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Chronic infections with non-cytopathic viruses constitutively expose virus-specific adap-
tive immune cells to cognate antigen, requiring their numeric and functional adaptation. 
Virus-specific CD8 T cells are compromised by various means in their effector functions, 
collectively termed T  cell exhaustion. Alike CD8 T  cells, virus-specific CD4 Th1  cell 
responses are gradually downregulated but instead, follicular T helper (TFH) cell differ-
entiation and maintenance is strongly promoted during chronic infection. Thereby, the 
immune system promotes antibody responses, which bear less immune-pathological 
risk compared to cytotoxic and pro-inflammatory T cell responses. This emphasis on 
TFH cells contributes to tolerance of the chronic infection and is pivotal for the con-
tinued maturation and adaptation of the antibody response, leading eventually to the 
emergence of virus-neutralizing antibodies, which possess the potential to control the 
established chronic infection. However, sustained high levels of TFH cells can also result in 
a less stringent B cell selection process in active germinal center reactions, leading to the 
activation of virus-unspecific B cells, including self-reactive B cells, and to hypergamma-
globulinemia. This dispersal of B cell help comes at the expense of a stringently selected 
virus-specific antibody response, thereby contributing to its delayed maturation. Here, 
we discuss these opposing facets of TFH cells in chronic viral infections.
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iNTRODUCTiON

Non-or poorly cytopathic viruses like human immunodeficiency virus 1 (HIV-1), hepatitis B virus 
(HBV), and hepatitis C virus (HCV) in humans or lymphocytic choriomeningitis virus (LCMV) 
in mice can induce persistent infections employing several mechanisms to evade control by the 
immune system. Continuous high-level viral replication and therefore high viral burden in the 
host is a major factor leading to numeric reduction and functional impairment of virus-specific 
cytotoxic CD8 T cells and Th1 CD4 T cells, collectively termed T cell exhaustion [reviewed in Ref. 
(1–3)]. In this setting, immune effector functions being less prone to induce immunopathology, 
like the humoral arm of immunity, are beneficial to contain viral spread (4–10). Especially, virus-
neutralizing antibodies can inhibit new infection of host cells and thereby effectively limit viral 
spread. However, isotype-switched neutralizing antibodies often appear very late after the onset of 
persistent viral infections, being frequently delayed for several weeks to months (5, 11, 12). B cell 
dysregulation, including hypergammaglobulinemia and polyclonal B cell activation, contributes to 
the late emergence of virus-neutralizing antibodies (13, 14). Furthermore, mutational viral evolution 
results in selection of variants that escape the neutralizing antibody response, promoting persistence 
of the infection (12, 15–22).
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Table 1 | Regulation and role of TFH cells in chronic viral infections.

Follicular T helper (TFH) cells impact Consequence Reference

lymphocytic choriomeningitis virus (lCMv) infection

Sustained TFH activity Generation of LCMV-neutralizing antibodies Eventual control of infection (7) Positive role of 
TFH for antibody 
responses and 
eventual virus 
control

Lack of TFH cells from the onset of infection Impaired antibody response Sustained persistent infection (8, 10, 38, 
86–88)

Increase of TFH cells by NK cell depletion Improved antibody response Enhanced/accelerated virus 
control

(89)

Sustained high levels of T cell help Polyclonal B cell activation (including 
autoreactive B cells)

Hypergammaglobulinemia (13, 202) Negative impact 
of sustained TFH 
responses

Simian immunodeficiency virus (Siv)/Hiv/hepatitis C virus (HCv)/hepatitis b virus (Hbv) infection

High frequencies of TFH cells in SIV infection Correlation with high-affinity SIV-specific 
antibodies

(43, 90) Positive role of 
TFH for antibody 
responsesReduction of follicular regulatory  

T (TFR) cells in SIV infection
Increased TFH cell numbers High avidity antibodies to SIV 

gp120
(96, 126)

High frequencies of (functional) (c)TFH cells in  
HIV, HCV, and HBV infection

Broad (neutralizing) antibody responses Positive correlation with 
antibody affinity

(42, 91–95, 
97, 98)

TFH in HCV infection Reduced IL-21 production Normal in vitro help to B cells (124)

Reduced TFH frequencies in spleen in SIV infection Reduced SIV-specific IgG titers (107)

Loss of TFH cells in advanced chronic SIV infection Impairment of B cell response Progression to AIDS (100) Negative impact 
of sustained TFHcTFH with impaired function in HIV infection No correlation with neutralizing antibodies Impaired function (95, 99)

Reduced TFH function in HIV infection Caused by PD ligand 1 (PD-L1) expression 
on B cells 

Blockade of PD-L1 restores TFH 
function

(123)

Increased TFR response in SIV and HIV infection Insufficient germinal center response (127)

Increased Treg and Breg in HCV and HBV infection Impaired antibody response? (108, 130–132)

Direct infection of TFH by HIV/SIV Impaired function Viral reservoirs (135–137)

Sustained high levels of T cell help in SIV,  
HIV, HCV, and HBV infection

Polyclonal B cell activation s (including 
autoreactive B cells)

Hypergammaglobulinemia (42, 43, 199, 
200, 203–205)

Green: positive role of TFH cells in chronic infections. Orange: negative role of TFH cells in chronic infections. White: unassigned role of TFH cells in chronic infection.
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Isotype-switched antibody responses are elicited in a T-help-
dependent manner, being regulated by the interaction between 
follicular T helper (TFH) cells and cognate B cells (23). Activity 
of TFH cells is regulated by the transcriptional repressor B  cell 
lymphoma (Bcl)-6 (24–26) which sustains, among other func-
tions, upregulation of the chemokine receptor CX-chemokine 
receptor (CXCR) 5 that in turn mediates localization of TFH cells 
to the B cell follicle (27–29). There, TFH cells initiate B cell differ-
entiation into either short-lived plasmablasts or germinal center 
(GC) B cells (30–33). Conversely, contact between TFH cells and 
cognate B cells is necessary to induce differentiation of TFH cells 
into GC TFH cells and to sustain their TFH phenotype (34–37), 
albeit this is disputed to also hold in case of persistent viral infec-
tions (38). TFH cells mediate affinity selection of B cells that have 
undergone proliferation and somatic hypermutation (SHM) by 
delivering survival signals via ICOS, CD40 ligand (CD40L), and 
the cytokine IL-21, depending on the affinity of the B cell for a 
given antigen (39–41). Therefore, TFH cells are essential for the 
induction and maintenance of the GC response.

