was significantly, positively correlated with �� 
for BP (GNG: r = 0.30, p = 4e − 6; TAB: r = 0.20, p = 1e − 3; 
RS: r = 0.28, p = 1e − 5), indicating that larger (negative) age 
differences in FC were associated with larger (negative) age 
differences in D1 BP. The ROIs with the largest age-related 
BP losses ( �� < − 0.01) were bilateral putamen and caudate, 
as well as left thalamus. However, the association was not 
only driven by these regions, as it was still statistically sig-
nificant after removing their values from the analysis (GNG: 
r = 0.18, p = 5e − 3; TAB: r = 0.13, p = 0.05; RS: r = 0.14, 
p = 0.03). Average nodal �� for FC was negatively correlated 
with �� for GMD for the GNG (r =  − 0.15, p = 0.01; Fig. 4b) 
and RS (r =  − 0.13, p = 0.04) datasets, with a trend toward 
significance for the TAB dataset (r =  − 0.11, p = 0.09). When 
combining �� for D1 BP and �� for GMD in one regression 
model to predict average nodal �� for FC, the regression 
coefficients for �� for BP were still statistically significant 
(GNG: standardized coefficient = ��18e − 5, p = 2e − 5; TAB: 
standardized coefficient = ��15e − 5, p = 4e − 3; RS: stand-
ardized coefficient = ��14e − 5, p = 4e − 5), and therefore the 
association between aging effects (on FC and BP) cannot 
be explained by aging effects on GMD. The coefficients of 
these models are presented in Table 3. 

The association between average nodal �� for FC and �� 
for BP was not statistically significant for any of the experi-
ments (GNG: r =  − 0.03, p = 0.70; TAB: r = 2e − 3, p = 0.98; 
RS: r = 0.10, p = 0.15). The correlation between average 
nodal �� for FC and �� for GMD was positive and significant 
for the three experiments (GNG: r = 0.32, p = 1e − 7; TAB: 
r = 0.32, p = 2e − 7; RS: r = 0.1, p = 0.02). These relation-
ships are shown in Fig. 4.

Effect of using GSR

Applying GSR shifted �� toward positive values, centering 
its distribution around zero. The proportion of positive �� 
values remained comparable with that for the data with-
out GSR. The estimates of aging effects were analogously 
consistent across tasks with respect to the data processed 
without GSR (Table 2) and the distribution of aging effects 
still showed patterns that were constrained by anatomy and 
network allegiance (cf. Figs. 3 and 5 for GNG experiment). 
Regarding aging effects on FC and aging effects on BP or 
GMD, the most remarkable repercussion of using GSR was 
a large increase in the magnitude of the negative association 
between average nodal �� for FC and �� for GMD, which 
became clearly significant in the three datasets (Table 3). 
More details about the consequences of using GSR are pre-
sented in the Supplementary Material.

Table 2   Consistency of estimates across experiments

The entries in the table correspond to Pearson coefficients for the 
correlation between the mean posterior estimates of �� and ��(aging 
effects for FC for individual connections) in each pair of experi-
ments. For clarity p values are not shown, as all tests were significant 
(p < 1e − 3). TAB two-arm bandit task, GNG go-nogo task, RS resting-
state

GNG-TAB TAB-RS GNG-RS

Without GSR
 �� 0.89 0.69 0.69
 �� 0.55 0.28 0.29

With GSR
 �� 0.90 0.68 0.70
 �� 0.53 0.29 0.32
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Discussion

Aging leads to increases in the dissimilarity between the 
connectomes of younger and older subjects, and among 
those of older individuals. However, how the contributions 

to this dissimilarity are distributed anatomically and 
which their candidate neurobiological mechanisms are 
has not been characterized previously. In a sample of 30 
younger and 30 older healthy adults, we examined aging 
effects on FC estimates across the connectome, separating 

