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Abstract: Sleep apnea syndrome (SAS) is characterized by recurrent episodes of oxygen desaturation
and reoxygenation (intermittent hypoxia [IH]), and is a risk factor for cardiovascular disease (CVD)
and insulin resistance/Type 2 diabetes. However, the mechanisms linking IH stress and CVD remain
elusive. We exposed rat H9c2 and mouse P19.CL6 cardiomyocytes to experimental IH or normoxia
for 24 h to analyze the mRNA expression of several cardiomyokines. We found that the mRNA
levels of regenerating gene IV (Reg IV) and hepatocyte growth factor (Hgf ) in H9c2 and P19.CL6
cardiomyocytes were significantly increased by IH, whereas the promoter activities of the genes were
not increased. A target mRNA search of microRNA (miR)s revealed that rat and mouse mRNAs
have a potential target sequence for miR-499. The miR-499 level of IH-treated cells was significantly
decreased compared to normoxia-treated cells. MiR-499 mimic and non-specific control RNA (miR-
499 mimic NC) were introduced into P19.CL6 cells, and the IH-induced upregulation of the genes
was abolished by introduction of the miR-499 mimic, but not by the miR-499 mimic NC. These results
indicate that IH stress downregulates the miR-499 in cardiomyocytes, resulting in increased levels of
Reg IV and Hgf mRNAs, leading to the protection of cardiomyocytes in SAS patients.

Keywords: intermittent hypoxia; sleep apnea syndrome; sustained hypoxia; Reg IV; HGF; microRNA-499

1. Introduction

Sleep apnea syndrome (SAS) is a common disorder characterized by repetitive episodes
of oxygen desaturation during sleep, the development of daytime sleepiness, and the dete-
rioration of the patient’s quality of life [1,2]. SAS leads to intermittent hypoxia (IH) [3,4],
hypercapnia, and subsequent reoxygenation, as well as disruption of sleep architecture
such as sleep fragmentation. SAS has been reported to affect middle-aged and older indi-
viduals, with the prevalence estimated to be around 22% in men and 17% in women [5].
SAS is associated with many systemic complications, such as obesity; type 2 diabetes [6,7];
dyslipidemia [8]; cardiovascular diseases, including hypertension, coronary disease, heart
failure, and stroke [9–11]; pulmonary hypertension [12]; neurocognitive deficits [13,14];
depression [15]; and impaired memory [16].

Observational studies have indicated that SAS is associated with a high risk of se-
rious cardiovascular disease (CVD), including sudden death, atrial fibrillation, stroke,
and coronary artery disease, leading to heart failure. It has been reported that SAS is a
major independent risk factor for CVD, such as systemic and pulmonary hypertension,
congestive heart failure, and stroke [17], as well as myocardial infarction, cerebrovascular
dysfunction, and idiopathic sudden death [9]. IH-induced cardiomyocyte damage occurs
with the increases of intracellular reactive oxygen species during reoxygenation following
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hypoxia [18–20]. Moreover, IH may cause lipid peroxidation [21], protein oxidation, DNA
damage [22], and attenuation of antioxidant enzyme capacity, thus reducing cardiomyocyte
numbers by cell death [23]. The prevalence of SAS in patients with heart failure ranges from
15% to 59%, and the mortality rate of patients with severe SAS is significantly high [24–27].
In addition, cardiac function is impaired with left ventricular hypertrophy in obese patients
with severe SAS [28]. Hypertension, cardiac remodeling, and other complications of SAS
have been studied using rodent models of IH [29].

In this study, we investigated the direct effect of IH, a hallmark of SAS, using rat and
mouse cardiomyocytes and an in vitro IH system. For in vitro IH, nitrogen and oxygen
are delivered by a controlled system that regulates the flow of gases. We investigated the
direct effect of IH on the gene expression of cytokines and cardiac protective/regenerative
factors, such as regenerating gene (Reg) family genes and hepatocyte growth factor (Hgf ).
Significant increases in the mRNA levels of Reg IV and Hgf, which both generate growth
factors with proliferative and anti-apoptotic effects, were detected in rat and mouse car-
diomyocytes in response to IH treatment via the downregulation of microRNA (miR)-499.

2. Results
2.1. Gene Expressions of Reg IV and Hgf Were Increased by IH in Cardiomyocytes

We exposed rat H9c2 cardiomyocytes and cardiomyocytic differentiated mouse P19.CL6
cells to normoxia, IH, or sustained hypoxia (SH) for 24 h. After the treatment, we measured
the mRNA levels of cardiomyocytic inflammation related interleukin genes, chemokine
genes, cytokine genes), genes of cardiomyocytic growth/regeneration factors and receptors,
and genes of cardiomyocyte functioning: interleukin (Il)-6, Il-17A, Il-18, Il-33, transforming
growth factor (Tgf)β1, C-C motif chemokine ligand 2 (Ccl2), C-X-C motif chemokine ligand 12
(Cxcl12), tumor necrosis factor-α (Tnfα), vascular endothelial growth factor A (Vegf-A), Fms-like
tyrosine kinase 1 (Flt-1: Vegf receptor [Vegfr] 1), fetal liver kinase receptor 1 (Flk-1), cluster of
differentiation 38 (Cd38: encoding ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase), Reg
I, pancreatitis associated protein (PAP) I, PAP II, PAP III, Reg IV, Exostosin-like 3 (Extl 3)/Reg
receptor, Hgf, and tyrosine-protein kinase Met (c-Met: encoding Hgf receptor) in rat H9c2 cells.
We measured mRNA levels of Il-6, Il-8, Il-17A, Il-18, Tgf-β1, Ccl2, Cxcl12, Tnfα, Vegf-A, Flt-1,
Flk-1, Cd38, Reg I, Reg II, Reg IIIα, Reg IIIβ, Reg IIIγ, Reg IIIδ, Reg IV, Extl3, Hgf, and c-Met in
mouse P19.CL6 cells by using real-time reverse transcriptase-polymerase chain reaction
(RT-PCR). As shown in Figure 1, significant increases in Tgfβ1, Ccl2, Tnfα, Flt-1, Reg IV, and
Hgf were detected in IH-treated rat H9c2 cells. However, Tgf-β1, Ccl2, Tnfα, and Flt-1 were
not specifically increased by IH in mouse P19.CL6 cardiomyocytes. In contrast, the mRNAs
of Reg IV and Hgf were significantly and specifically increased by IH in mouse P19.CL6
cells (Figure 2).
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Figure 1. The mRNA levels of rat Il-6, Il-33, Il-17A, Il-18, Tgfβ1, Cxcl12, Tnfα, Ccl2, Vegf-A, Flt-1, Flk-1, Cd38, Reg I, PAP I, PAP II, PAP III, Reg IV, Extl3, Hgf, and c-Met 
in rat H9c2 cardiomyocytes. Rat H9c2 cells were treated with normoxia or IH for 24 h. The mRNA levels were measured by real-time RT-PCR and normalized by rat 
insulinoma gene (Rig)/ribosomal protein S15 (RpS15) as an internal standard. The mRNA levels exposed to normoxia were set to 1.0. Open and closed circles indicate 
values of relative mRNA expression of cells exposed to normoxia and IH, respectively. Data are expressed as the mean ± SD of the samples. Statistical analyses were 
performed using Student’s t-test. IH significantly increased the mRNA levels of Tgfβ1, Tnfα, Ccl2, Flt-1, Hgf, and Reg IV in rat H9c2 cells. IH significantly decreased the 
mRNA levels of Il-6, Il-33, Il-18, and Cxcl12 in rat H9v2 cells. The other gene expressions (Il-17A, Cd38, Reg I, PAP I, PAP II, PAP III, Extl3, c-Met, Vegf-A, and Flk-1) did 
not show significant changes. 

