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Abstract

Toll-like receptors (TLRs) play a central role in the innate immune response by recognizing conserved structural patterns in a
variety of microbes. TLRs are classified into six families, of which TLR7 family members include TLR7, 8, and 9, which are
localized to endolysosomal compartments recognizing viral infection in the form of foreign nucleic acids. In our current
study, we focused on TLR8, which has been shown to recognize different types of ligands such as viral or bacterial ssRNA as
well as small synthetic molecules. The primary sequences of rodent and non-rodent TLR8s are similar, but the antiviral
compound (R848) that activates the TLR8 pathway is species-specific. Moreover, the factors underlying the receptor’s
species-specificity remain unknown. To this end, comparative homology modeling, molecular dynamics simulations
refinement, automated docking and computational mutagenesis studies were employed to probe the intermolecular
interactions between this anti-viral compound and TLR8. Furthermore, comparative analyses of modeled TLR8 (rodent and
non-rodent) structures have shown that the variation mainly occurs at LRR14-15 (undefined region); hence, we
hypothesized that this variation may be the primary reason for the exhibited species-specificity. Our hypothesis was further
bolstered by our docking studies, which clearly showed that this undefined region was in close proximity to the ligand-
binding site and thus may play a key role in ligand recognition. In addition, the interface between the ligand and TLR8s
varied depending upon the amino acid charges, free energy of binding, and interaction surface. Therefore, our current work
provides a hypothesis for previous in vivo studies in the context of TLR signaling.
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Introduction

Toll-like receptors (TLRs) are pattern-recognition receptors that

trigger innate immune responses and prime antigen-specific

adaptive immunity [1,2,3]. All TLRs have a common domain

organization, an extracellular ligand recognition domain consist-

ing of leucine-rich repeats (LRRs), a single transmembrane

domain, and an intracellular Toll/interleukin (IL)-1 receptor

(TIR) domain [4]. The extracellular domain (ECD) contains

repeated LRR modules and is responsible for the recognition of

structurally diverse microbial molecules. The basic LRR module is

comprised of 24 amino acids that form a b-strand and a-helix

joined by a loop, and it is present in several prokaryotic and

eukaryotic receptors [5]. Once the TLR ECD (via binding of

ligand) is activated, TIR domains dimerize in the cytoplasm,

thereby providing a specific scaffold that is required for the

binding of downstream adaptor molecules to activate signaling

pathways [6]. To date, 10 and 12 functional TLRs have been

identified in humans and mice, respectively. TLR1-9 is conserved

in both species. However, mouse TLR10 is not functional due to

retrovirus insertion, and TLR11-13 have been lost from the

human genome [1,7,8]. Based on their primary sequences, TLRs

can be further divided into several subfamilies, each of which

recognizes related PAMPs: the subfamily of TLR2 (TLR2, 1, 6,

and 10) is crucial for the recognition of lipoprotein or lipopeptides.

The subfamily of TLR4 and 5 recognizes lipopolysaccharides and

flagellin, respectively. Viral dsRNA are recognized by the TLR3

subfamily, whereas nucleic acid PAMPs are recognized by the

TLR7 subfamily (TLR7, 8 and 9) [9]. Currently, five crystallo-

graphic structures of TLR ECDs and their ligand complexes have

been reported [10,11,12,13,14,15,16]. Of those, four were found

to be complexed with agonistic ligands, whereas the remaining one

was complexed with a co-receptor and an antagonistic ligand.

These structures provide evidence about how this pattern

recognition receptor recognizes ‘‘patterns’’ present in the ligands.

Using X-ray crystallographic studies, only a limited number of

known TLRs ectodomain interactions with ligands have been

observed. Indeed, identification of all ligand interactions of each

TLR member using crystallography has been very difficult. Hence,

we must rely on molecular modeling and docking studies to gain

further insights into these interactions.

Species-specific ligand recognition in TLR biology is an

emerging research area for the discovery of novel antagonists

and agonists for clinical use, which might lead to the development

of new vaccine adjuvants [17]. Previous studies have reported

species-specific ligand recognition by TLRs, including: (i) hetero-
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dimer complexes of bTLR2/1 and chicken TLR2 type 2/TLR16,

which stimulate the transcription factor NF-kB in response to both

the tri-acylated lipopeptide Pam3CSK4 and the di-acylated

lipopeptide FSL-1 [18,19], (ii) Rhodobacter sphaeroides as an agonist

of TLR4 signaling in horses and hamsters and as an antagonist in

humans and mice [20,21], and (iii) bovine and equine TLR4 fails

bind with murine TLR4 ligand, taxol [22]. Furthermore,

comparative analyses revealed that the function of TLR5 is

different in chickens, humans, and mice, indicating species-

specificity towards bacterial flagellins [23]. Similarly, non-rodent

TLR8s are activated by ssRNA and small synthetic ligands,

whereas rodent TLR8s fail to be activated by non-rodent ligands

[24,25]. Such species-specific ligand recognition by TLRs is not

often studied, leaving several questions that need to be addressed.

Biochemical studies have shown that TLR8 recognizes ssRNA

derived from viruses as well as synthetic small molecules in relation

to nucleic acids such as imidazoquinolines and immunostimulatory

guanosine nucleotides. However, the structural detail of the

ligand-receptor interaction remains unknown. Elucidation of such

ligand-binding mechanisms is a necessary step for future studies in

order to produce more selective and potent drugs for new potential

targets. Moreover, several experimental works have demonstrated

that non-rodent (human (h), bovine (b), and porcine (p)) TLR8

signaling is activated by synthetic ligands such as imiquimod

(R837), resiquimod (R848), and some guanine nucleotide analogs

[26,27,28,29,30]. However, rodent (mouse (m) and rat (r)) TLR8s,

whose primary sequences and structures are identical to non-

rodent TLR8s, are not activated by non-rodent ligands. The

molecular basis for these binding specificities and affinities are not

yet well determined. Therefore, molecular modeling studies are

needed to investigate the above phenomenon.

Due to the unavailability of the TLR8 crystal structure, it is very

difficult to understand TLR8 receptor-mediated activation.

Comparative homology modeling is cited as the most reliable

computer-based technique for deciphering the 3D structure of a

protein in the absence of its crystal structure. We used this same

comparative homology modeling technique to construct the non-

rodent and rodent structures of TLR8s based on the known crystal

structure of human/mouse TLR3s and polygalacturonase-inhib-

iting protein [13,31]. The models were refined by molecular

dynamics simulations (MDS), and these refined models were

subjected to subsequent molecular docking calculations. Potential

TLR8 dimers obtained from the molecular docking calculations

were subsequently used for protein-ligand docking to identify the

potent binding sites of the antiviral compound R848. Docking

studies identified that the ligand-binding site was located near the

undefined region, which along with diverse binding affinity might

play a key role in TLR8 species-specificity.