Fig. 3   Estimates of aging effects across the connectome for data pro-
cessed not using GSR. For each connection between a pair of nodes 
in the parcellation, we show the estimates of �� (aging effects on 
mean FC; a, b) and �� (aging effects on standard deviation of FC; c, 
d) for the GNG task without GSR. In a and c, connections are laid 
out in matrices that group the corresponding nodes in 19 anatomical 
regions: brain stem (BStem), bilateral thalamus (LThal/RThal), puta-
men (LPut/RPut), caudate (LCaud/RCaud), insula (LIns/RIns), cer-

ebellum (LCereb/RCereb), and the temporal (LTemp/RTemp), pari-
etal (LPariet/RPariet), frontal (LFront/RFront) and occipital (LOccip/
ROccip) lobes. In b and d, the matrices are arranged by the networks 
in the 20-network BrainMap decomposition (see Supplementary 
Table 1 for numbering and a short description of the networks). The 
estimates for the other two experiments are displayed in Supplemen-
tary Figure S3 (TAB) and Supplementary Figure S4 (RS)
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components representing mean and standard deviation of 
FC across subjects. We showed that this decomposition is 
to a certain degree stable across tasks and it allowed us to 
map the source of similarity of functional connectomes, 
within and between age groups, to connections between 

anatomical structures and previously identified networks. 
Finally, we show that aging effects on FC were signifi-
cantly related to aging effects on D1 BP and on gray mat-
ter structure across brain regions, and these relationships 
were independent from each other. The main associations 

Fig. 4   Association between FC, BP and GMD aging effects. a Asso-
ciation, across 244 parcellation regions (regions within the cerebel-
lum were excluded from this analysis), between average nodal aging 
effects on mean FC and aging effects on mean DA D1 BP. b There 
was a trend for a negative association between average nodal aging 
effects on mean FC and aging effects on GMD across the 261 par-
cellation regions. c There was no correlation between average nodal 

aging effects on standard deviation of FC and aging effects on stand-
ard deviation of BP. d Association between average nodal aging 
effects on standard deviation of FC and aging effects on standard 
deviation of GMD. All these plots correspond to the GNG dataset, 
but similar results were found for the other experiments. BP bind-
ing potential, GMD gray matter density, FC functional connectivity. 
*Significant association (p < 0.05)
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observed were present in data from two fMRI tasks and a 
resting-state scan.

The starting point of the present investigation are the 
observations that: (1) the functional connectomes of indi-
viduals of different ages tend to be less similar than those 
of individuals of comparable age, and (2) functional con-
nectomes decrease in similarity with increasing age (i.e., 
connectomes of older adults are less similar than those of 
younger adults). To disentangle the origins of these two 
phenomena, we modelled not only aging effects on mean 
FC, but also on interindividual variance of FC, which is 
a novel aspect of the current study. Analyzing the conse-
quence of removing connections ordered by | �� | or | �� | (see 
Supplementary Material) showed that, as expected, �� had 
a larger role in explaining the loss of similarity between 
age groups, whereas �� was more important in accounting 
for the loss of similarity among older participants. Interest-
ingly, connections with large | �� | also contributed to increase 
connectome similarity among older adults, which indicates 
that differences in those connections may drive the pattern 
of connectivity from a younger archetypal configuration to 
an older one, with higher variability of older subject con-
nectomes around their archetypal configuration. Although 
the effect of the two parameters was not fully independent, 
this decomposition allowed us to map to individual con-
nections the origin of both the loss of similarity between 
individuals of different ages and the decrease in similarity 
with increasing age.

We observed large heterogeneity in aging effects across 
functional connections, with both increases and decreases in 
mean FC with age (Allen et al. 2011; Geerligs et al. 2015b). 
Negative age-related differences were, however, more fre-
quent than positive ones (when not applying GSR), with 
the largest effects seen in fronto-temporal, fronto-cerebellar 
and temporo-parietal connections. FC variance displayed 
a general tendency to increase with age; this global age-
related increase in standard deviation of FC could be, par-
tially or totally, the consequence of altered vascular function 
or neurovascular coupling in older participants rather than 

neural activity per se (D’Esposito et al. 2003; Tsvetanov 
et al. 2015). The anatomical distribution of aging effects 
on standard deviation was quite heterogeneous, with larger 
effects in connections involving occipital regions, thala-
mus, and cerebellum. Arranging the connections by intrin-
sic connectivity networks showed more marked patterns of 
increases and decreases than arranging them by anatomical 
structure, reflecting the known high interdependence of the 
neural ensembles within these networks. Prominent aging-
related reductions in mean FC, indexed by �� , were found 
for instance in connections involving temporal, default mode 
and limbic nodes. By contrast, the largest increases in FC 
variance, indexed by �� , affected preferentially sensory and 
motor networks. We need to be careful to avoid overinter-
preting the anatomical and network distribution of aging 
effects because of the random variation in �� or �� produced 
by sampling variation and measurement noise. However, 
the fact that the mentioned patterns were repeatable across 
experiments (see Fig. 3 and Supplementary Figures S3-4) 
and the relationships we present with independent measure-
ments of GMD, and BP, indicate that they were not merely 
a product of the latter, but a more detailed, reliable analysis 
of the effects in specific networks would possibly require a 
considerably larger dataset.