Figure 1. The mRNA levels of rat Il-6, Il-33, Il-17A, Il-18, Tgfβ1, Cxcl12, Tnfα, Ccl2, Vegf-A, Flt-1, Flk-1, Cd38, Reg I, PAP I, PAP II, PAP III, Reg IV, Extl3, Hgf, and c-Met
in rat H9c2 cardiomyocytes. Rat H9c2 cells were treated with normoxia or IH for 24 h. The mRNA levels were measured by real-time RT-PCR and normalized by rat
insulinoma gene (Rig)/ribosomal protein S15 (RpS15) as an internal standard. The mRNA levels exposed to normoxia were set to 1.0. Open and closed circles indicate
values of relative mRNA expression of cells exposed to normoxia and IH, respectively. Data are expressed as the mean ± SD of the samples. Statistical analyses were
performed using Student’s t-test. IH significantly increased the mRNA levels of Tgfβ1, Tnfα, Ccl2, Flt-1, Hgf, and Reg IV in rat H9c2 cells. IH significantly decreased
the mRNA levels of Il-6, Il-33, Il-18, and Cxcl12 in rat H9v2 cells. The other gene expressions (Il-17A, Cd38, Reg I, PAP I, PAP II, PAP III, Extl3, c-Met, Vegf-A, and Flk-1)
did not show significant changes.
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Figure 2. The mRNA levels of mouse Il-6, Il-8, Il-17A, Il-18, Tgfβ1, Ccl2, Cxcl12, Tnfα, Vegf-A, Flt-1, Flk-1, Cd38, Reg I, Reg II, Reg IIIα, Reg IIIβ, Reg IIIγ, Reg IIIδ, Reg 
IV, Extl3, Hgf, and c-Met in mouse P19.CL6 cardiomyocytes. Mouse P19.CL6 cells were treated with normoxia, IH, or SH for 24 h. The mRNA levels were measured 
by real-time RT-PCR and normalized by Rig/RpS15 as an internal standard. The mRNA levels exposed to normoxia were set to 1.0. Open and closed circled circles 
indicate values of relative mRNA expression of cells exposed to normoxia and IH, respectively. Data are expressed as the mean ± SD of the samples. Statistical 
analyses were performed using Student’s t-test. IH significantly increased the mRNA levels of Reg IV and Hgf in mouse P19.CL6 cells. SH significantly increased 
the mRNA levels of Il-6, Il-8, Ccl2, Cxcl12, Tnfα, Reg II, Reg IIIβ, Reg IIIγ, and Reg IIIδ in P19.CL6 cells. IH and/or SH decreased mRNA levels of Cd38, Extl3, Vegf-
A, Flt-1, and Flk-1. The other gene expressions (Il-17A, Il-18, Tgfβ1, Reg I, Reg IIIα, and c-Met) did not show significant changes. 

Figure 2. The mRNA levels of mouse Il-6, Il-8, Il-17A, Il-18, Tgfβ1, Ccl2, Cxcl12, Tnfα, Vegf-A, Flt-1, Flk-1, Cd38, Reg I, Reg II, Reg IIIα, Reg IIIβ, Reg IIIγ, Reg IIIδ, Reg IV,
Extl3, Hgf, and c-Met in mouse P19.CL6 cardiomyocytes. Mouse P19.CL6 cells were treated with normoxia, IH, or SH for 24 h. The mRNA levels were measured by
real-time RT-PCR and normalized by Rig/RpS15 as an internal standard. The mRNA levels exposed to normoxia were set to 1.0. Open and closed circled circles
indicate values of relative mRNA expression of cells exposed to normoxia and IH, respectively. Data are expressed as the mean ± SD of the samples. Statistical
analyses were performed using Student’s t-test. IH significantly increased the mRNA levels of Reg IV and Hgf in mouse P19.CL6 cells. SH significantly increased the
mRNA levels of Il-6, Il-8, Ccl2, Cxcl12, Tnfα, Reg II, Reg IIIβ, Reg IIIγ, and Reg IIIδ in P19.CL6 cells. IH and/or SH decreased mRNA levels of Cd38, Extl3, Vegf-A, Flt-1,
and Flk-1. The other gene expressions (Il-17A, Il-18, Tgfβ1, Reg I, Reg IIIα, and c-Met) did not show significant changes.
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We further measured Reg IV and Hgf proteins in the culture medium of differentiated
P19.CL6 cells by the enzyme-linked immunosorbent assay (ELISA). We found that the
levels of Reg IV and Hgf were significantly increased by IH (Reg IV [30.16 pg/mL vs.
91.83 pg/mL, p = 0.0025], and Hgf [101.9 pg/mL vs. 106.3 pg/mL, p = 0.0046]) (Figure 3).
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Figure 3. Concentrations of (A) Reg IV and (B) Hgf in a mouse P19.CL6 cardiomyocyte culture
medium. P19.CL6 cardiomyocytes were treated by normoxia or IH condition for 24 h. The concentra-
tions of Reg IV and Hgf were measured by ELISA. Open and closed circles indicate values of culture
medium of cells exposed to normoxia and IH, respectively. Data are expressed as mean ± SD for each
group. The statistical analyses were performed using Student’s t-test.