Materials and Methods

Sequence alignments and comparative homology
modeling of TLR8s

TLR8 protein sequences of h, m, r, b, and p were obtained from

the NCBI protein database (Accession numbers: GI: 8575527, GI:

14517353, GI: 124245108, GI: 76677887, and GI: 47523453,

respectively). The h, m, r, b, and p LRR blocks were annotated

using TollML. TollML is a specialized database that organizes the

structural motifs of TLRs, derived from the NCBI database [32].

The crystal structures of hTLR3 (PDB ID: 1ZIW) and mTLR3

(PDB ID: 3CIG) were used as common templates to build all of the

LRRs of TLR8 species, except the LRR14-15 region. The

LRR14-15 region was built using polygalacturonase-inhibiting

protein (PDB ID: 1OGQ) as a template. The target-template

alignments were carefully checked to avoid deletions or insertions

in each block of LRRs and then manually adjusted based upon the

sequence alignment obtained from each LRR identified by

TollML. Three-dimensional (3D) coordinates of the template

proteins were assigned to the target sequences according to the

above sequence alignment and then combined to generate

multiple alignments. The aligned sequences were then taken for

model construction using MODELLER 9v7 [33]. The MOD-

ELLER-generated models optimally satisfied spatial restraints,

which included homology-derived restraints on the distances,

dihedral angels, and stereochemical restraints. Modloop was used

to rebuild the model loop regions [34]. The resulting models were

subjected to molecular dynamics simulations (MDS) using

AMBER99 force field [35] implemented in YASARA dynamics

[36].

Molecular dynamics simulations for TLR8 model
MDS were performed using AMBER99 force field implemented

in YASARA. The simulations were performed individually for all

five TLR8 species using similar protocols. A simulation cell was

constructed around the TLR8 model with a 7.9 Å real space cut-

off for the Lennard-Jones forces and the direct space portion of

electrostatic forces, which were calculated using the Particle Mesh

Ewald method. The pKa values of the ionizable groups were

predicted and assigned protonation states based on pH 7.2. The

cell was then filled with water, and the AMBER99 electrostatic

potential was evaluated for all water molecules; the one with the

lowest or highest potential was turned into sodium or chloride

counter ion until the cell was neutral. A short steepest descent

minimization was done to remove severe bumps, followed by

simulated annealing minimizations at 298K, and the velocities

were scaled down every ten steps out of 500 steps over a total time

period of 5 ps to a final temperature of 0K. We then ran MDS

with AMBER99 force field at 298K and 0.9% NaCl in the

simulation cell for 1000 ps. The final snapshot was selected based

on the lowest potential energy from the 1 ns trajectory, subjected

to energy minimization, and subsequently used for molecular

docking studies. The refined models were validated using

PROCHECK [37], Verify3D plot [38], ERRAT [39], and ProSA

z-score [40].

Protein-protein docking
The refined model was then used for restrained pairwise

protein-protein docking to predict the homodimer of TLR8. We

used GRAMM-X [41] and Cluspro 2.0 [42,43], which are widely

accepted rigid-body protein-protein docking programs, to predict

and access the interactions between the homodimer complexes.

Docking sampling was carried out by employing a

12861286128 point grid with a spacing of 1.2 Å. Both programs

produced 10 models, which were ranked as the most probable

prediction candidates according to the geometry, hydrophobicity,

and electrostatic complementarity of the molecular surfaces, with

scoring function used by the programs. To select a model out from

the top ten scoring docked complexes yielded by both programs,

we applied several criteria, which are mentioned in the results and

discussion sections. Energy minimization was performed for the

final structures using YASARA package.

Protein-ligand docking
Docking calculations were carried out using DockingServer

[44]. The MMFF94 force field was used for energy minimization

of the ligand molecule resiquimod (R848; 4-amino-2-(ethoxy-

methyl)-a, a-dimethyl- 1H-imidazo [4, 5-c] quinoline-1-ethanol)

using DockingServer. Gasteiger partial charges were added to the

Species-Specific Ligand Recognition in TLR8
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ligand atoms. Non-polar hydrogen atoms were merged and

rotatable bonds were defined. Docking calculations were carried

out on the TLR8/TLR8 protein model. Essential hydrogen atoms,

Kollman united atom type charges, and solvation parameters were

added with the aid of AutoDock tools [45]. Affinity (grid) maps of

27627627 Å grid points and 0.375 Å spacing were generated

using the Autogrid program. AutoDock parameter set- and

distance-dependent dielectric functions were used in the calcula-

tion of the van der Waals and electrostatic terms, respectively.

Docking simulations were performed using the Lamarckian

genetic algorithm (LGA) and the Solis & Wets local search

method. Initial position, orientation, and torsions of the ligand

molecules were set randomly. Each docking experiment was

derived from 100 different runs that were set to terminate after a

maximum of 2500000 energy evaluations. The population size was

set to 150. During the search, a translational step of 0.2 Å and

quaternion and torsion steps of 5 were applied. The molecular

graphical representations were prepared using the chimera

program. The PyMOL program combined with APBS (http://

apbs.sourceforge.net) tools was used to calculate the electrostatic

potential at the molecular surface points.

Computational mutagenesis analysis
The changes in the Gibbs free energy induced by mutation at

the undefined region and ligand interaction region of TLR8s were

calculated by FoldX [46]. The structures of the five species of

TLR8 were minimized using the ‘‘RepairPDB’’ command via

YASARA-FoldX plugin to identify the residues that had bad

torsion angles, van der Waal’s clashes or total energies belonging

to the complex interface. Subsequently, individual mutations were

built using ‘‘BuildModel’’ command and the DDG values were

extracted from the FoldX output files.

Results and Discussion

Sequence analysis and comparative model of TLR8
The crystal structures of hTLR3 (1ZIW) and mTLR3 (3CIY)

were the two structurally homologous proteins showing higher

sequence similarity to the individual target LRRs. Hence, we

chose these structures as common templates for constructing the

(h, m, r, b, and p) TLR8 model [12,13,47]. LRR proteins and

domains share a common structure that makes them well suited

for mediating protein-protein interactions. Each LRR consists of

typically 20–30 amino acids, which include the consensus

sequence motif LxxLxLxxNxL (x being any amino acid). These

conserved L and N residues can be replaced by other hydrophobic

residues. Residues which denote N in the consensus motif play a

significant role in forming continuous hydrogen bonds with the

backbone carbonyl group of neighboring strands throughout the

entire protein, and the resulting structure is referred to as an

asparagine ladder. Similar to leucine, the conserved asparagines

can be replaced by other residues such as cysteine, threonine, or

serine, which are also capable of hydrogen bond formation [5,48].