Intriguingly, losses in FC across regions were reliably 
related to losses in DA D1 BP, as measured with PET. DA 
and FC have been associated in particular connections 
(Honey et al. 2003; Rieckmann et al. 2010; Wallace et al. 
2011; Nyberg et al. 2016); our investigation shows that the 
magnitude of age differences in DA availability is related 
across regions with differences in (average nodal) FC, point-
ing at dopaminergic decline as a potential contributor to 
the observed functional connectome differences between 
younger and older adults.

We also found evidence of a negative association between 
aging effects on FC and GMD, such that FC decreased less 
for those nodes showing stronger effects of aging on GMD, 
and which was greatly magnified when processing the data 
with GSR. The reason for this negative relationship remains 

Table 3   Regression models 
relating aging effects in mean 
FC with aging effects in mean 
BP and mean GMD across 
regions

The dependent variable was average nodal �� for FC, and the independent variables were �� for BP and 
�� for GMD. The table shows the corresponding standardized regression coefficients and p values. Coef-
ficients significantly different from zero (p < 0.05) are marked in bold font
TAB two-arm bandit task, GNG go-nogo to task, RS resting-state

GNG TAB RS

Without GSR
 Average nodal �� for BP 18e − 5 (p = 2e − 5) 15e − 5 (p = 4e − 3) 14e − 5 (p = 4e − 5)
 Average nodal �� for GMD  − 8e − 5 (p = 0.0517)  − 6e − 5 (p = 0.26)  − 7e − 5 (p = 0.051)

With GSR
 Average nodal �� for BP 8e − 5 (p = 0.008) 7e − 5 (p = 0.0552) 6e − 5 (p = 0.001)
 Average nodal �� for GMD  − 27e − 5 (p < 1e − 10)  − 30e − 5 (p < 1e − 10)  − 21e − 5 (p < 1e − 10)
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unknown, although it may be interpreted in compensatory 
terms, where reduced gray matter integrity leads to the 
recruitment of new regions so that behavioral function-
ing can be preserved (Cabeza et al. 2002). The association 
we detected was weak, in agreement with previous reports 

showing that age-related differences in FC are not fully 
explained by structural differences in gray matter (Damoi-
seaux et al. 2008; Onoda et al. 2012; Geerligs et al. 2014, 
2015a). Importantly, the effects of aging on D1 BP were 
associated with aging effects on FC independently of aging 

Fig. 5   Estimates of aging effects across the connectome for data pro-
cessed using GSR. For each connection between a pair of nodes in 
the parcellation, we show the estimates of �� (aging effects on mean 
FC; a, b) and �� (aging effects on standard deviation of FC; c, d) for 
the GNG task with GSR. In a and c, connections are laid out in matri-
ces that group the corresponding nodes in 19 anatomical regions: 
brain stem (BStem), bilateral thalamus (LThal/RThal), putamen 
(LPut/RPut), caudate (LCaud/RCaud), insula (LIns/RIns), cerebellum 

(LCereb/RCereb), and the temporal (LTemp/RTemp), parietal (LPa-
riet/RPariet), frontal (LFront/RFront) and occipital (LOccip/ROccip) 
lobes. In b and d, the matrices are arranged by the networks in the 
20-network BrainMap decomposition (see Supplementary Table 1 for 
numbering and a short description of the networks). The estimates for 
the other two experiments are displayed in Supplementary Figure S5 
(TAB) and Supplementary Figure S6 (RS)
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effects on GMD, and therefore the observed relationship 
with BP cannot be attributed to gray matter loss, but rather 
suggests that this relationship has a neuromodulatory origin.

The relationship between age-related effects on standard 
deviation of FC was statistically significant only for GMD, 
in the three experiments. Correlations were positive in all 
cases and was conserved after GSR, implying the plausible 
effect that the age-related spread in the physiological pro-
cess (GMD changes) which may underlie the observed age 
differences, is accompanied by an increase in FC variance.

Previous research has shown that functional connectivity 
reflects both trait and state aspects of the individual, with 
considerable variation across tasks but also stable features 
(Cole et al. 2014; Geerligs et al. 2015b), and inter-individual 
differences in brain responses during task being to a large 
extent predictable from measurements at rest (Tavor et al. 
2016). Most relationships presented here were consistent 
across the three experiments, and may thus reflect between-
group differences, produced by aging processes, in trait-like, 
functional-architecture components.