2.2. Reg IV and Hgf Act as Autocrine/Paracrine Growth and Anti-Apoptotic Factors in SH/IH
Condition(s) for Cardiomyocytes

To evaluate the direct effects of Reg IV and Hgf on cardiomyocyte proliferation,
differentiated P19.CL6 cells were incubated with Reg IV and Hgf for 24 h. Follow-
ing the SH treatment, cell viability was determined by using a WST-8 (2-[2-methoxy-4-
nitrophenyl]-3-[4-nitrophenyl]-5-[2,4-disulfophenyl]-2H-tetrazolium monosodium salt) as-
say. P19.CL6 cell proliferation was significantly increased by 0.1 ng/mL Reg IV (Figure 4A)
and 10–100 ng/mL Hgf (Figure 4B), and the 0.1 ng/mL Reg IV-induced proliferation was
further enhanced by the combined addition of Hgf (Figure 4B). P19.CL6 cell numbers were
significantly increased by IH and dramatically reduced by SH (Figure 4C).
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Figure 4. Cardiomyocyte proliferation by Reg IV and Hgf. (A) Mouse recombinant Reg IV
(0–5000 ng/mL) was added to a differentiated mouse P19.CL6 cardiomyocyte culture medium in SH
condition, and cell numbers were measured by WST-8 assay. Open circles, closed circles, upward
open triangles, and downward pointing open triangles indicate WST-8 values of the cells in the
addition of 0, 0.1, 100, and 5000 ng/mL Reg IV, respectively. (B) Hgf (0–100 ng/mL) was added in
a differentiated mouse P19.CL6 cell culture medium, and the cells were incubated for 24 h in SH
condition. Viable cell numbers were measured by a WST-8 assay. (C) The cells were incubated in
normoxia, IH, or SH in the presence/absence of Reg IV (0.1 ng/mL) and/or Hgf (0.1 ng/mL) for 24 h.
Viable cell numbers were measured by a WST-8 assay. Data are expressed as mean ± SD for each
group. The statistical analyses were performed using Student’s t-test.
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To see why the cell numbers were reduced by SH, we also measured apoptosis of
IH/SH-stimulated P19.CL6 cells using the TUNEL (TdT-mediated dUTP nick end labeling)
method. We found that SH stimulation significantly increased cell apoptosis compared to
normoxia/IH (Figure 5A) and that the addition of Reg IV and Hgf in the cultured medium
in SH significantly reduced the apoptosis (Figure 5B).
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SH for 24 h. Data are expressed as mean± SD for each group. The statistical analyses were performed
using Student’s t-test.

We then measured the replicative DNA synthesis of SH-treated P19.CL6 cells by
5-iodo-2′-deoxyuridine (IdU: pyrimidine analog) incorporation. As shown in Figure 6,
replicative DNA synthesis was significantly increased by the addition of Reg IV and/or
Hgf in SH-treated cardiomyocytes.
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The results fitted well with those of previous papers which reported that Reg protein
and Hgf functioned as anti-apoptotic and growth/differentiation factors for cardiomy-
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ocytes [30–35], and that Hgf acts as an anti-apoptotic factor against high concentration
Reg-induced apoptosis [36].

2.3. The Promoter Activities of Reg IV and Hgf Were Not Increased by IH

To determine whether the IH-induced increases in Reg IV and Hgf mRNAs were
caused by the activation of transcription, a 2037 bp fragment containing 2008 bp of the
mouse Reg IV promoter was fused to the luciferase gene of pGL4.17. The mouse Reg IV
promoter construct and the rat Hgf promoter construct, which had a 1395 bp fragment
containing 1336 bp of the rat Hgf promoter inserted into a pGL3-Basic vector [36], were
transfected into differentiated P19.CL6 cells. After IH stimulation, the promoter activities
of Reg IV and Hgf were measured. We found that Reg IV and Hgf promoter activities
were not activated by IH in the differentiated P19.CL6 cells (Figure 7: p = 0.6289 and
p = 0.3407, respectively). These results suggested that the gene expression of Reg IV and
Hgf in response to IH was not regulated by transcription.
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Figure 7. Luciferase assays of promoter activities of (A) Reg IV and (B) Hgf in P19.CL6 cells. Reporter
plasmids, prepared by inserting the promoter fragments of mouse Reg IV (−2008–+29) upstream of a
firefly luciferase reporter gene in pGL4.17 vector and rat Hgf (−1336–+59) in pGL3-Basic vector [36],
were transfected into P19.CL6 cells. After the cells were exposed to either IH or normoxia for 24 h, the
cells were lysed, and the promoter activities of Reg IV and Hgf were measured. The promoter activity
was normalized for variations in transfection efficiency using β-galactosidase activity as an internal
standard. The promoter activities exposed to normoxia were set to 1.0. All data are represented as
the mean ± SD of the samples. The statistical analyses were performed using Student’s t-test.