Interestingly, TFH cells accumulate during the persistent phase 
of viral infections with non- or poorly cytopathic viruses (8, 38, 42, 
43) while differentiation of naïve CD4 T cells into Th1 CD4 T cells 
is largely abrogated in this phase due to a sustained IFN-I envi-
ronment (44). The expansion of the TFH population is most likely 

driven by follicular dendritic cell (FDC)-derived IL-6 signaling 
via signal transducer and activator of transcription (STAT)-3 (8, 
43, 45), and the prolonged persistence of viral antigen in the host 
environment (46). It would be intriguing to conjecture an essential 
role of the sustained expansion of the TFH cell population for the 
eventual induction of the virus-neutralizing antibody response 
and also adaptation of the protective response to an evolving virus. 
However, accumulation of TFH cells might also contribute to the 
observed B cell dysregulation and thereby delay of the neutralizing 
antibody response (Figure 1). Here, we discuss evidence for both, 
promotion of late emergence of virus-neutralizing antibodies 
and dysregulated B cell responses in the context of chronic viral 
infections, focusing on experimental LCMV infection in mice and 
HIV-1, HCV, and HBV infection in humans (Table 1).

TFH CellS

Follicular T helper cells are the main regulators of T-help-
dependent antibody responses (23). Instruction of TFH cell 
differentiation is mediated in two steps. Priming of CD4 T cells 
that commit to the TFH cell lineage takes place in the T cell zone 
and is mediated by conventional DCs or monocyte-derived 
DCs (47, 48). In a second step, differentiation to TFH cells is 
further instructed and the TFH phenotype stably established by 
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FigURe 1 | Follicular T helper (TFH) cells at the cross-road of helping versus inhibiting. TFH numbers are numerically increased in many chronic viral infections. Extrinsic 
factors contributing to promote TFH differentiation during chronic viral infections include continuous high antigen load, sustained type 1 IFN environment, and IL-6 
availability. Intrinsically, Bcl-6, ICOS, signal transducer and activator of transcription (STAT)-3, GITR, and miR17–92 expression in CD4 T cells is required for (efficient) 
TFH differentiation. In the germinal center (GC), TFH cells preferentially localize to the light zone (LZ) where they interact via their TCR with B cells presenting antigenic 
peptides on MHC class II. B cells acquire antigen from follicular dendritic cells (FDCs) in the LZ which serve as antigen depot. FDCs retain antigen in form of antibody–
antigen complexes or opsonized antigen via Fc and complement receptors. Cognate interaction between B cells and TFH provides survival, proliferation, and 
differentiation signals to the B cell in form of CD40 engagement and IL-21 supply. B cells will then either differentiate into antibody-secreting plasmablasts and 
long-lived plasma cells, into memory B cells, or enter the GC dark zone where the proliferate and undergo somatic hypermutation of their antibody variable regions 
before re-entering the LZ for selection of high-affinity B cells clones. Sustained activity of TFH cells is required throughout chronic viral infection to promote broadly 
reactive, affinity matured, and neutralizing antibodies and to adapt antibody specificity to emerging viral variants. Conversely, the high numbers of TFH cells present 
during many chronic viral infections render the GC LZ B cell activation and selection process less stringent, leading to aberrant B cell activation, induction of non 
virus-specific antibodies (including autoantibodies), hypergammaglobulinemia, and delayed generation of neutralizing antibody responses. Further contributing to a 
dysregulated TFH/B cell interaction in GCs is a dysbalanced ratio of TFH:TFR cells, often with reduced numbers of follicular regulatory T (TFR) cells in chronic viral infections.
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interactions between primed TFH cells and B cells at the border 
between T cell and B cell zone.

Which factors/cytokines instruct TFH differentiation is not 
entirely resolved, but both IL-6 and IL-21 can induce TFH differ-
entiation via signaling through the transcription factor STAT-3 
(49, 50). In the context of a persistent LCMV infection, it has 
furthermore been shown that late FDC-derived IL-6 is essential 
for TFH cell maintenance and eventual control of the infection (8).

CD4 T cells differentiating to TFH cells upregulate the hallmark 
transcriptional repressor Bcl-6 (24–26). Bcl-6 promotes com-
mitment to the TFH cell lineage by repression of Blimp-1, which 
mediates expression of genes that are involved in the differen-
tiation into other CD4 T cell lineages (24). Furthermore, Bcl-6 
promotes localization of TFH cells toward the B cell follicle where 
T-help-dependent antibody responses take place. This is achieved 
in two different ways. For one, Bcl-6 represses the expression of 
molecules promoting localization in the T  cell zone or egress 
from secondary lymphoid organs, i.e., CC chemokine receptor-7, 
Epstein–Barr virus-induced G-protein-coupled receptor (EBI)-2, 

or P-selectin glycoprotein-1 (51–53). Furthermore, Bcl-6 stabi-
lizes the expression of CXCR5 on TFH cells, which is upregulated 
by the transcription factor achaete-scute homolog-2 (ASCL-2) 
upon priming (54). CXCR5 is essential for the localization of 
TFH cells toward the CXCL13-rich B  cell follicles (27–29). TFH 
cells can further be distinguished by expression of other typical 
markers, which have important functions in mediating cognate 
interactions with B cells and thus sustaining antibody responses. 
Among these markers are the costimulatory molecules inducible 
T-cell costimulator (ICOS) and CD40L, the immunoregulatory 
molecule PD-1, their hallmark cytokine IL-21, and the T  cell 
adaptor protein SAP (23, 55–58). Expression of these markers is 
moderate after priming and needs to be sustained and increased 
by interaction of TFH cells with cognate B  cells and by ICOS 
signals delivered by ICOS ligand expressing bystander B cells in 
the interfollicular zone (34–37). These first interactions between 
TFH cells and B  cells also determine the differentiation of TFH 
cells into GC TFH cells that induce and maintain the GC response 
and play an important role in the positive selection of affinity 
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matured B  cell clones. Expression of TFH markers is highest in 
GC TFH cells (37, 59, 60). After an immune response, some TFH 
cells have been shown to differentiate into long-lived memory 
cells, which downregulate some of their typical TFH markers like 
CXCR5, Bcl-6, and PD-1 (61, 62).