As stated by Bell et al. [48], the LRR consensus motifs were found

to be conserved in all TLR8 species. The template structure

(TLR3), which was composed of 25 LRRs, aligned well with the

individual LRRs of hTLR8, except at the LRR14-15 (65 amino

acids) region. The region located at LRR14-15, called the

‘‘undefined region’’ [48,49,50], exhibited very low sequence

similarity between TLR7 family members (Figure 1A). Since a

portion of the undefined regions did not align well with the

template, we carried out secondary structure prediction to identify

structural elements located in this region. The secondary structure

prediction revealed that the undefined region was also a

prominent feature of the LRRs, consisting of a short b-sheet

whose length was 3–5 amino acid residues along with 310 helices

(Figure 1B).

Moreover, to build the 3D structure of the unidentified region, a

search was conducted to identify the possible template for the

undefined region by the fold recognition FUGUE server [51]. We

opted for this approach since we could not obtain any relevant

structures or domain through Pfam, SMART CDD, and BlastP

searches against PDB. The fold recognition server revealed that

the template of the undefined region belonged to the LRR family

(polygalacturonase-inhibiting protein, 1OGQ) [31]. The target of

each LRR sequence aligned with appropriate LRR pairs from the

template structures listed in Figure S1 A. Since the accuracy of the

model primarily depends on high sequence identity between the

target-template alignments, we used manual methods to align the

undefined region prior to modeling. The total average target-

template identities and similarities of TLR8s were 26.1% and

44.48, respectively (Table 1). We obtained similar target-template

similarities and identities among the five different species of TLR8.

The optimized sequences were used to construct comparative

models by MODELLER 9v4. Our predicted structure of the

undefined region agreed well with our secondary structure

prediction results. A series of 20 models were built independently,

and no difference in the number of secondary structural elements

and no significant main chain root mean square deviations

(RMSD) were identified. However, the final model was selected

based on stereochemical and energetic evaluations. Structural

superposition between the modeled TLR8s (h, m, r, b, and p) and

the template crystallographic structure of hTLR3 is shown in

Figure S1 B. The RMSD values were 1.31 Å (human), 1.25 Å

(mouse), 1.24 Å (rat), 1.26 Å (bovine), and 1.24 Å (porcine). Major

variations were observed in the undefined regions of the TLR8s

when compared to the structure of TLR3. This was mainly due to

the presence of irregular LRR domains in the LRR14-15 regions

of the TLR8s. Besides, there were minor secondary structural

differences observed in the LRR6, 8 and C-terminal regions,

whereas the remaining regions aligned well. Notably, these

variations occurred away from the ligand-binding regions of the

TLR8s. The final model for each species was subjected to

molecular dynamics for energy minimization and further optimi-

zation.

TLR8 models refinement by MDS
The constructed models of (h, m, r, b, and p) the TLR8s were

subjected to MDS in order to refine the structures for further

study. Structural refinement was performed using the explicit

solvent method in YASARA program, which automatically ran

the simulation for 1 ns to refine each structure; 500 ps was

considered to be the equilibration phase while the remaining

500 ps was considered to be production phase (One snap shot as

stored every 25 ps and a total of 20 trajectory files were saved).

Our MDS trajectory-based analysis showed that the potential

energy of the model gradually decreased from 21372500 kJ/mol

to 21276900 kJ/mol, which indicates that the model was

energetically stable during MDS. An ensemble of 20 structures

was obtained using this method, and the representative structure

from this ensemble was chosen based on lowest potential energy.

Finally, the representative structure was superimposed with

ensembles and identified no major structural change in backbone

(Figure S2). However, a few side chain clashes were observed in

the remaining ensembles.

The representative structure was subjected to energy minimi-

zation followed by stereochemical quality evaluation (Figure 1C).

The quality of the protein geometry was checked by employing

Species-Specific Ligand Recognition in TLR8
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ERRAT Protein Verification, PROCHECK, Verify 3D, and

ProSA z-score. The Ramachandran plot calculations were

computed with the PROCHECK program, which checks the

detailed residue-by-residue stereochemical quality of a protein

structure. The y and w distributions of the Ramachandran plot of

the non-glycine, non-proline residues are summarized in Table 2.

Altogether, .90% of the residues in the homology models were in

favored and allowed regions. This analysis shows that the template

and homology models possess similar Ramachandran plots with a

relatively low percentage of residues having general torsion angles.

The ERRAT program is a so-called ‘‘Overall quality factor’’ that

works by analyzing the statistics of non-bonded interactions

between different atom types, with higher scores depicting higher

quality structures. In the current case, the ERRAT score for all of

the models was .70%, well within the range of a high quality

model (Table 2). Compared to the template, the ERRAT scores

for the models suggest that the backbone conformation and non-

bonded interactions of the homology models were all within a

normal range. ProSA calculated the interaction energy per

residue. In this analysis, the interaction energy of each residue

with the remainder of the protein is computed in order to

determine whether or not it fulfills certain energy criteria. In the

TLR8s homology model, the resulting z-score was around 26,

similar to that of the template, further confirming that the energy

profile of the models is consistent with a reliable conformation

based on similarity with that of the templates (Table 2). Verify 3D

analysis of the models found no conformational errors, and there

were no values less than 0.09, further indicating that all of the

residues were located in favorable structural environments

(Figure 1D). Similar results of PROCHECK and Verify 3D were

observed for the remaining TLR8 species. The Verify 3D,

PROCHECK, ERRAT, and ProSA z-score results together show

that the representative structure was satisfactory and can thus be

considered as a reliable source for further analyses.

Dimerization of TLR8/TLR8 complex and MDS
Recently solved crystal structures of TLR1/2, TLR2/6, TLR4-

MD-2-LPS, and TLR3 have shown that TLR exists as a monomer

in solution and that dimerization takes place only upon ligand

binding [3,10,11,12,52,53]. The ligand-induced dimerization of

the TLR-TLR ectodomains causes the juxtamembrane sequences

in the C-terminal ectodomains to come into close proximity across

the transmembrane, resulting in reorientation or homodimeriza-

tion between the TLR TIR domains. The homodimeric TIR

Figure 1. Structure and sequence based alignments. (A) Sequence alignment of a region in the TLR7 family members of TLR7, 8, and 9 ECDs
centered on LRR14-15. (B) LRR14-15 template was identified by using FUGUE server, and this alignment was used to model the LRR14-15 of TLR8s.
The sequence indications are specified in Figure 3. (C) Ribbon representations of comparative homology modeled structures of rodent (mouse and
rat) and non-rodent (human, bovine, and porcine). TLR8s are shown in cyan, brown, red, green, and yellow, respectively. The undefined regions are
circled in the TLR8 species. (D) Verify 3D analysis of hTLR8 and template structures. Comparison of the calculated averaged 3D profiles of the TLR8
(cyan line) and template structures 1ZIW (blue line), 3CIY (red line), and 1OGQ (green line). The y-axis represents the average 3D-1D score, and x-axis
shows residue numbers.
doi:10.1371/journal.pone.0025118.g001
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receptor provides a specific molecular surface for the recruitment

of TIR domains containing signaling adaptor proteins [47].