2.4. The miR-499 Level Was Significantly Decreased by IH

We considered the possible explanation that IH-induced up-regulation of Reg IV and
Hgf was controlled post-transcriptionally. Therefore, we searched the targeted miRNA us-
ing the MicroRNA.org program (http://www.microrna.org/microrna/home.do, accessed
on 29 October 2021), which revealed that Reg IV and Hgf mRNAs have a potential tar-
get sequence for miR-499. There were no other miRNA candidates targeting both genes.
We measured the miR-499 levels of IH-treated cells by RT-PCR and found that the level
was significantly lower than that of normoxia-treated cells (0.3229 folds vs. normoxia,
p = 0.0029). The possible reasons as to why the level of miR-499 was decreased by IH
include the following: mRNA levels of some enzymes involved in miRNA biosynthesis
are influenced by IH, and the level of miR-499 was specifically decreased by IH either
via decreased biosynthesis or enhanced degradation. We measured the mRNA levels of
ribonuclease type III (Drosha) and endoribonuclease Dicer (Dicer), which are involved in the
biosynthesis of miRNAs [37,38] and found that their expression was unchanged by IH
(Figure 8: p = 0.2200 and p = 0.1299, respectively).

These results suggest that miR-499 plays a key role in the post-transcriptional regula-
tion of mRNA levels of Reg IV and Hgf. To investigate whether Reg IV and Hgf expression in
IH is regulated by miR-499, miR-499 mimic and non-specific control RNA (miR-499 mimic
NC) were introduced into differentiated P19.CL6 cells with IH/normoxia exposure, and the
mRNA levels of Reg IV and Hgf were measured by real-time RT-PCR. As shown in Figures 9
and 10, we found that IH-induced increases in Reg IV and Hgf mRNAs, and IH-induced
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increases in Reg IV and Hgf in the culture medium, were abolished by the introduction
of the miR-499 mimic, but not by the miR-499 mimic NC. These findings indicate that IH
stress downregulated the miR-499 level in cardiomyocytes (Figure 8), and that the levels of
Reg IV and Hgf mRNAs were increased via a miR-499 mediated mechanism.
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Figure 8. The levels of (A) miR-499, (B) Dicer mRNA, and (C) Drosha mRNA of P19.CL6 cells treated
with normoxia or IH for 24 h. The levels of miR-499 and Dicer and Drosha mRNAs were measured
by real-time RT-PCR using U6 (for miR-499) and Rig/RpS15 (for Dicer and Drosha) as endogenous
controls. The miR-499/mRNA levels exposed to normoxia were set to 1.0. Data are expressed as
mean ± SD for each group. The statistical analyses were performed using Student’s t-test.
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Figure 9. Effects of miR-499 mimic transfection on Reg IV and Hgf expression. The miR-
499 mimic (5′-UUAAGACUUGCAGUGAUGUUU-3′, 5′-ACAUCACUGCAAGUCUUAAuu-3′)
and non-specific control RNA (miR-499 mimic NC) (5′-UUCUCCGAACGUGUCACGUtt-3′, 5′-
ACGUGACACGUUCGGAGAAtt-3′) were synthesized by the Nihon Gene Research Laboratories,
Inc. (NGRL; Sendai, Japan) and introduced into differentiated P19.CL6 cells using Lipofectamine®

RNAiMAX just before IH/normoxia exposure. The mRNA levels of Reg IV and Hgf were measured
by real-time RT-PCR, as described in the Materials and Methods section. The expression of Reg IV
and Hgf mRNA were measured by real-time RT-PCR, using Rig/RpS15 as an endogenous control.
The mRNA levels exposed to normoxia were set to 1.0. The figure represents (A) Reg IV mRNA
expression in miR-499 mimic NC-introduced cells, (B) Reg IV mRNA expression in miR-499 mimic-
introduced cells, (C) Hgf mRNA expression in miR-499 mimic NC-introduced cells, and (D) Hgf
mRNA expression in miR-499 mimic-introduced cells. Data are expressed as mean ± SD for each
group. The statistical analyses were performed using Student’s t-test.
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Figure 10. The effects of miR-499 mimic transfection on Reg IV and Hgf expression. Concentrations
of medium Reg IV and Hgf were measured by ELISA as described in the Materials and Methods
section. The figure represents (A) Reg IV expression in miR-499 mimic NC-introduced cells, (B) Reg IV
expression in miR-499 mimic-introduced cells, (C) Hgf expression in miR-499 mimic NC-introduced
cells, and (D) Hgf expression in miR-499 mimic-introduced cells. Data are expressed as mean ± SD
for each group. The statistical analyses were performed using Student’s t-test.

3. Discussion

In this study, we demonstrated that IH exposure induced increases in Reg IV and
Hgf mRNA levels, and that Reg IV and Hgf functioned as anti-apoptotic factor(s) in
hypoxia (SH/IH)-exposed cardiomyocytes. We further studied the mechanisms by which
IH upregulates the mRNA levels of Reg IV and Hgf and found the possibility of post-
transcriptional miRNA-regulated mechanisms in which miR-499 is involved.

Reg was first found in regenerating pancreatic islets [39] and its β-cell replication
activity in vitro and in vivo was clarified [39–41]. The Reg and Reg-related genes were
isolated and revealed to comprise a multigene family, the Reg gene family [42,43]. Based
on the primary structures of the Reg proteins, the members of the family are grouped into
four subclasses: types I, II, III, and IV [43]. In humans, four REG family genes (i.e., REG
Iα [39,44], REG Iβ [45], REG-related sequence (RS: pseudogene) [44], HIP [46]/PAP [47], and
REG III [48]) are tandemly ordered in the 95 kbp region of chromosome 2p12 [49], whereas
REG IV is located on chromosome 1 [50]. In the mouse genome, all the Reg family genes,
except for Reg IV, (i.e., Reg I, Reg II, Reg IIIα, Reg IIIβ, Reg IIIγ, and Reg IIIδ) have been
mapped to a contiguous 75 kbp region of chromosome 6C [51], whereas Reg IV has been
mapped on chromosome 3. Type I (and Type II) Reg proteins are expressed in regenerating
islets [39,52] and involved in β-cell regeneration [3,40,53–61]. It has been suggested that
Reg family proteins are involved in cellular proliferation in exocrine pancreatic cells [62,63],
gastrointestinal cells [64–75], hepatic cells [76–80], salivary ductal cells [81–83], bone and
muscle cells [84,85], neuronal cells [86], and cardiovascular cells [30,32,87,88].