Reliance on cross-sectional data is a limitation of our 
study and most other work addressing the relationship 
between aging and FC. Even though we use terms like age-
related decline for the sake of explanatory simplicity, it is 
important to bear in mind that cohort effects may confound 
cross-sectional, as opposed to longitudinal, data, as well as 
affording reduced sensitivity (Nyberg et al. 2010). In par-
ticular, low-performing subjects may be less likely to be 
selected for study due to poor health or mortality. Although 
this may be a source of bias, note that it should produce 
smaller rather than larger heterogeneity in aging. It is also 
important to stress that the effects we report should not be 
interpreted as a mediation. Mediation analyses should ide-
ally be performed on longitudinal data (unfortunately not 
available in the present study), as those performed on cross-
sectional data are known to be prone to bias in the estimation 
of the parameters (Lindenberger et al. 2011; Laughlin et al. 
2018). A further limitation of the present study is that we 
did not collect measures of education, health or fluid intel-
ligence, and therefore we cannot rule out completely that 
group differences in these may be confounding the differ-
ences in neural measures we found.

In-scanner motion, which may artifactually increase the 
degree of correlation between BOLD time-courses, deserves 
some cautionary comments. For the GNG, not even an 
aggressive correction (FD threshold at 0.3 mm) removed 
the difference in mean FD between younger and older par-
ticipants. Although a FD threshold above 0.2 mm will leave 
demonstrable motion artifacts (Power et al. 2014), such a 
restrictive threshold would have excluded too much data in 
our study. Other investigations on the effects of aging on 
FC have used less or equally strict thresholds than the one 
we used here (Chan et al. 2014; Geerligs et al. 2014, 2015a; 

Ferreira et al. 2016). It is worth pointing out that there exist a 
number of motion-correction strategies available (Ciric et al. 
2017; Parkes et al. 2018), and beyond censoring methods 
like we have used, ICA-based methods (Pruim et al. 2015) 
can be very effective at removing motion-related artifacts. 
Besides censoring high-motion volumes, as a further control 
we regressed out a quadratic function of the motion param-
eters and their derivatives (Satterthwaite et al. 2013; Power 
et al. 2014). Using GSR had an impact on the estimates of 
aging effects and weakened but did not eliminate the rela-
tionships we report with BP. GSR may remove neural signal 
of interest (Murphy and Fox 2017), and it seems unlikely 
that these associations would arise solely as a product of 
motion, but with the current data we cannot completely 
rule out this possibility. Differences in the impact of GSR 
between the three experiments are likely to be, at least in 
part, the result of the different activation profiles associated 
with their particular cognitive requirements. GSR induces 
a negative shift in FC (Murphy et al. 2009; Li et al. 2019), 
and the resulting estimates can be interpreted as relative to 
the whole-brain signal (Yeo et al. 2015), which may account 
for the shift observed in aging effects when applying GSR. 
While the derived aging effects are less affected by motion 
and physiological artifacts, their interpretation becomes less 
straightforward.

We focus on the GNG data because it had a long acquisi-
tion time and the largest number of subjects after exclusion 
of those with excessive motion, but we show that our main 
conclusions are preserved in the TAB and RS experiments, 
for which there was no statistically significant age-group 
difference in a summary measure of in-scanner motion. We 
note that the scanning parameters were the same in the three 
experiments, with the only exception being the number of 
volumes. Owing to their greater scanning length compared 
to the RS, the task datasets allowed us to obtain more robust 
estimates of aging effects.

Conclusion

We have mapped differences between younger and older 
subjects in mean and standard deviation for a compre-
hensive set of functional connections, and shown that 
low similarity between the connectomes of younger and 
older individuals reflects age-related changes in mean FC, 
whereas the loss of similarity between the connectomes 
of older participants is associated with age-related differ-
ences in FC variance. We observed that age-related altera-
tions in D1 receptor availability were related to differences 
in mean FC controlling for gray matter morphology differ-
ences. Additionally, age-related differences in variance of 
FC were related to differences in variance of GMD. These 
findings indicate that DA decline may contribute to the 
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loss of similarity between the connectomes of younger 
and older subjects, whereas differential patterns of aging-
related GMD loss mainly promote the increased dissimi-
larity among the connectomes of older adults.
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