Conversely, TLR7 subfamily members (TLR9 and 8) exist as a

preformed dimer prior to ligand recognition. The binding of

ligand induces conformational changes in the ectodomain, leading

to dimerization of the TIR domain and initiation of downstream

signaling [54]. Since the formation of the TLR8/TLR8 complex is

necessary for ligand binding, we modeled the TLR8 homodimer

through protein-protein docking methods. TLR3 is closely related

to the TLR7/8/9 family because of its intracellular localization

and nucleic acid ligand. Therefore, we used the recently published

crystal structure of the TLR3/TLR3-dsRNA complex as a guide

to predict the essential interacting dimerization residues in TLR8

and used those residues as a constraint during protein-protein

docking study. Structure-based sequence alignment of TLR3 and

8 are shown in Figure 2. The residues involved in TLR3

dimerization are located at the C-terminus (shaded in yellow), and

the corresponding residues in TLR8 are shaded in cyan. In order

to verify the prediction confidence of the TLR homodimer

interaction, protein-protein docking methods, GRAMM-X and

Cluspro 2.0, were used. To confirm the accuracy of these methods,

we performed unrestrained rigid-body docking for TLR3 dimer as

a test case, for which the dimer crystal structure is known. The

native TLR3 homodimer structure was present in the top 10

solution of both GRAMM-X and Cluspro 2.0 and was ranked

ninth and sixth by GRAMM-X and Cluspro 2.0, respectively.

This test highlights the feasibility and reliability of GRAMM-X

and Cluspro 2.0 in TLR-TLR docking; hence, we used these

methods in our subsequent docking calculations.

We subsequently used unrestrained docking to obtain the TLR8

homodimer using the docking programs (GRAMM-X and

Cluspro 2.0). Both docking programs produced top 100 solutions

of homodimer complexes for each TLR8 species, but none of the

complexes correlated with the available experimental evidence.

Therefore, we used restrained docking methods (GRAMM-X and

Cluspro 2.0) to predict the near native-like homodimer structures

of TLR8s. Each program returned 30 complexes, of which most

possessed an ‘m’ shaped dimer. We chose our desired complexes

based upon the following criteria: (i) Shared models produced by

two programs (ranked third and seventh by GRAMM-X and

Cluspro, respectively) (ii) From these shared models, we chose the

final docked complex based upon the high buried surface area. We

superimposed similar ‘m’ shaped complexes, which were produced

by both docking programs, and the selected final complexes are

shown in red (Figure S3). The protein-protein interfaces of the

final docked complexes were further analyzed using the PISA

server (http://www.ebi.ac.uk/pdbe/prot_int/pistart.html). The

final docked complexes for all of the species were obtained using

a similar protocol, and their ranks in the docking program are

listed in Table S1. As expected, the orientation of the TLR8/

TLR8 complex resembled the crystal dimer structure of TLR3.

The dimerization mainly occurred in the C-terminal region

(Figure 3A & Table 3), whose residues were highly conserved

among TLR8 species (Table S2).

The final TLR8 dimer structure orientation was similar to all

experimentally solved TLRs with an ‘‘m’’ shaped dimer

architecture. However, the distance between the TLR3 and

Table 2. Model validations and comparison with templates.

PROCHECK ERRAT ProSA

Ramachandran plot statistic (%) Goodness factor

Core Allowed General Disallowed Dihedrals Covalent Overall Score z-score

hTLR8 78 20.9 1.1 0 0.01 0.31 0.06 80.244 26.43

mTLR8 78.5 20.1 1.4 0 20.34 0.47 0.07 76.407 26.67

rTLR8 78.3 20 1.7 0 20.41 0.54 0.03 74.073 26.85

bTLR8 79 19.8 1.3 0 20.38 20.24 0.18 69.06 26.72

pTLR8 79.4 19 1.5 0 20.36 20.51 0.04 69.43 26.47

10GQ 77.4 22.3 0.4 0 20.18 20.29 0.2 84.918 28.64

1ZIW 75.5 24.2 0.3 0 20.36 0.35 20.08 68.908 26.89

3CIY 64.1 34.6 1.2 0.2 20.24 0.47 0.04 80.682 27.89

Note: Ramachandran plot qualities show the percentage (%) of residues belonging to the core, allowed, generally allowed, and disallowed region of the plot: goodness
factors show the quality of covalent and overall bond/angle distances: these scores should be above 20.5 for a reliable model. ERRAT and ProSA score indicates the
calculated overall quality score for protein structures.
doi:10.1371/journal.pone.0025118.t002

Table 1. Sequence similarities (%) of target-template LRR
pairs.

LRRs hTLR8 LRRs hTLR8

NT 40 14 35.3

1 45.8 15 41.70

2 32.6 16 52

3 40 17 21.9

4 45.8 18 57.70

5 32.3 19 53.8

6 38.5 20 40.60

7 53.8 21 44

8 23.9 22 33.3

9 46.2 23 54.2

10 55.2 24 60

11 35.3 25 42.30

12 30.8 CT 53.30

13 41.7 Avg 44.48

Note: 1–25 indicate tandem LRRs, NT and CT indicate N-terminal and C-terminal
LRRs, respectively. Avg refers to average values.
doi:10.1371/journal.pone.0025118.t001
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TLR8 dimer surfaces was reasonably diverse (,90 Å for TLR8).

Conversely, the TLR3 homodimer was separated by ,120 Å.

Therefore, the dimer structure possessed a wide-open surface for

binding with 40–50 base pairs of dsRNA. The modeled TLR8

dimer structure had a slight crevice on its surface, which accounts

for the disparity observed in the surface curve. As noted, TLR8

mediates anti-viral immunity and anti-tumor responses by

recognizing ssRNA viruses and synthetic small molecular weight

ligands, respectively. The superimposition of TLR3 with the

TLR8 revealed that the cavity formed by the TLR8 monomer

surfaces was smaller when compared to the TLR3 dimer structure,

and therefore TLR8 was able to interact with both physiological

(ssRNA) and synthetic ligands (imidazoquinolines) (Figure S4). The

obtained docked complexes of TLR8 dimers from all of the species

were reasonable; hence, we tested these complexes for binding

with R848 in ligand docking studies.

Protein-ligand docking studies
The quality of the backbone conformation, residual interactions,

residual contacts, and the dynamic stability of the structures were all

well within the limits established for reliable structures. This suggests

that an adequate dimer model for TLR8s can be obtained to

characterize its potential ligand interactions and investigate species-

specificity. In order to understand the species-specificity of ligand

recognition in TLR8 signaling, to select the best TLR8 dimer

model, and to understand its binding behavior in terms of affinity as

well as selectivity, we carried out docking with a known synthetic

small molecule agonist, R848 (as detailed in the methods section).