In humans, there have been further reports about circulating 
TFH-like cells that express CXCR5 and display a memory phe-
notype. Their expression of ICOS, PD-1, and Bcl-6 is reduced 
as well. However, these cells are efficient producers of IL-21 and 
IL-10 in in  vitro coculture and effective inducers of B  cell dif-
ferentiation (23).

Closely related to TFH cells and equally important for the regu-
lation of the GC responses are the so-called follicular regulatory 
T (TFR) cells. These are derived from thymus-derived T regulatory 
(Treg) cells, which adopt some TFH cell characteristics, like CXCR5 
and Bcl-6 expression, to be able to migrate into B cell follicles. 
However, TFR cells lack expression of CD40L, IL-4, or IL-21 and 
have a higher expression of PD-1 and negatively regulate the GC 
response (63–65).

gC ReSPONSe

The first encounter between TFH cells and activated B cells occurs 
in the interfollicular zone which lies at the border between T cell 
zone and B cell follicle (66–68). Here, interaction between TFH cells 
and cognate B cells induces a first round of B cell proliferation and 
instructs them to undergo one of three possible differentiation 
pathways. Either B cells undergo differentiation into short-lived 
extra-follicular plasmablasts, which produce a first wave of low 
affinity antibodies, or into GC-independent memory B cells or 
into GC B cells (30–33, 69). B cells destined to induce the GC 
response migrate with a subset of TFH cells, GC TFH cells, further 
into the B cell follicle. This migration is mediated by downregula-
tion of EBI2 and upregulation of Sphingosine-1-phosphate recep-
tor 2 on both B and TFH cells (66, 69–71).

The GC is partitioned into two distinct zones, the dark zone 
(DZ) and the light zone (LZ). In the DZ the cytokine CXCL12 is 
predominantly produced while the cytokine CXCL13 is predomi-
nantly produced in the LZ. Thereby, localization of B cells in DZ 
and LZ is controlled by differential expression of the chemokine 
receptors CXCR4 (migration into DZ) and CXCR5 (migration 
into LZ) (72). In the DZ, B cells undergo sequential rounds of 
proliferation (73–76). During this process, B cells upregulate the 
activation-induced cytidine deaminase (AID) which introduces 
point mutations into the variable regions of the B cell expressed 
BCRs/antibodies, a process termed SHM (77–79). Thereby, clonal 
B cell variants with different affinities toward one given antigen 
are generated. The activity of AID is also essential for class-switch 
reactions, which change the isotype of the antibodies (77, 79).

As SHM is a random process, it is necessary for B  cells to 
undergo a selection process to ensure affinity maturation of the 
antibody repertoire and to exclude B cells that lost affinity for one 
antigen, decreased their affinity or even developed into autoreac-
tive B cells. This selection process takes place in the LZ of the GC 
where also most of the GC TFH cells and FDCs are located (73, 
75, 76). Upon entry into the LZ, B cells take up antigen which is 
stored on/presented by FDCs via their mutated BCR according 

to their affinity toward the antigen. Afterward, B  cells present 
processed antigen to cognate GC TFH cells via their surface MHC 
II molecules. Higher affinity B cells are believed to have a com-
petitive advantage in taking up FDC-stored antigen and thus are 
able to present more antigen on their surface MHC II molecules 
(80). The amount of presented antigen determines the amount 
of survival signals via ICOS, CD40L, and IL-21 a B  cell clone 
receives from cognate GC TFH cells (39, 40, 76).

B cell clones that do not receive sufficient survival signals and 
therefore are negatively selected undergo apoptosis mediated 
by binding of Fas, expressed by the B cell, to FasL, expressed by 
the GC TFH cell (41, 81). Positively selected B cell clones either 
undergo another round of proliferation and SHM in the DZ or 
leave the GC reaction as long-lived plasma cells or memory B cells 
(74, 75, 82). B cells with the highest affinity may preferentially dif-
ferentiate into plasma cells (69, 83, 84). B cell clones with a lower 
affinity, however, rather differentiate into memory B cells (82).

TFH CellS aRe eSSeNTial FOR THe 
eMeRgeNCe OF viRUS-NeUTRaliZiNg 
aNTibODieS aND CONTROl OF 
PeRSiSTeNT viRal iNFeCTiON

The role of TFH cells for viral control during persistent viral 
infections, which is assumed to be dependent on development of 
neutralizing antibodies during the GC response (13, 16, 85), has 
been widely studied in the setting of persistent LCMV infection. 
For example, mice harboring a constitutive CXCR5 deficiency, 
and therefore being unable to develop TFH cells (and B cell folli-
cles), exhibit an abrogated antibody response and prolonged viral 
persistence (38). Likewise, IL-6−/− (8), IL-6 signaling-deficient 
(10), STAT3−/− (86), glucocorticoid-induced tumor necrosis 
factor receptor related protein (GITR)-deficient mice (87), and 
mice with a T  cell-specific deletion of the miR17–92 family of 
microRNAs (88) fail to elicit or maintain a TFH cell response upon 
(persistent) LCMV infection and are unable to eventually control 
the infection. Conversely, increasing the number of TFH cells by 
NK  cell depletion accelerated viral clearance by improving the 
virus-specific antibody response (89).

Similar correlations between TFH cells and the appearance of 
protective antibody responses were observed in other persistent 
viral infections, e.g., with simian immunodeficiency virus (SIV), 
where the frequency of TFH cells positively correlated with the 
appearance of high-affinity SIV-specific antibodies in infected 
rhesus macaques (RM) (43). These TFH cells adopted a Th1-like 
profile regarding their chemokine receptor and cytokine expres-
sion (90). Furthermore, the quantity of TFH cells was higher in 
slow/non-progressor SIV-infected RMs, in which the virus was 
better contained, as compared with progressor SIV-infected RMs. 
The increase in TFH cell numbers in slow progressor correlated with 
higher titers of SIV-specific IgG antibodies in serum of infected 
RMs (43). Also, in chronically infected HIV-1, HCV and HBV 
patients, increased frequencies of a circulating population of cells 
with TFH characteristics (cTFH) (CXCR5+CXCR3−PD-1+) were 
observed (42, 91–98), which seemed closely related to GC TFH 
cells, based on their gene expression and cytokine profile. These 
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were able to induce B cell differentiation in vitro and correlated 
with the appearance of broadly HIV-neutralizing antibodies (91, 
92). In HIV controllers, an expanded population of functional 
gp120-specific TFH cells in blood correlated with gp120-specific 
B cell frequencies (93). However, other studies reported a reduced 
capacity of cTFH cells to provide help to B  cells in (advanced) 
HIV-1 infected individuals (95, 99) or even loss of TFH cells in 
SIV-infected RMs (100).