HGF is well known as a mesenchyme-derived multifunctional protein that plays
a critical role in cell survival, proliferation, migration, and differentiation [89]. Earlier
studies demonstrated that the HGF receptor, a receptor tyrosine kinase, encoded by the
c-met proto-oncogene, was expressed in various cells of epithelial origin, including the
cardiomyocytes [90]. HGF is also shown to promote cardiomyocyte differentiation, pro-
liferation, and regeneration [91], and to protect from myocardial infarction [92] and/or
ischemia/reperfusion injury [93]. Post-infarction treatment with HGF improves left ventric-
ular remodeling and heart function [94]. In addition, HGF also improves heart functionality
and promotes the proliferation of myocardial progenitor cells in doxorubicin-induced
cardiomyopathy [31].
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Until now, only a few studies have reported on miR-499 in cardiomyocytes. The
miR-499 is reported to be expressed specifically in the heart and skeletal muscles of humans
and mice [95–97], contributing to the cardiac differentiation of mesenchymal stem cells [98],
late-stage cardiomyocyte differentiation [97], and the expression of the voltage-dependent
calcium channel β-2 subunit [99]. A number of studies have indicated that miRNAs play a
role in the regulation of many biological processes in the cardiomyocytes (migration, cell
proliferation, apoptosis, differentiation, etc.).

Reg IV and Hgf were revealed in this study to function as anti-apoptotic/growth-
promoting factors in cardiomyocytes, and both Reg IV and Hgf were up-regulated in
cardiomyocytes in the IH condition, but not in the SH. This suggests that both Reg IV and
Hgf protect cardiomyocytes from cell death/stress due to decreased oxygen concentrations
in IH, but not in SH. The possible protection of cardiomyocytes from decreased oxygen
concentrations may be achieved by the expression of Reg IV/Hgf or by the inhibition
of miR-499.

In conclusion, this study revealed that the gene expressions of Reg IV and Hgf were
increased via the downregulation of the miR-499 level in IH-treated cardiomyocytes and
that both Reg IV and Hgf acted as anti-apoptotic factors in the cardiomyocytes. It is
suggested that, in SAS patients, the upregulation of REG IV and HGF may function against
the apoptosis of cardiomyocytes, leading to the maintenance of cardiac functions, and that
miR-499 could play a crucial role in the regulation of these gene expressions.

4. Materials and Methods
4.1. Cell Culture

Rat H9c2 cardiomyocytes were purchased from the American Type Culture Collection
(Manassas, VA, USA). The cells were maintained in Dulbecco’s Modified Eagle Medium
(DMEM) (FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan) containing 10% (v/v)
fetal calf serum (FCS), 100 units/mL penicillin G (FUJIFILM Wako), and 100 µg/mL strepto-
mycin (FUJIFILM Wako). Mouse embryonic carcinoma P19.CL6 cells were purchased from
RIKEN BioResource Research Center (Tsukuba, Japan). The cells were grown in Minimum
Essential Medium Alpha Modification (MEMα) (FUJIFILM Wako) medium containing 10%
(v/v) FCS, 100 units/mL penicillin G, and 100 µg/mL streptomycin. For the differentiation
experiments, 3.7 × 105 cells/0.5 mL were seeded in a 24-well cell culture plate with MEMα

medium containing 1% DMSO for 10 days to induce cardio-myogenesis as described [100].
The cells were kept at 37 ◦C, 5% CO2, and 95% humidity, and the medium was changed
every day. Cells were exposed to either normoxia (21% O2, 5% CO2, and balanced N2),
intermittent hypoxia (IH: 70 cycles of 5 min sustained hypoxia [1% O2, 5% CO2, and bal-
anced N2] and 10 min normoxia), or sustained hypoxia (1% O2, 5% CO2, and balanced N2)
using a custom-designed, computer-controlled incubation chamber attached to an external
O2-CO2-N2 computer-driven controller (O2 programmable control, 9200EX, Wakenbtech
CO., Ltd., Kyoto, Japan), as described [3,101–107]. These conditions are similar to the
conditions reported in patients with severe degrees of SAS: in severe cases of SAS, patients
are repeatedly exposed to severe hypoxemia followed by mild hypoxemia or normoxia
(i.e., IH). We previously reported that the magnitude of IH expressed by SpO2 fluctuated
between 75–98% and 50–80% in SAS [3,4], which was almost equivalent to the medium
condition in the present study.

4.2. Real-Time RT-PCR

Total RNA was isolated using an RNeasy plus mini kit (Qiagen, Hilden, Germany)
from H9c2 and P19.CL6 cells, and cDNA was synthesized from total RNA as a template
using a High Capacity cDNA Reverse Transcription kit (Applied Biosystems, Foster City,
CA, USA), as described [73–75,79,82,101–110]. Real-time PCR was performed using SYBR®

Fast qPCR kit (KAPA Biosystems, Boston, MA, USA) and a Thermal Cycler Dice Real Time
System (Takara Bio, Kusatsu, Japan). All the PCR primers were synthesized by Nihon Gene
Research Laboratories, Inc. (NGRL; Sendai, Japan), and the primer sequences for each
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primer set are described in Table 1. PCR was performed with an initial step of 3 min at 95 ◦C,
followed by 40 cycles of 3 s at 95 ◦C and 20 s at 60 ◦C for rat insulinoma gene (Rig)/ribosomal
protein S15 (RpS15), Il-6, Il-8, Il-17A, Il-18, Il-33, Tgfβ1, Ccl2, Cxcl12, Tnfα, Vegf-A, Flt-1, Flk-1,
Cd38, Reg I, Reg II, PAP II/Reg IIIα, PAP I/Reg IIIβ, PAP III/Reg IIIγ, Reg IIIδ, Reg IV, Extl3
(Reg receptor), Hgf, and c-Met (Hgf receptor). The mRNA expression levels were normalized
to the mRNA level of Rig/RpS15, as described [75,79,85,104–107]. For miR, total RNA,
including miRNA, was isolated from P19.CL6 cells using the miRNeasy mini kit (Qiagen)
according to the manufacturer’s instructions. An equal amount of DNase-treated RNA was
Poly-A-tailed using a Mir-XTM miRNA first-strand synthesis kit (Clontech Laboratories,
Inc., Mountain View, CA, USA) according to the manufacturer’s protocol. The conditions
for PCR were 95 ◦C for 10 s, followed by 45 cycles of amplification (95 ◦C, 5 s, 60 ◦C,
20 s). U6 small nuclear RNA was used as an endogenous control for miRNA, as previously
described [75,79,105,106].