Recent biochemical studies found that R848 activates TLR8 in

macrophages, resulting in the production of cytokines such as IFN-

a, IFN-c, TNF-a, and IL-12. R848 increases cellular immunity

when compared to structurally similar R837 [55,56,57,58]. The

current docking protocol has been validated using the known crystal

structure of TLR3 homodimer with dsRNA by DockingServer [44].

This program produced 100 complexes (based on the scoring

function), of which the near native homodimer structure of the

TLR3/dsRNA complex ranked third. We therefore concluded that

our docking protocol is reliable and can be subsequently used for

TLR8 species. In general, the docking program produces poses with

same or different orientations within the defined active site. We

chose final complexes of each TLR8 species based on criteria such

as free energy of binding, interaction surface, binding affinity, pose

of the docked ligands, complex geometry, and large interaction

energy (Figure S5).

Figure 3. Docked poses of hTLR8 dimerization and ligand interaction. (A) A homodimer observed in the docking methods is shown with
one monomer in green (B chain) and the other in red (A chain). (B) Close-up view of the C-terminal domain-interacting residues. Hydrogen bonds are
represented by blue colored dashed lines. Key residues taking part in hydrophobic interactions as well as salt bridges are shown. (C) The side view
docking poses for R848 in human TLR8/TLR8. (D) Possible mode of R848 and its interaction with human TLR8/TLR8. The protein dimer backbone is
represented as a red ribbon; R848 is represented in stick format and colored in red, with the interacting residues colored in red and labeled.
doi:10.1371/journal.pone.0025118.g003

Figure 2. The structure-based sequence alignment between TLR8 and TLR3. The local structural environment of each residue is displayed
using JOY annotation. The helix regions (shown in red) tend to be less in number than the loop regions (shown in black). The TLR3 and TLR8 residues
involved in C-terminal interactions are highlighted in yellow and cyan, respectively.
doi:10.1371/journal.pone.0025118.g002
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Docking studies placed R848 ligand in the TLR8 homodimer

active site, whose binding orientations are more or less similar to

the crystal structure of TLR3/dsRNA homodimer. It should be

noted that in TLR3, both the N-terminal and C-terminal portions

are involved in ligand binding [12]. However, in our predicted

complexes (TLR8/TLR8-R848), only the C-terminal region was

involved in ligand interaction, mainly due to the nature of the

ligand molecule (Figures 3, 4, 5). Recent findings on TLR8

revealed that the N and C-terminal regions also participate in

ligand recognition when interacting with large-sized ligands such

as ssRNA [49]. The H-bond existing between synthetic R848 and

TLR8s species is shown in Figures 3, 4, 5. The amino acids that

play a pivotal role in R848 recognition in the five species are listed

in Tables S3, S4, S5, S6, S7. It has been reported that low pH is a

necessary prerequisite for signaling to occur in the TLR7 family.

Ruiz et al. proposed that CpG DNA binds to TLR9 in a pH-

dependent manner, and it interacts weakly with CpG DNA at

physiological pH [59]. In this regard, similar to TLR9, TLR8

mediates signaling in a pH-dependent manner [49]. The binding

specificity may depend on the ionization state of the CpG DNA or

R848 and ssRNA in the case of TLR8. R848 is a membrane

permeable weak base ligand with a number of ionizable groups

and a pKa value of 7.2, which binds to the negatively charged

TLR8 receptor. Interestingly, our docked model of TLR8/TLR8-

R848 demonstrates that the positively charged antiviral drug R848

formed a strong electrostatic interaction with the negatively

charged residues of D543 in TLR8 (Figures 3, 4, 5). Moreover,

previous mutational and computational analyses found that the

amino acids D543, S492, Q519, N539, R541, F544, and H566 of

TLR8 are indispensable for interaction with different ligands

[24,60,61]. Our docked complex revealed that except for S492

and N539, the remaining residues identified in mutational studies

participated in various interactions with R848. Therefore, the

residues (S492 and N539) that were not involved in the above

interactions might possibly interact with ssRNA ligand. Further-

Figure 4. Models of binding of R848 to bovine and porcine homodimer of TLR8s. (A) The side view docking poses for R848 in bovine TLR8/
TLR8. (B) Detailed top view of the R848 docking pose in bTLR8/bTLR8. The protein dimer backbone is shown as a green ribbon; R848 is shown as
sticks and colored in red, with the interacting residues colored in green and labeled. (C) The side view docking poses for R848 in porcine TLR8s. (D)
Detailed top view of the R848 docking pose in pTLR8/pTLR8. The protein dimer backbone is shown as a yellow ribbon; R848 is shown as sticks are
colored in red, with the interacting residues colored in yellow and labeled.
doi:10.1371/journal.pone.0025118.g004

Table 3. hTLR8-hTLR8 dimer interface.

Molecule A Chain Distance [Å] Molecule B Chain

R810 A 2.01 E775 B

G807 A 1.89 E775 B

R810 A 2.88 E775 B

E775 A 1.73 S805 B

T777 A 1.92 G807 B

E775 A 1.93 R810 B

D779 A 2.89 R810 B

E775 A 2.91 R810 B

D779 A 3.09 R810 B

K749 A 3.38 R810 B

Note: Residues involved in C-terminal protein-protein interactions. Cutoff
distance is 3.5 Å. Molecule A and B chains represent two monomer chains of
hTLR8.
doi:10.1371/journal.pone.0025118.t003
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more, our docked complex illustrated that the interaction of TLR8

with its ligand was mainly mediated through hydrophilic and

electrostatic interactions.

Identification of functional residues by computational
mutagenesis

The effect of the undefined region residues (438–442) on human

TLR8 has been investigated previously [60], and it was found that

these mutations led to strong effects on human TLR8 activation.

However, multiple sequence alignment indicated that this unde-

fined region is conserved in non-rodent species of TLR8, whereas

these residues were absent in rodent species (Figure S6). Moreover,

it remains unclear the role of undefined region in non-rodent

paralogs and rodent TLR8s activation. To elucidate this problem,

computational mutagenesis was carried out by FoldX [46], a well-

established method that has been successfully applied to the analysis

of protein folding, protein design, protein-protein interactions,

protein-DNA binding and evolution in a variety of proteins. The

prediction was carried out using YASARA plug-in FoldX

procedures that used the ‘‘RepairPDB’’ command to minimize

the energy of a protein structure by rearranging the amino acid side

chains in order to get a better free energy of the protein before the

calculation of FoldX mutational analysis for hTLR8. Mutagenesis

was carried out using the BuildModel FoldX command, and each

mutation was repeated for five times in each structure. A threshold

of 1.6 kcal/mol was considered, as it corresponds to twice the

standard deviation calculated with FoldX and values above this

threshold were considered to destabilize the protein.