Another indication implicating TFH cells in the eventual 
emergence of virus-neutralizing antibodies during persistent 
viral infection is the high frequency of somatic mutations in the 
variable regions of these antibodies (11, 19, 101, 102). SHM pre-
dominantly takes place in the GC and selection of high-affinity 
clones is supported by GC TFH cells (76). It is therefore tempting 
to speculate that continued activity of TFH cells during chronic 
viral infections is required for a continuous selection process of 
virus-specific B cell clones. This results not only in a continuous 
increase of their affinity toward viral antigens but also allows 
them to evolve to bind (and neutralize) to viral quasi species that 
emerge in vivo under selection pressures.

Indeed, we recently presented experimental evidence that 
sustained presence of CXCR5+/+ or Bcl6+/+ TFH cells is strictly 
required for the (late) emergence of LCMV-neutralizing antibod-
ies. Using a novel in vivo experimental system allowed conditional 
depletion of specifically TFH cells or all LCMV-specific CD4 T cells 
during established persistent LCMV infection, after the initial 
establishment of the virus-specific IgG antibody response (7). 
This permitted, in contrast to previous studies (8, 10, 38, 86), to 
examine the function of TFH cells and LCMV-specific CD4 T cells 
during persistent viral infection beyond the mere induction of 
the virus-specific antibody response. This study revealed that 
LCMV-specific TFH cells (i.e., CXCR5+/+ or Bcl6+/+ CD4 T cells) 
were dispensable for maintaining overall LCMV-specific IgG 
titers and LCMV-specific IgG secreting plasma cells in spleen and 
bone marrow. By contrast, continued presence of LCMV-specific 
CD4 T cells was required to maintain overall LCMV-specific IgG 
titers as well as LCMV-specific IgG secreting plasma cells in bone 
marrow, suggesting that non-TFH LCMV-specific CD4 T cells are 
able to support an extra-follicular response to maintain the pool of 
LCMV-specific antibody-secreting cells and hence LCMV-specific 
IgG titers. However, sustained activity of TFH cells was strictly 
required for the development of LCMV-neutralizing antibodies 
by GC B cells (7), as conditional depletion of TFH cells reduced 
GC B cell numbers and abrogated emergence of antibodies with 
neutralizing capacity. Moreover, TFH cells seemed to be essential in 
driving the adaptation of the IgG response toward the contempo-
raneous circulating LCMV species, lending support to the notion 
that sustained TFH activity is important for continued selection of 
B cells. Importantly, the appearance of neutralizing antibodies was 
required for eventual control of an established persistent LCMV 
infection, demonstrating the importance of these antibodies and 
sustained presence and activity of TFH cells for control of a persis-
tent infection in absence of overt immunopathology (7).

Nevertheless, the belated appearance of neutralizing antibod-
ies in the setting of such persistent infections indicates possible 
restrictions of TFH cell function and/or their interactions with 
cognate B cells, which are discussed in the following sections.

FaCTORS CURTailiNg TFH Cell 
FUNCTiON UPON PeRSiSTeNT viRal 
iNFeCTiON

Optimal delivery of TFH cell help to cognate B  cells as well as 
optimal TFH cell differentiation includes a chain of distinct steps 
at specific localizations in lymphoid tissue as well as a series of 
cell–cell interactions (23). With respect to localization-dependent 
processes, the structural integrity of secondary lymphoid organs 
is crucial allowing for initial encounter of activated CD4 and 
B cells as well as the establishment of GCs in the B cell follicle, 
including dark and LZ as designated compartments for prolifera-
tion, SHM and B cell selection. Cell–cell interactions that support 
B cell activation and production of (affinity-matured) antibodies 
comprise direct contact between activated CD4 T cell and cognate 
B cells initially at the T/B border, and later between TFH cells and 
cognate B cells in the GC LZ. Interference with any of these steps 
might lead to suboptimal antibody responses, which negatively 
affects control of persistent viral infections.

Destruction of lymphoid architecture
One possible influence on the establishment and the quality of 
TFH and GC B  cell responses upon persistent viral infection is 
(immune-mediated) destruction of the lymphoid tissue architec-
ture (11, 103–110). In chronic LCMV infection, this destruction 
is largely due to CD8 T cell-mediated cytotoxic activity directed 
against infected stromal cells as well as sustained type 1 IFN 
signaling and has been shown to hamper cognate interactions 
between T and B cells (11, 103–105, 111, 112). In SIV or HIV 
infection, immune activation-induced fibrosis of lymphoid tis-
sues seems to play a major role in functional deterioration of 
secondary lymphoid organ structure and function, mediated by 
Treg-dependent transforming growth factor-beta 1 signaling and 
ensuing collagen deposition (109, 110).

Simian immunodeficiency virus-infected RMs with an 
expanded TFH cell population and increased SIV-specific antibody 
responses displayed a more intact lymph node (LN) structure as 
compared with fast progressing SIV-infected RMs with a less 
expanded TFH cell compartment (43, 107). This indicates that 
an intact lymphoid architecture is beneficial for virus-specific 
antibody responses and containment of the persistent infection.

Although destruction of lymphoid organ architecture is often 
attributed to cytotoxic CD8 T cells (104), an additional involve-
ment of cytotoxic CD4 T cells during persistent LCMV infection 
has been shown (113). Cytotoxic CD4 T cells specifically targeted 
marginal zone (MZ) B cells, MZ macrophages, and metallophilic 
macrophages (113), subsets which have been implicated in the 
optimal induction of antibody responses (114–116). Analogous, 
depletion of MZ B  cells was also reported in the context of 
persistent HIV infection (117) and a strong T helper response, 
possibly comprising cytotoxic CD4 T cells, is associated with low 
neutralizing antibody titers in persistent HCV infection (118).