Table 1. PCR primers for real-time RT-PCR.

Target mRNA Primer Sequence (Position)

Rat
Il-6 5′-AAGTCGGAGGCTTAATTACATATGTTC-3′ (NM_012589.2: 213–239)

5′-TGCCATTGCACAACTCTTTTCT-3′ (NM_012589.2: 260–281)
Il-17A 5’-TCTCCAGAACGTGAAGGTC-3’ (NM_001106897.1: 187–205)

5’-AAGTGGAACGGTTGAGGTAG-3’ (NM_001106897.1: 262–281)
Il-18 5′-ATATCGACCGAACAGCCAAC-3′ (AJ222813.1: 212–231)

5′-TAGGGTCACAGCCAGTCCTC-3′ (AJ222813.1: 281–300)
Il-33 5′-CAAAGATATCTGCCATGTCTAC-3′ (NM_001014166.1: 177–198)

5′-AAGCAGGGATCTCTTCCTAG-3′ (NM_001014166.1: 329–348)
Tnfα 5′-CCCAGACCCTCACACTCAGATCAT-3′ (NM_012675.3: 368–391)

5′-GCAGCCTTGTCCCTTGAAGAGAA-3′ (NM_012675.3: 566–588)
Tgfβ1 5′-GCTAATGGTGGACCGCAACAAC-3′ (NM_021578.2: 478–499)

5′-CAGCAGCCGGTTACCAAG-3′ (NM_021578.2: 689–706)
Cxcl12 5′-GCATCAGTGACGGTAAGC-3′ (AF217564.1: 103–120)

5′-GAAGGGCACAGTTTGGAG-3′ (AF217564.1: 208–225)
Ccl2 5′-CCCAATGAGTCGGCTGGAG-3′ (NM_031530.1: 204–222)

5′-TAAGGCATCACATTCCAAAT-3′ (NM_031530.1: 527–546)
Vegf-A 5′-TTGAGACCCTGGTGGACATC-3′ (NM_031836.3: 1175–1194)

5′-GGATCTTGGACAAACAAATGC-3′ (NM_031836.3: 1536–1556)
Flt-1 5′-TCCCTCAGCCTACCATCAAG-3′ (NM_019306.2: 1611–1630)

5′-GAGAGTCAGCCACCACCAAT-3′ (NM_019306.2: 1798–1817)
Flk-1 5′-ACAGCATCACCAGCAGTCAG-3′ (NM_013062.2: 3132–3151)

5′-CCAAGAACTCCATGCCCTTA-3′ (NM_013062.2: 3280–3299)
Cd38 5′-GAAAGGGAAGCCTACCACGAA-3′ (NM_013127.1: 166–186)

5′-GCCGGAGGATTTGAGTATAGATCA-3′ (NM_013127.1: 219–242)
Reg I 5′-GGACACTGGGTATCCTAACAATTCC-3′ (M18962.1: 424–448)

5′-CTCTCCATTTCTTGTATCCTGAGTTTG-3′ (M18962.1: 477–503)
PAP I 5′-AAAATACCCTCTGCACGCATTAG-3′ (NM_053289.1: 153–175)

5′-GGGCATAGCAGTAGGAGCCATA-3′ (NM_053289.1: 198–219)
Reg III/PAP II 5′-CCAGAAGGCAGTGCCCTCTA-3′ (L10229.1: 240–259)

5′-GCAGTAAGAACGATAAGCCTTGGA-3′ (L10229.1: 283–306)
PAP III 5′-TGTGCCCACTTCACGTATCAG-3′ (NM_173097.1: 121–141)

5′-GGCATAGCAATAGGAGCCATAGG-3′ (NM_173097.1: 162–184)
Reg IV 5′-CTGCTGAGCTGGGTAGCTGGCCC-3′ (NM_001004096.1: 31–53)

5′-TTTATCCTTGGGGTTCATCTCAG-3′ (NM_001004096.1: 386–408)
Extl3 5′-CAATCGGTTCTTGCCCTGG-3′ (NM_020097.2: 2182–2200)

5′-GGAAGTTCATGGCGATATCC-3′ (NM_020097.2: 2500–2519)
Hgf 5′-GGCTGAAAAGATTGGATCAGGAC-3′ (NM_017017.2: 2131–2153)

5′-ATCCACGACCAGGAACAATG-3′ (NM_017017.2: 2221–2240)
c-Met 5′-CAGACGCCTTGTATGAAGT-3′ (NM_031517.2: 3929–3947)

5′-CATAAGTAGCGTTCACATGG-3′ (NM_031517.2: 4053–4072)
Rig/RpS15 5′-ACGGCAAGACCTTCAACCAG-3′ (NM_017151.2: 314–333)

5′-ATGGAGAACTCGCCCAGGTAG-3′ (NM_017151.2: 363–383)
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Table 1. Cont.