As shown in Figure 6, the mutations were tested for the

undefined region residues and ligand interaction residues of TLR8

which were predicted by our docking analysis. Figure 6A clearly

indicates that all the mutations tested for hTLR8 had small DDG

values around 1 kcal/mol and the large change in stability were

found to be caused by the chains of Y441 chain A (2.66 kcal/mol),

R541 chain B (1.63 kcal/mol), D543 chain A (3.21 kcal/mol),

D543 chain B (3.33 kcal/mol), F568 chain A (3.87 kcal/mol),

F568 chain B (3.23 kcal/mol), whereas the replacement of A442 to

W significantly affected the overall stability of the protein

(19.79 kcal/mol - chain A) (2.8 kcal/mol - chain B). These results

suggested that according to the FoldX prediction, the substitution

of Ala residues at the undefined and ligand interaction region

significantly affects the TLR8 activation. The theoretical deter-

mination of FoldX alanine mutational analysis for hTLR8 has

been previously validated by experimental data showing high

degree accuracy [39]. In this sense, the theoretical value of

undefined region residues had larger DDG values that were

consistent with the experimental data further highlighting the

importance of undefined residues for hTLR8 activation [60].

Hence, we extended our analysis to other species of TLR8.

Figure 6B shows that the bTLR8 had small DDG values around

1 kcal/mol and the largest changes in stability were observed for

the A and B chains of E422 (1.76 kcal/mol) (1.88 kcal/mol), D425

(1.75 kcal/mol) (1.65 kcal/mol), D527 (2.05 kcal/mol) (2.28 kcal/

mol) and F528 (1.66 kcal/mol) (1.96 kcal/mol), respectively.

Figure 6C shows that the pTLR8 had small DDG values around

1 kcal/mol and the largest changes in stability were observed for

Figure 5. Proposed model of R848 with rodent TLR8s. (A) The side view docking poses for R848 in mouse TLR8/TLR8. (B) Detailed top view of
the R848 docking pose in mTLR8/mTLR8. The protein dimer backbone is shown as a cyan ribbon; R848 is shown as sticks are colored in red, with the
interacting residues colored in cyan and labeled. (C) The side view docking poses for R848 in rat TLR8s. (D) Detailed top view of the R848 docking
pose in rTLR8/rTLR8. The protein dimer backbone is shown as a brown ribbon; R848 is shown as sticks are colored in red, with the interacting residues
colored in brown and labeled.
doi:10.1371/journal.pone.0025118.g005

Species-Specific Ligand Recognition in TLR8

PLoS ONE | www.plosone.org 9 September 2011 | Volume 6 | Issue 9 | e25118



the A and B chains of G428 (1.57 kcal/mol) (1.68 kcal/mol),

N431 (1.78 kcal/mol) (1.71 kcal/mol) and D533 (1.68 kcal/mol)

(1.73 kcal/mol), respectively. Both these results were consistent

with the experimental data further emphasizing the role of

undefined region in protein stability [25,60]. Interestingly, D543

which is suggested by earlier experimental analysis showed that

this residue could participate in ligand interaction and had effect

on protein stability which correlated well with our FoldX analysis.

Furthermore, this D543 corresponding residues in other species

that were involved in ligand interaction also had large DDG values

which were consistent with previous experimental prediction

[24,25,60]. Since, the undefined region residues are absent in

rodent species, we have focused on the ligand interaction regions.

As shown in Figure 6D, all the mutations tested in mTLR8 that

participated in ligand interaction had very small DDG cut off

value, whereas the rTLR8 (Figure 6E) had a small DDG value

around 1 kcal/mol and the largest changes in stability were found

to be due to the A and B chains of F532 (1.24 kcal/mol)

(1.37 kcal/mol) and L544 (3.69 kcal/mol) (3.53 kcal/mol), respec-

tively. Thus, our results indicate that all mutations had minor

effect in rodent TLR8s, whereas it showed a large effect in non-

rodent TLR8s stability.

Species-specific ligand recognition
Perhaps the most interesting aspect of this work is the finding

that structural differences among species can lead to variable

specificity in ligand recognition. We superimposed the refined

structures of the TLR8s from rodent and non-rodent (Figure 7A),

whose structural superimposition and sequence identity is shown

in Table 4. This analysis revealed that hTLR8 was structurally

identical with other models in all of the LRR regions, except the

LRR14-15 portion (residues 438–442) (Figure 7A). Moreover,

Figure 6. The contribution of each residual activity induced by mutations predicted by FoldX. Plot of calculated DDG values for both
undefined and ligand interaction region residues of (A) hTLR8, (B) bTLR8 and (C) pTLR8. Plot of calculated DDG values for only ligand interaction
residues of (D) mTLR8 and (E) rTLR8.
doi:10.1371/journal.pone.0025118.g006
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interaction residues that participated in the docked complex of

TLR8/TLR8-R848 were conserved among all of the species,

except for residues N492 and S569 from rodent (Table 5).

Although, high sequence identity was observed between rodent

and non-rodent TLR8s, there were some residual variations

(RQSYA (residues 438–442)) among these species in their

undefined regions (Figure S6). We therefore superimposed this

portion from all of the species and found that non-rodent TLR8s

possessed a coiled region (residues 438–442) in the undefined

region, whereas the rodent TLR8s possessed a loop (Figure 7B).

We hypothesized that such structural discrimination in the

undefined region between rodent and non-rodent might possibly

play a key role in species-specificity. However, these regions did

not play any role in ligand interaction. Moreover, in our docked

Figure 7. Structural superimposition of the TLR8s used in the analysis. (A) The overall topologies of the TLR8s are remarkably similar, with
LRRs superimposing relatively well in most cases apart from the undefined region (LRR14-15). (a) The structural comparison of the human TLR8 with
mouse, rat, bovine, and porcine, (d) mouse TLR8 with rat, bovine, and porcine, (c) rat TLR8 with bovine and porcine, (d) bovine TLR8 with porcine. The
human, mouse, rat, bovine, and porcine TLR8 are colored in red, cyan, gray, green, and yellow, respectively. (B) Superimposition of the undefined
region (LRR14-15) of hTLR8 with other species shows significant differences. (a) All species undefined regions are shown in alpha-carbon trace, (b)
side view of the structural differences in the undefined regions are circled, (c) superimposition of the undefined regions shows non-rodent (mouse
and rat) that lacks a coil region are circled.
doi:10.1371/journal.pone.0025118.g007

Table 4. Structural and sequence comparison among the
TLR8 ECD species.