During persistent LCMV infection, restoration of the lym-
phoid tissue architecture is closely associated with the onset of 
the neutralizing antibody response occurring between d40 and 
d80 post-infection (pi) (5, 103). During acute LCMV infection, 
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lymphoid architecture is disrupted by day 8 pi and full reorgani-
zation, initiated by viral clearance and contraction of the CD8 
T cell response, is only completed by d25 pi (103). During per-
sistent LCMV infection, due to persistence of viral antigen and 
prolonged activity of CD8 and CD4 T  cells before undergoing 
T cell exhaustion (1, 119–121), disruption of the lymphoid organ 
architecture is likely protracted as compared with acute LCMV 
infection. This underscores the relevance of lymphoid tissue 
reorganization and the onset of the LCMV-neutralizing antibody 
response, further emphasizing the beneficial effect of an intact 
lymphoid architecture and thereby optimal T and B cell interac-
tions for the development of virus-neutralizing antibodies.

b Cell Dysfunction
In the context of HIV and SIV infection, B cell dysfunction was 
reported by a number of studies, characterized by loss of naïve 
and resting memory B  cells, increases of activated B  cells and 
tissue-like memory B cells, expansion of regulatory B cells, and 
altered functionality [reviewed in Ref. (122)].

In SIV or HIV infection, B  cells were reported to actively 
render TFH cells ineffective in delivering help to B  cells. GC 
B  cells isolated from HIV or SIV-infected individuals/animals 
displayed a higher expression of PD ligand 1 (PD-L1) as com-
pared with B cells isolated from healthy donors. Therefore, TFH 
cells received more signals via PD-1 during HIV/SIV infections, 
which mediated downregulation of IL-21 and IL-4 expression, 
and at the same time had a negative impact on TFH cell survival 
and proliferation (123). This impaired their B helper capacity, as 
observed in in vitro coculture experiments. Blocking of PD-L1 
on B cells derived from HIV or SIV-infected donors, however, 
increased the ability of TFH cells to provide help to B cells as well 
as their cytokine expression (123). This also proved that TFH cells 
are in principle capable of providing sufficient help to B cells.

Furthermore, cTFH cells exhibiting reduced IL-21 expression 
as compared with healthy donors were identified in blood of 
persistently HCV infected patients (124). Surprisingly, however, 
in contrast to HIV and SIV infection, these cells proved to be 
capable of providing help to B cells in in vitro coculture experi-
ments (124). These differences might be due to the different usage 
of B cell subsets in the coculture settings. Cocultures in the con-
text of HIV/SIV infection were set up with GC-enriched B cells 
(123) while cocultures in the context of HCV infection used 
memory B cells (124). It is also conceivable that different non-or 
poorly cytopathic viruses use different mechanisms to render the 
antibody response ineffective upon persistent infection.

altered Ratios of Regulatory Cells
In the setting of a recent HIV vaccination trial, it was established 
that the ratio of TFH cells to GC B  cells is more important for 
the quality of the antibody response and eventual emergence of 
neutralizing antibodies than the total cell numbers. In this con-
text, interaction of few GC B cells with one TFH cell was positively 
correlated with the occurrence of broadly neutralizing antibodies 
(bnab) (125). Furthermore, GC responses are subject to regula-
tion by regulatory cells, in particular by TFR cells, which control 
the GC response to prevent aberrant production of antibodies 
(64). It has been shown in some studies that the frequency of 

TFR cells is reduced upon persistent infection with HIV and SIV 
(96, 126), albeit other studies have reported an increase of this 
population in HIV and SIV infection (127). Decreased levels 
of TFR cells favor the observed expansion of TFH cells and could 
indicate a less regulated GC response, hampering the induction 
of protective antibody responses for instance by a less stringent 
selection process and promoting unspecific B  cell activation 
leading to hypergammaglobulinemia. Conversely, an expanded 
TFR population might contribute to inefficient GC responses 
[reviewed in Ref. (128)].

Also, in the context of persistent LCMV infection of lympho-
penic mice lacking regulatory T cells, the induction of protective 
antibody responses was shown to be impaired (46, 129). Adoptive 
transfer of Treg improved the LCMV-specific antibody response 
and viral clearance drastically (129), proving the importance of 
balanced ratios between regulatory cells and TFH and GC B cells 
during the GC reaction.

Interestingly, in contrast to SIV, HIV and LCMV infection in 
lymphopenic mice, persistently HCV- or HBV-infected patients 
displayed an increase of regulatory B cells and Tregs as compared 
with healthy donors. This was associated with increases in IL-10 
expression and increased PD-L1 expression on Treg cells (108, 
130–132), which together might impair HCV- and HBV-specific 
antibody responses being associated with poor virus elimination 
and damage to lymphoid tissue (108).

accumulation of TFH Cells which are Not 
Specific for antigens Carrying Neutralizing 
epitopes
Upon HIV infection, a predominant expansion of TFH cells that 
are specific for group-specific antigen is reported (42). However, 
induction of bnab seems to be associated with Env-specific TFH 
cells (91). Therefore, specific expansion of TFH cell populations, 
which are not recognizing the protein carrying neutralizing 
epitopes, could further contribute to the delayed emergence of 
neutralizing antibodies. TFH cells with other specificities would 
predominantly favor the survival of B cells expressing antibod-
ies that are not specific for the neutralizing epitope. However, 
such intramolecular T  cell help does not seem to be generally 
required and depends on the structure of the B  cell activating 
viral antigen. While individual viral proteins engaging specific 
BCR would require intramolecular help, B cells interacting with 
intact or defective virions or virus-derived protein complexes 
could also be activated by TFH cells that are not necessarily specific 
for the protein containing the neutralizing epitopes (133, 134). 
Thus, it would be interesting to understand in more detail the 
structures of the selecting viral antigens/antigen complexes in the 
context of persistent viral infections to delineate more precisely 
the specificities of beneficial TFH responses.