Target mRNA Primer Sequence (Position)

Mouse
Il-6 5′-TTCCATCCAGTTGCCTTCTTG-3′ (NM_031168.2: 103–123)

5′-GAAGGCCGTGGTTGTCACC-3′ (NM_031168.2: 135–153)
Il-8 5′-CAGAAAGGAAGTGATAGCAGTCCCA-3′ (NM_011339.2: 211–235)

5′-CAAAGTGTCTAGAGGTCTCCCGAA-3′ (NM_011339.2: 441–464)
Il-17A 5’-TTTAACTCCCTTGGCGCAAAA-3’ (NM_010552.3: 217–237)

5’-CTTTCCCTCCGCATTGACAC-3’ (NM_010552.3: 362–381)
Il-18 5′-ACTGTACAACCGCAGTAATACGG-3′ (NM_008360.2: 714–736)

5′-TCCATCTTGTTGTGTCCTGG-3′ (NM_008360.2: 1013–1032)
Tnfα 5′-CGTCAGCCGATTTGCTATCT-3′ (NM_013693.3: 638–657)

5′-CGGACTCCGCAAAGTCTAAG-3′ (NM_013693.3: 824–843)
TGFβ 5′-CCACCTGCAAGACCATCGAC-3′ (NM_011577.2: 959–978)

5′-CTGGCGAGCCTTAGTTTGGAC-3′ (NM_011577.2: 1029–1049)
Cxcl12 5′-GCGCTCTGCATCAGTGAC-3′ (NM_021704.3: 164–181)

5′-TTTCAGATGCTTGACGTTGG-3′ (NM_021704.3: 246–265)
Ccl2 5′-TTCACCAGCAAGATGATCCCA-3′ (NM_011333.3: 197–217)

5′-TCCTTCTTGGGGTCAGCACA-3′ (NM_011333.3: 308–327)
Vegf-A 5′-AGTGGCTTACCCTTCCTCATCTT-3′ (NM_001025250.3: 2707–2729)

5′-CGGGTCCTGCCCCATT-3′ (NM_001025250.3: 2750–2765)
Flt-1 5′-GAGGAGGATGAGGGTGTCTATAGGT-3′ (NM_010228.4: 2447–2471)

5′-GTGATCAGCTCCAGGTTTGACTT-3′ (NM_010228.4: 2540–2562)
Flk-1 5′-GCATCACCAGCAGCCAGAG-3′ (NM_010612.3: 3175–3193)

5′-GGGCCATCCACTTCAAAGG-3′ (NM_010612.3: 3483–3501)
Cd38 5′-ACAGACCTGGCTGCCGCCTCTCTAG-3′ (NM_007646.5: 102–126)

5′-GGGGCGTAGTCTTCTCTTGTGATGT-3′ (NM_007646.5: 378–402)
Reg I 5′-AAGGAGAGTGGCACTACAGACG-3′ (NM_009042.2: 333–354)

5′-GTATTGGGCATCACAGTTGTCA-3′ (NM_009042.2: 521–542)
Reg II 5′-ACAGCCAAGGCCAGGTAGCT-3′ (NM_009043.2: 127–146)

5′-GGGCAGTTGATTTTGGCAGA-3′ (NM_009043.2: 183–202)
Reg IIIα 5′-GGATTGGGCTCCATGATCC-3′ (NM_011259.1: 386–404)

5′-TCAGCACATCGGAGTTACTCCA-3′ (NM_011259.1: 442–463)
Reg IIIβ 5′-TGCCTTGTTTCAGATACCACAGA-3′ (NM_011036.1: 187–209)

5′-GGTGTCCTCCAGGCCTCTTT-3′ (NM_011036.1: 238–257)
Reg IIIγ 5′-GGTAACAGTGGCCAATATGTATGG-3′ (NM_011260.2: 318–341)

5′-CCACCTCTGTTGGGTTCATAG-3′ (NM_011260.2: 368–388)
Reg IIIδ 5′-GTGTTGCCTGATGTCCCTTTC-3′ (NM_013893.2: 102–122)

5′-CAGCTGATGCGTGGAGAAGAC-3′ (NM_013893.2: 156–176)
Reg IV 5′-CGTGCGGCTACTCTTACTGCT-3′ (NM_026328.2: 179–199)

5′-AGCTGGGTCTCAAGATATCGCT-3′ (NM_026328.2: 228–249)
Extl3 5′-CAATCGGTTCTTGCCCTGG-3′ (NM_018788.3: 2842–2860)

5′-GGAAGTTCATGGCGATATCC-3′ (NM_018788.3: 3160–3179)
Hgf 5′-GGCTGAAAAGATTGGATCAGGAC-3′ (NM_010427.5: 2166–2188)

5′-ATCCACGACCAGGAACAATG-3′ (NM_010427.5: 2256–2275)
c-Met 5′-TCGGACAGAGTTTACCACG-3′ (NM_008591.2: 1600–1618)

5′-TCCAGGAGGAAGTTCACAT-3′ (NM_008591.2: 1779–1797)
Dicer 5′-ATGCAAAAAGGACCGTGTTC-3′ (NM_148948.2: 524–543)

5′-CAAGGCGACATAGCAAGTCA-3′ (NM_148948.2: 698–717)
Drosh 5′-CTCTTTCCCACCCAGTGCTA-3′ (NM_001130149.1: 844–865)

5′-TGGTCGTCGTAGTGCTTGAG-3′ (NM_001130149.1: 947–966)
Rig/RpS15 5′-ACGGCAAGACCTTCAACCAG-3′ (NM_009091.2: 343–362)

5′-ATGGAGAACTCGCCCAGGTAG-3′ (NM_009091.2: 392–412)
miR-499 5′-TTAAGACTTGCAGTGATGTTT-3′ (NR_030757.1: 10–28)

5′-GAACATGTCTGCGTATCTC-3′ (NR_030757.1: 36–53)
U6 5’-CGCTTCGGCAGCACATATAC-3′ (XR_004940589.1: 6–25)

5′-AAATATGGAACGCTTCACGA-3′ (XR_004940589.1: 86–105)
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4.3. Measurement of Mouse Reg IV and Hgf in Culture Medium by ELISA

Differentiated P19.CL6 cardiomyocytes were exposed to either normoxia or IH for
24 h. The culture medium was collected, and the concentrations of mouse Reg IV and
Hgf were measured using the ELISA Kit for mouse Reg IV (Cloud-Clone Corp., Katy, TX,
USA) [75] and for mouse Hgf (R&D Systems, Inc., Minneapolis, MN, USA), respectively.