Species Species RMSD [Å] Sequence identity (%)

hTLR8 mTLR8 0.409 67

rTLR8 0.71 68

bTLR8 0.734 71

pTLR8 0.417 70

mTLR8 rTLR8 0.911 86

bTLR8 0.697 64

pTLR8 0.445 67

rTLR8 bTLR8 0.894 64

pTLR8 0.715 67

bTLR8 pTLR8 0.746 74

Note: hTLR8, mTLR8, rTLR8, bTLR8, and pTLR8 indicate human, mouse, rat,
bovine, and porcine Toll-like receptor 8, respectively. RMSD value denotes the
root mean square deviation value between the Ca atoms of species. % denotes
sequence identity in a percentage.
doi:10.1371/journal.pone.0025118.t004

Table 5. The ligand-binding region of TLR8 among the
species.

Position hTLR8 mTLR8 rTLR8 bTLR8 pTLR8

492 S N N S S

519 Q Q Q Q Q

539 N N N N N

541 R R R R R

542 L L L L L

543 D D D D D

544 F F F F F

566 H H H H H

567 Y Y Y Y Y

568 F F F F F

569 R S S R R

Note: The ligand-binding residues not conserved among the species are shown
in boldface with italic. hTLR8, mTLR8, rTLR8, bTLR8, and pTLR8 indicate human,
mouse, rat, bovine, and porcine Toll-like receptor 8, respectively.
doi:10.1371/journal.pone.0025118.t005
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complexes, the ligand-binding cavity was located in LRR15-17

(residues 484–572), which was in close proximity to the undefined

regions. It is of note that the surface charges present in the

undefined region might possibly be a deciding factor affecting

species-specificity. Hence, we carried out electrostatic potential

studies for all TLR8 species.

Electrostatic potential surface of TLR8s from different species

revealed significant differences in the undefined region located

near the ligand-binding cavity (Figure 8). Our hypothesis

correlated with previous experimental results, in which authors

proposed that undefined residues from 438–442 are required for

TLR8 activation but are not involved in ligand interaction. Taken

together, our data suggest that charge differences between the

TLR8s of the rodent and non-rodent species might be the deciding

factor governing the pharmacology of R848 through the TLR8

signaling pathway.

The TLR8/TLR8-R848 docked complex revealed that the

ligand-interacting residues present in hTLR8 were conserved

among the species (Table 5). Previous biochemical studies

suggested that D543 is a critical residue in hTLR8 and determines

ligand activity. Our docking studies found that D543 was located in

the cavity and played an important role in forming an H-bonding

network to R848, thereby activating TLR8 ECD. Interestingly,

D543 residue of hTLR8, whose corresponding residues in bTLR8

and pTLR8 are D527 and D533, respectively, formed strong H-

bonds with ligand. However, those critical corresponding residues

(D534 and D531) found in rodent TLR8s did not have any contact

with ligand due to their different conformational ligand binding

(Table 5 and Tables S2, S3, S4, S5).

The orientations of identified docked complexes (TLR8/TLR8-

R848) are similar to that of the TLR3/TLR3-dsRNA complex

[12]. However, the binding poses of rodent and non-rodent

TLR8s were slightly dissimilar, which we suspect causes variation

in the interaction energies for each complex, leading to the

inability of rodent TLR8s to activate TLR8 signaling pathways.

To this end, we calculated the binding affinity, intramolecular

energy, van der Waals potential energy, H-bond of desolvation

energy and interaction surface of each pose of the receptor

(Table 6). Our analyses revealed that non-rodent species had

higher binding affinity than rodent TLR8s. Due to their lower

binding affinity, rodent TLR8s were not able to activate the TLR8

signaling pathway, which is consistent with previous reports.

Therefore, this report proposes that rodent and non-rodent

TLR8s bind with their ligands, although rodent TLR8s have

weaker signaling initiators when compared to non-rodent TLR8s

[60].

In contrast, rodent TLR8s were believed to be non-functional as

it cannot be activated by RNA or small molecular ligands.

However, it was recently shown to be activated by ligands when

used in combination with polyT oligodeoxynucleotides (ODNs)

[62]. Furthermore, Gao et al., found that a series of imidazoquino-

line derivatives act as allosteric enhancers of agonist binding at

human A3 adenosine receptors [63], which indicates that ODNs

and imidazoquinoline molecules may directly bind to the TLR8.

Binding of polyT ODN to TLR8 can act as an (allosteric) activator

enabling increased binding of small molecule ligands to the active

TLR8 binding pocket for increased downstream signaling. This

study correlates with our hypothesis that non-rodent ligands can

alone bind with rodent TLR8s, however the signaling mechanism

is not activated, This finding indicates that non-rodent ligands

need to combine with polyT ODNs in order to stimulate the

rodent TLR8s. Few reports have suggested that there is a direct

interaction between the small molecule ligands and polyT ODNs

that might be responsible for the rodent TLR8s to be functional

[64]. Hence, polyT ODNs play a key role to activate the rodent

TLR8s that is mainly responsible for the differences observed in

Figure 8. Distinct electrostatic surface potentials of TLR8 from different species. TLR8 LRRs 14-17 species differences in shape and
electrostatic surface potential are shown. The concavity-located residues are circled. Electrostatic surface potential represented for the TLR-
characteristic structures of human (h), mouse (m), rat (r), bovine (b), and porcine (p) of TLR8 are shown.
doi:10.1371/journal.pone.0025118.g008

Table 6. Results of docking calculations using Gasteiger charges on both the ligand and protein.

Protein-Ligand
complexes

Free Energy of Binding
cal/mol

vdW+Hbond+desolvation
Energy kcal/mol

Total intermolecular.
Energy kcal/mol Interaction Surface

hTLR8/R848 26.85 28.34 28.44 737.624

bTLR8/R848 25.40 26.82 26.80 650.436

pTLR8/R848 26.69 28.09 28.18 732.534

mTLR8/R848 24.57 26.67 26.72 708.909

rTLR8/R848 24.91 26.21 26.28 670.738

Note: hTLR8, mTLR8, rTLR8, bTLR8, and pTLR8 indicate human, mouse, rat, bovine, and porcine Toll-like receptor 8, respectively.
doi:10.1371/journal.pone.0025118.t006
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the species-specificity with both synthetic and physiological

ligands. Despite the structural similarities between TLR7 and

TLR8, their activation has distinct consequences on the innate

immune cells and subsequent production of cytokines [65].

Interestingly, imiquimod activates preferentially TLR7; its ago-

nistic activity at TLR8 appears to be much weaker [66]. It is

therefore prudent to study the mechanism of action of these drugs.