Direct infection of TFH and TFR Cells in Hiv 
and Siv infection
Upon HIV and SIV infection, TFH functionality is additionally 
compromised by their direct infection. CXCR5+ CD4 T cells are 
generally more permissive for HIV and SIV infection as compared 
with CXCR5− CD4 T cells, with GC TFH exhibiting the highest 
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permissiveness (135–137). TFR cells are also highly permissive for 
HIV infection—even more so than TFH cells (138).

Surprisingly, infected TFH cells are not directly eliminated as 
compared with infected CXCR5− CD4 T cells. This might be due 
to the fact that only few CD8 T cells express CXCR5 and therefore 
cannot efficiently enter the B cell follicle where the infected TFH 
cells reside (136, 139, 140). In that way, TFH cells serve as viral 
reservoirs. However, during SIV and HIV infection, the CXCR5+ 
CD8 T  cells that enter the GCs seem to contribute to control 
of infection (141), or alternatively negatively regulate T and 
B cells responses via IL-10 and Tim3-dependent processes (142). 
Infected GC TFH cells downregulate TFH markers during active 
viral replication (135) which might negatively affect their B cell 
helper functions, rendering the induction of antibody responses 
less effective.

viRal evOlUTiON CaN MeDiaTe 
evaSiON FROM THe NeUTRaliZiNg 
aNTibODY ReSPONSe—aRMS RaCe 
beTweeN viRUS aND THe HUMORal 
iMMUNe ReSPONSe

Besides immunological and secondary lymphoid organ topo-
graphical factors that might curtail effective TFH responses and 
thereby induction of neutralizing antibody responses, viral 
mutation can contribute to the establishment of persistence by 
escape from imposed immune pressure such as the humoral 
immune response. RNA viruses are known to evolve upon infec-
tion due to a high mutation rate during viral replication with 
their non-proofreading RNA-dependent RNA polymerase (or 
reverse transcriptase) and exist as a so-called quasi species in 
the infected host (143, 144). These high mutation rates allow the 
rapid adaptation of RNA viruses to changing environments and 
selective immune pressures (145). Viruses like HIV, HCV and 
LCMV take advantage of this viral evolution for the establish-
ment of persistence, e.g., by sequential evasion from the adaptive 
immune response.

In persistent LCMV infection, especially in settings of reduced 
or absent CD8 T cell responses, escape variants from the neu-
tralizing antibody response emerge that promote persistence of 
LCMV (15, 16, 146). This escape was mediated by only few amino 
acid substitutions in the neutralizing epitope contained in GP1 
(15). However, LCMV generally has a rather low mutation rate, 
with 2.6 × 10−4 to 5.5 × 10−5 mutations per round of replication 
(147), compared with other RNA viruses with 10−3 to 10−5 miss-
incorporations per copied nucleotide (15, 147, 148). Generally, 
selection of mutations was reduced or lacking in absence of 
neutralizing antibodies, indicating positive selection of escape 
viral variants upon antibody-imposed immune pressure (15). 
As recently published, escape of LCMV from the neutralizing 
antibody response also occurs in presence of a normal CD8 T cell 
response, meaning that neutralization of contemporaneous virus 
isolates lagged behind neutralization of the inoculating virus (7). 
This raises the question of how viral diversity is affected in absence 
of TFH cells. As animals with a conditional depletion of CXCR5+/+ 
TFH cells did not develop effective neutralizing antibodies against 

neither the inoculum or contemporaneous virus isolates, circu-
lating antibodies most likely exhibited reduced immune pressure 
on the neutralizing epitopes (7). One would speculate that viral 
diversity is more restricted in absence of TFH cells as compared 
with control situations. Whether this prediction holds will have 
to be investigated in future studies.

Escape from the neutralizing antibody response and sub-
sequent adaptation of the humoral immune response to new 
viral variants is more extensively investigated in persistent viral 
infection with HIV or HCV as compared with persistent LCMV 
infection. HIV and HCV infection share the common feature 
that the neutralizing antibody response is at first only directed 
against the autologous virus, while neutralization of heterologous 
viral variants by bnab is rather rare and only occurs later during 
infection (22, 149–152). Moreover, in HIV and HCV infection, 
the neutralizing antibody response toward the autologous virus 
usually lags behind the concurrent evolution of the viral quasi 
species, meaning that antibodies isolated from a given time point 
generally fail to neutralize contemporaneous virus isolates but 
are able to neutralize isolates from prior time points (22, 149, 
152–154). Thus, during persistent viral infections a molecular 
arms race is taking place between the virus and the humoral 
immune response.

Mutations conferring escape are mostly accumulating in vari-
able regions of the viral envelope (env), against which neutral-
izing antibodies are directed, e.g., the variable loops of HIV gp120 
(19, 155) or the hypervariable region (HVR) of HCV (156, 157). 
Either these variable regions cover more conserved neutralizing 
epitopes or these regions contain the first neutralizing epitopes 
as in case of the HVR of HCV (20, 155–157). In addition, shield-
ing of neutralizing epitopes by establishment of a glycan shield 
via mutational introduction of glycosylation sites is used by 
persistently infecting viruses to hamper binding of neutralizing 
antibodies by steric hindrance (22, 154, 158–162). Generally, 
neutralizing antibodies detect deglycosylated forms of the virion 
better than the glycosylated form as shown for HIV or Arenavirus 
infections (161, 163–165). Glycans reduce the on-rate of the neu-
tralizing antibody and thereby limit their neutralizing capacity 
(161). In case of HIV infection, some glycans also increase the 
flexibility of the variable loops of the envelope protein, thereby 
increasing the binding entropy for neutralizing antibodies, which 
is unfavorable (166). Interestingly, however, in some HIV-infected 
patients, neutralizing antibodies that are able to penetrate the 
glycan shield by binding one or multiple conserved glycans (e.g., 
glycans at position N332 or N301) and simultaneously to gp120 
protein residues (167–171) were elicited. This clearly shows that 
the humoral immune response is in principle able to develop 
antibodies that are able to bypass mechanisms conferring escape 
from the neutralizing antibody response.