4.4. Measurement of Viable Cell Numbers by Tetrazolium Salt Cleavage

P19.CL6 cells differentiated to cardiomyocytes (7.4 × 104 cells/100 µL in 96-well plate)
were incubated at 37 ◦C overnight, and the medium was replaced with fresh MEMα + 10%
FCS just before the addition of recombinant mouse Reg IV protein (R&D Systems) or mouse
Hgf (R&D Systems). After a 24-h treatment with Reg IV or Hgf, the viable cell numbers
were determined by a Cell Counting kit-8 (Dojindo Laboratories, Mashiki-machi, Japan),
according to the manufacturer’s instructions. Briefly, WST-8 solution was added to cells in
96-well plates, and the cells were incubated at 37 ◦C for 30 min. The optical density of each
well was read at 450 nm (reference wave length at 650 nm) using a SunriseTM microplate
reader (Tecan, Männedorf, Switzerland), as described [36,58,75,79,85,108].

4.5. Measurement of Apoptosis

P19.CL6 cells (2.5 × 104 cells/100 µL in 96-well plate) were incubated and differ-
entiated into cardiomyocytes by incubating with 1% DMSO for 10 days [100]. After the
cells were differentiated into cardiomyocytes, they were exposed to normoxia, IH, or SH
with/without 0.1 ng/mL recombinant Reg IV (R&D Systems) and 0.1 ng/mL recombinant
mouse Hgf (R&D Systems) for 24 h, and apoptosis was detected by the TUNEL method
using an apoptosis screening kit (FUJIFILM Wako). The optical density of each well was
read at 490 nm (reference wave length at 650 nm) using a SunriseTM microplate reader
(Tecan), as described [36,58,108,110].

4.6. Measurement of Replicative DNA Synthesis

IdU solution was added to the culture medium of differentiated P19.CL6 cells
(2.0 × 104 cells/100 µL in 96-well plate). After 1 h incubation in the presence of recom-
binant mouse Reg IV (0.1 ng/mL) and/or recombinant mouse Hgf (0.1 ng/mL), IdU
incorporation was measured using a DNA-IdU Labeling and Detection kit (Takara Bio) as
described [53,108,110]. The optical density of each well was read at 490 nm (reference wave
length at 650 nm) using a SunriseTM microplate reader (Tecan).

4.7. MiR-499 Mimic Transfection

MiR-499 mimic (5′-UUAAGACUUGCAGUGAUGUuu-3′, 5′-ACAUCACUGCAAGUC
UUAAuu-3′; 14–32 of NR_030757.1) and non-specific control RNA (miR-499 mimic NC)
(5′-UUCUCCGAACGUGUCACGUtt-3′, 5′-ACGUGACACGUUCGGAGAAtt-3′) were synthe-
sized by NGRL and introduced into differentiated P19.CL6 cardiomyocyte using Lipofectamine®

RNAiMAX Transfection Reagent (Invitrogen, Waltham, MA, USA) [75,79,104–106] just be-
fore IH/normoxia exposure. The mRNA levels of Reg IV and Hgf were measured by
real-time RT-PCR, as described [58,75,79,101,104–106].

4.8. Construction of Reporter Plasmid and Luciferase Assay

Reporter plasmids were prepared by inserting the promoter fragments of mouse Reg IV
(−2008–+29) and rat Hgf (−1336–+59) upstream of a firefly luciferase reporter gene in the
pGL4.17[luc2/Neo] vector (Promega, Madison, WI) and pGL3-Basic (Promega) [36], respec-
tively. The reporter plasmids were transfected into mouse P19.CL6 cells differentiated into car-
diomyocytes using Lipofectamine® 3000 (Invitrogen), as described [36,73–75,79,82,102,105–109].
The cells were exposed to either 70 cycles/24 h of IH, mimicking the cardiomyocytes
of SAS patients, or normoxia for 24 h. After the cells were exposed to IH, they were
lysed, and promoter activities were measured. The cells were harvested, and cell ex-
tracts were prepared in an Extraction Buffer (0.1 M potassium phosphate, pH 7.8/0.2%



Int. J. Mol. Sci. 2022, 23, 12414 14 of 19

Triton X-100; Life Technologies, Carlsbad, CA, USA). To monitor transfection efficiency,
pCMV•SPORT-βgal plasmid (Life Technologies) was co-transfected in all experiments at a
1:10 dilution. Luciferase activity was measured using a PicaGene luciferase assay system
(Toyo-ink, Tokyo, Japan) and was normalized by the β-galactosidase activity as described
previously [36,58,73–75,79,82,102–106].

4.9. Data Analysis

Results are expressed as mean ± SE. Statistical significance was determined by Stu-
dent’s t-test using GraphPad Prism software (GraphPad Software, La Jolla, CA, USA).
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Abbreviations

Ccl2 C-C motif chemokine 2
Cd38 Cluster of differentiation 38
c-Met Tyrosine-protein kinase Met
Cxcl12 C-X-C motif chemokine 12
CVD Cardiovascular disease
DICER Endoribonuclease Dicer
DMEM Dulbecco’s Modified Eagle Medium
DROSHA Ribonuclease type III
ELISA Enzyme-linked Immunosorbent assay
Extl3 Exostosin-like 3
FCS Fetal calf serum
Flk-1 Fetal liver kinase receptor 1
Flt-1 Fms-like tyrosine kinase 1
HGFIdU Hepatocyte growth factor5-Iodo-2′-deoxyuridine
IH Intermittent hypoxia
Il Interleukin
MEMα Minimum Essential Medium Alpha Modification
miR MicroRNA
PAP Pancreatitis associated protein
Reg Regenerating gene
RpS15 Ribosomal protein S15
RT-PCR Reverse transcriptase-polymerase chain reaction
SAS Sleep apnea syndrome
SH Sustained hypoxia
TGFβ1 Transforming growth factor β1
Tnfα Tumor necrosis factor-α
TUNEL TdT-mediated dUTP nick end labeling
Vegf-A Vascular endothelial growth factor A

WST-8
2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium
monosodium salt
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