Besides the species-specificity between rodent and non-rodent

ligand recognition, there has been diverse ligand recognition

patterns observed between the non-rodent TLR8s (h, b, and p).

hTLR8 can be activated by polyT ODNs, R848 and CL075, but

not imiquimod, whereas b and pTLR8 are activated by all human-

activating ligands and also by imiquimod [24,25]. However,

imiquimod is able to activate the human TLR8s when in

combination with polyT ODNs [66]. Notably, the comparative

analysis of non-rodent TLR8s within the undefined region

demonstrated low sequence similarity among the non-rodent

species, leading to diverse ligand recognition among the non-

rodent TLR8s (Figure 7B). Only a few amino acids clustered

around the binding site differed between TLR8 from different

species, and such variation was necessary for species-specificity.

Moreover, our docking study calculations also showed that there

were slight differences in ligand-binding affinity between non-

rodent TLR8s (Table 6). Although, bTLR8 was able to bind with

its ligand similar to other non-rodent (h and p) TLR8s, its binding

affinity was lower. This observation is consistent with a previous

work in which R848 induced human and sheep TLR8 10-15 fold

and bovine and cat TLR8 were induced less than 5-fold [60]. In

addition, the phylogenetic analysis of TLR8 species also revealed

that non-rodent and rodent species are evolutionarily diverse

(Figure S7). Previous reports found that TLR5 mediates species-

specificity in flagellin, and ligand recognition is controlled by

residues surrounding its binding site. [23]. Our hypothesis also

coincides with the above TLR5 studies that found that concavity

surrounded regions are responsible for mediating species-specific-

ity in ligand recognition. Taken together, these preliminary

comparative studies on TLR8s suggest that general TLR ligand

recognition and subsequent signaling could be species-specific.

In our current study, we used computational modeling studies to

build a homodimer complex structure of TLR8 with the antiviral

drug R848. The potential TLR8/TLR8-R848 complexes were

able to explain the species-specificity of TLR8 activation by its

ligand, which is in agreement with previous mutagenesis studies.

Our comparative studies on TLR8s suggest that insertion mainly

takes place in an undefined region shared across species that

possesses variable charge and secondary structural elements. This

undefined region located near the active site, along with the active

site surface residues, might play a key role in species-specificity.

Our current models can be utilized as a guide for future

experimental and computational studies to draw biological and

functional conclusions. The presented modeling approach can be

extended to other repetitive TLR protein ectodomains.

Supporting Information

Figure S1 Multiple sequence and structural alignments
between targate and templates. (A) Three templates,

mTLR3 (3CIY), hTLR3 (1ZIW), and P. vulgarism polygalactu-

ronase-inhibiting protein (1OGQ), were used to construct the

model of the TLR8s. The number 1–25 indicates the canonical

LRRs, and NT and CT indicate N- and C-terminal LRRs,

respectively. (B) Superimposition between crystal TLR3 (red) and

the MD-refined TLR8 models.

(TIF)

Figure S2 MDS-refined average structures of clusters.
MDS produced 20 refined models of hTLR8 shown in alpha-

carbon. Reference structure is cyan; the selected average structure

of the cluster is red. Similar refined structures produced by MDS

for the remaining TLR8 species were used for further studies.

(TIF)

Figure S3 Top-ranked docked complex comparison
with final selected complexes. (A) The final selected hTLR8

complex superimposed with similar orientation complexes yielded

by both docking programs. A chosen hTLR8 complex is shown in

red color, whereas similar conformational complexes are shown in

gray color. (B) The final selected bTLR8 complex superimposed

with similar orientation complexes yielded by both docking

programs. A chosen bTLR8 complex is shown in red color,

whereas similar conformational complexes are shown in gray

color. (C) The final selected pTLR8 complex superimposed with

similar orientation complexes yielded by both docking programs.

A chosen pTLR8 complex is shown in red color, whereas similar

conformational complexes are shown in gray color. (D) The final

selected mTLR8 complex superimposed with similar orientation

complexes yielded by both docking programs. A chosen mTLR8

complex is shown in red color, whereas similar conformational

complexes are shown in gray color. (E) The final selected rTLR8

complex superimposed with similar orientation complexes yielded

by both docking programs. A chosen rTLR8 complex is shown in

red color, whereas similar conformational complexes are shown in

gray color.

(TIF)

Figure S4 Dimer structure comparison between TLR3
and TLR8 dimers. For comparison purposes, the available

crystal dimer structure of TLR3 and dsRNA is shown in ribbon

representation in brown and blue color, respectively, whereas the

docked model structure of TLR8, synthetic small compounds

ligands of R837 and R848 represented as ribbon and sticks are

shown in (red and green) and blue, respectively.

(TIF)

Figure S5 Ligand binding mode comparsion. (A) Similar

docked poses of R848 with hTLR8 are compared with each other,

and the final selected docked pose is shown in red color stick

representation. (B) Similar docked poses of R848 with bTLR8 are

compared with each other, and the final selected docked pose is

shown in red color stick representation. (C) Similar docked poses

of R848 with pTLR8 are compared with each other, and the final

selected docked pose is shown in red color stick representation. (D)

Similar docked poses of R848 with mTLR8 are compared with

each other, and the final selected docked pose is shown in red color

stick representation. (E) Similar docked poses of R848 with rTLR8

are compared with each other, and the final selected docked pose

is shown in red color stick representation.

(TIF)

Figure S6 Sequence alignments of TLR8 from different
species. Sequences were used from human (h; Homo sapiens),

mouse (m; Mus musculus), rat (r; Rattus norvegicus), pig (Bos

taurus) and cow (Sus scrofa), elephant (lox; Loxodonta africana),

cat (Felis catus), chimpanzee (chml; Pan troglodytes), horse (hor;

Equus caballus), sheep (ovi; ovis aries), and water buffalo (wbu;

Bubalus bubalis). The significant differences among the sepecies

are highlighted in the black box.

(TIF)

Figure S7 Phylogenetic tree of TLR8. The evoultionary

relationship calculated on the basis of the protein sequences of

their TLR domains. human (h; Homo sapiens), mouse (m; Mus
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musculus), rat (r; Rattus norvegicus), pig (Bos taurus), cow (Sus scrofa),

elephant (lox; Loxodonta africana), cat (Felis catus), chimpanzee (chml;

Pan troglodytes), horse (hor; Equus caballus), sheep (ovi; Ovis aries), and

water buffalo (wbu; Bubalus bubalis).

(TIF)

Table S1 Ranking and interaction area of the selected
docking models.
(DOC)

Table S2 The docking study of homodimer TLR8
complex contact residues among species.
(DOC)

Table S3 Interaction table of hTLR8/hTLR8-R847.
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Table S4 Interaction table of bTLR8/bTLR8-R847.
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Table S5 Interaction table of pTLR8/pTLR8-R847.
(DOC)

Table S6 Interaction table of mTLR8/mTLR8-R847.
(DOC)

Table S7 Interaction table of rTLR8/rTLR8-R847.
(DOC)
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