Yet, in persistent HIV or HCV infections such bnab that bind 
to more conserved epitopes like glycan patches occur rather 
seldom (149, 150, 172–175). Most bnab are characterized by a 
high amount of somatic mutations, long CDRH3 regions and 
preferential usage of specific heavy and light chains (175–180). 
A high rate of somatic mutations can be observed in neutral-
izing antibodies against Arenaviruses like LCMV as well (11). 
Precursors of bnabs can be identified already early during the 
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virus-specific humoral immune response upon persistent HIV 
infection (171, 181–186). The slow development of such precur-
sors toward a bnab, together with the high quantity of somatic 
mutations, indicates that neutralizing antibodies mature over a 
prolonged period of time in the GC, including selection by TFH 
cells to develop the necessary neutralization breadth. Factors 
curtailing the GC response as described earlier might well 
contribute to the impaired or delayed emergence of such bnab. 
Furthermore, to allow the continued development of bnab in the 
GC response, their evolution/selection has to occur against viral 
variants that do not undergo complete viral escape from these 
bnab precursors (187).

Interestingly, diversity of the viral variants and the viral load 
influence the development of bnabs in HIV infection. Prolonged 
viremia and a higher diversity of the env are positively correlated 
with their induction (172, 173, 188–192). However, it is still a 
matter of discussion whether early diversity of the env (189, 190, 
192), as, for example, achieved by superinfections (192) or a high 
diversity of the contemporaneous env genes is correlated with 
the emergence of bnab (193). Nevertheless, diversification of the 
viral variants is often observed before the onset of bnab responses 
(183, 184). Analogous, protracted viremia in persistent infections 
with Arenaviruses like LCMV is favorable for the induction of the 
neutralizing antibody response (11).

So far, little is known about the overall evolution of the LCMV-
specific antibody response over the course of a chronic infection. 
Sustained TFH activity is crucial for the eventual emergence of 
neutralizing antibodies (7). However, how this sustained TFH 
activity supports the emergence of neutralizing antibodies is 
unclear. It could either be via continuous rounds of SHM and 
selection of B cells which would eventually give rise to antibod-
ies with neutralizing capacity. Alternatively, TFH cells might be 
required for continued recruitment of new B cell clones into the 
GC response, thereby contributing to an overall broadening of the 
antibody repertoire. Interestingly, a recent vaccination study in 
humans repetitively exposed to the malaria parasite Plasmodium 
falciparum revealed that selection of potent B  cell precursors 
from the naïve or memory pool contributed more efficiently to a 
potent antibody response to a complex antigen than the process 
of affinity maturation (194).

In the context of a chronic viral infection, it would be interest-
ing to elucidate how viral diversity is reflected/presented in the 
GC response, leading to selection of the precursors of B  cells 
producing neutralizing antibodies. Generally, GC B  cells are 
dependent on taking up antigen from FDCs for affinity selection 
(76). However, whether this holds true in a setting with abundant 
free viral antigen during persistent viral infection still has to be 
determined. Interestingly, however, FDCs have been shown to 
be archives of viral quasi species upon HIV infection (195, 196), 
which would indicate constant binding of viral variants and their 
presentation. This would suggest that FDCs could also present the 
newest contemporaneous viral variants to B cells, which are then 
selected according to their affinity toward these variants. Yet, it 
remains unclear how fast the turnover rate of antigen presented 
by FDCs is in the setting of a chronic viral infection, which, in 
case of slow turnover, might lead to delays in the selection of 
B cells against the newest contemporaneous viral variants.

Moreover, emergence of bnab upon persistent HIV infection 
is also determined by the rate at which somatic mutations are 
acquired by B  cell clones. For some bnab families it has been 
determined that the mutation rate was faster than that of the virus 
(181, 197), which enabled the host to “overtake” the viral evolu-
tion and develop an effective neutralizing antibody response. 
Concerning the role of TFH cells in the selection process of B cells 
producing such neutralizing antibodies, it has been established 
recently that the interaction intensity between TFH cells and 
GC B cells determines the quantity of proliferation rounds and 
therefore the quantity of somatic mutations a B cell can acquire 
(198). Therefore, it would be of interest to determine the influence 
of TFH cells on the mutation rate of such B cell clones. This could 
be achieved using the novel in  vivo experimental model that 
allows conditional depletion of TFH cells upon persistent LCMV 
infection (7). Virus-specific plasma cells, developed in presence 
or absence of TFH cells, could be isolated at different time points 
pi, and the quantity of somatic mutations in the variable regions 
of heavy and light chains could be determined by NGS. Isolating 
contemporaneous virus isolates at the same time point and deter-
mining the sequences of their neutralizing epitopes by NGS could 
be used to relate the evolution kinetics of virus-specific B cells to 
the evolution of the virus. This approach could also be employed 
to determine whether the observed preferential usage of specific 
heavy and light chains by neutralizing antibodies is influenced 
by the absence of TFH cells. In absence of continuous TFH activity, 
one could conjecture that the overall diversity of B cell clones is 
increased, as the selection process is most likely much less strin-
gent in absence of TFH cells, and the overall frequency of somatic 
mutations in B cells might be reduced due to insufficient selection 
and consecutive rounds of SHM.

DOeS aCCUMUlaTiON OF TFH CellS 
CONTRibUTe TO DYSRegUlaTeD 
b Cell ReSPONSeS UPON PeRSiSTeNT 
viRal iNFeCTiON?

During persistent viral infections with LCMV, HIV, SIV, or 
HCV, dysregulated B cell responses are observed. This includes 
the induction of hypergammaglobulinemia and polyclonal 
B cell activation, resulting in the emergence of seemingly virus-
unspecific antibodies and in some cases even autoimmune reac-
tive antibodies (199–205). However, in a recent study examining 
antibody responses toward Salmonella Typhimurium infection, 
it was shown that the seemingly predominantly Salmonella-
unspecific antibody response was in fact of very low affinity 
toward Salmonella that increased due to affinity maturation in 
extra-follicular patches (206). Therefore, it would be interesting 
to investigate whether unspecific antibody responses elicited 
upon persistent viral infections might also display very low 
(undetectable in commonly used read-outs) affinities for the 
virus, which might improve upon affinity maturation and then 
allows recruitment into the virus-specific antibody response.

The described B cell dysfunctions have been further linked 
to the delayed appearance of neutralizing antibodies and in 
the context of persistent LCMV infection have been shown 
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to be dependent on CD4 T  cell help to cognate B  cells via 
CD40:CD40L signals (13, 202, 207). It is believed that the virus-
unspecific B  cells acquire viral antigen from the environment 
and present it via their surface MHC II molecules to cognate 
CD4 T cells. How exactly virus-unspecific B cells acquire viral 
antigen to present to CD4 T  cells and whether they might 
require signals via their BCR to become activated is not fully 
elucidated. In the setting of persistent LCMV infection, uptake 
of antigen by LCMV-unspecific B  cells is independent of 
complement receptors (CRs) and FcγR, as knockout mice still 
display hypergammaglobulinemia (202). A recent study showed 
in the setting of an acute disseminated encephalomyelitis model 
with influenza infection, that uptake of the self-antigen myelin 
oligodendrocyte glycoprotein (MOG) via the BCR could occur 
concurrent with influenza hemagglutinin (HA). This led to 
the simultaneous presentation of MOG and HA on the MHC 
II surface molecules of MOG-specific B cells and subsequently 
their activation via HA-specific CD4 T cells (208). This scenario 
could serve as explanation for the activation of self-reactive 
B  cells in the setting of persistent viral infections and would 
also indicate participation of BCR signaling pathways. However, 
this model does not account for virus-unspecific antibody 
responses toward non-self-antigens, such as for instance against 
the hapten nitrophenol (202). Another possible pathway that 
has been proposed to contribute to the uptake of viral antigen 
by virus-unspecific B  cells in the setting of persistent viral 
infections is pinocytosis (202). Assumingly, due to the high viral 
burden, the concentration of viral particles and therefore viral 
antigen would be sufficient to induce sufficient uptake via this 
mechanism from the environment.

Regarding the contribution of TFH cells to dysregulated B cell 
responses, it has been shown before in settings of autoimmunity 
that prolonged maintenance of TFH cells, and therefore prolonged 
maintenance of GC B  cells, is one cause for the emergence of 
autoreactive antibodies (58, 209–213). The selection threshold is 
lowered in GCs when TFH numbers are increased; thereby permit-
ting the survival of low affinity and self-reactive B cells (214)—a 
situation that is met during persistent viral infections.

Analogous, in HIV and SIV infection, the expansion of TFH 
cells observed in LNs of infected individuals correlated with 
hypergammaglobulinemia and polyclonal B  cell activation as 
well as the deletion of circulating memory B cells (42, 43, 215). 
Treatment of HIV-infected individuals with antiretroviral therapy 
reduced TFH cell numbers and at the same time B cell dysfunctions 
(42, 200), which indicates a connection between expansion of 
the TFH cell population in persistent HIV and SIV infections and 
dysregulated B cell responses. Similarly, in persistent HBV infec-
tion, the frequency of cTFH cells correlated with the emergence of 
autoantibodies (205).

aRe THeRe ORgaN-SPeCiFiC 
DiFFeReNCeS iN TFH Cell eXPaNSiON 
aND FUNCTiON?

It also should be considered when discussing TFH accumulation 
and its impact on the antibody response that organ-specific 

differences might exist in specific persistent viral infections. 
This has been recently addressed in the context of SIV infec-
tion (107). Most studies upon persistent SIV and HIV infec-
tion have been conducted in blood or LN samples of infected 
animals/patients. Yet, recently, TFH responses have been 
analyzed in spleens of SIV-infected RMs (107). In contrast to 
results obtained from LNs of SIV-infected RMs, the TFH cell 
frequency in spleen was drastically reduced already in the 
acute phase of SIV infection as compared with healthy animals. 
This phenomenon was maintained in the persistent phase of 
SIV infection. In addition, TFH cells in spleen of SIV-infected 
RMs expressed less of the TFH-associated transcription factors 
Bcl-6 and c-Maf and instead upregulated transcription factors 
that counter-regulate TFH cell fate, i.e., Krüppel-like factor-2. 
This decrease in TFH cell frequency was further associated with 
reduced titers of SIV-specific IgG antibodies (107). However, 
TFH frequencies were similar or elevated in LNs of these infected 
RM as compared with healthy animals and in accordance with 
previous reports (43, 107, 215). Interestingly, the depletion of 
TFH cells in the spleen of SIV-infected RMs occurred in the 
context of severe destruction of the splenic architecture (107). 
Therefore, it might be possible that differences concerning 
the preservation of the lymphoid tissue could account for the 
observed organ-specific differences. Probably, due to the severe 
destruction of splenic architecture, SIV-infected TFH cells 
might have enhanced contact with cytotoxic CD8 T  cells in 
the acute phase of infection, which might cause deletion of TFH 
cells in the spleen. Possibly, also differences in the recruitment 
of effector cells or different cytokine milieus in the LN and the 
spleen might influence the maintenance of TFH cells upon SIV 
infection.

Therefore, organ-specific differences in TFH cell frequency and 
function have to be taken into consideration as together they 
might account for the outcome of the virus-specific antibody 
response.

CONClUDiNg ReMaRKS

Follicular T helper cell function and optimal interactions between 
TFH cells and cognate B cells often are hampered during persistent 
viral infections due to several factors. These include sustained 
increase of TFH cells, leading to non-specific B  cell activation 
and hypergammaglobulinemia at the expense of virus-specific 
antibodies, destruction of the lymphoid tissue architecture, B cell 
exhaustion, skewed ratios of regulatory cells to TFH/GC B cells or in 
case of HIV/SIV infection TFH cells being directly infected. Due to 
these dysregulations, protective virus-specific antibody responses 
are delayed. Moreover, viruses use different mechanisms to evade 
recognition by antibodies using, e.g., variable loops or glycan 
shields to protect neutralizing epitopes. Furthermore, constant 
viral evolution leads to continued selection of escape variants 
upon exerted pressure by neutralizing antibodies, which fuels 
a molecular arms race between virus and the humoral immune 
response.

Nevertheless, it is clear that sustained activity of TFH cells is 
essential for the induction of neutralizing, protective antibody 
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responses upon persistent viral infection and that the eventual 
emergence of these antibodies can afford control of the persistent 
infection in absence of overt immunopathology.

Therefore, targeting mechanisms that promote optimal TFH 
cell function and interactions with cognate B  cells as well as 
understanding the underlying mechanisms of the arms race 
between virus and humoral immune response might serve to 
improve the induction of neutralizing antibody responses and 
reduce B cell dysfunctions, thereby improving control of persis-
tent viral infections.
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