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Biological rhythms, generated by feedback loops containing interacting genes,

proteins and/or cells, time physiological processes in many organisms. While

many of the components of the systems that generate biological rhythms

have been identified, much less is known about the details of their interac-

tions. Using examples from the circadian (daily) clock in three organisms,

Neurospora, Drosophila and mouse, we show, with mathematical models of

varying complexity, how interactions among (i) promoter sites, (ii) proteins

forming complexes, and (iii) cells can have a drastic effect on timekeeping.

Inspired by the identification of many transcription factors, for example as

involved in the Neurospora circadian clock, that can both activate and repress,

we show how these multiple actions can cause complex oscillatory patterns in

a transcription–translation feedback loop (TTFL). Inspired by the timekeeping

complex formed by the NMO–PER–TIM–SGG complex that regulates the

negative TTFL in the Drosophila circadian clock, we show how the mechanism

of complex formation can determine the prevalence of oscillations in a TTFL.

Finally, we note that most mathematical models of intracellular clocks model a

single cell, but compare with experimental data from collections of cells. We

find that refitting the most detailed model of the mammalian circadian

clock, so that the coupling between cells matches experimental data, yields

different dynamics and makes an interesting prediction that also matches

experimental data: individual cells are bistable, and network coupling

removes this bistability and causes the network to be more robust to exter-

nal perturbations. Taken together, we propose that the interactions between

components in biological timekeeping systems are carefully tuned towards

proper function. We also show how timekeeping can be controlled by novel

mechanisms at different levels of organization.
1. Introduction
Three levels of biochemical detail exist in the circadian timekeeping system

of higher organisms, as well as many other rhythm generators: transcriptional

regulation, post-translational modification and intercellular communication.

For example, the mammalian daily (circadian) clock is controlled by the roughly

20 000 neurons of the suprachiasmatic nuclei (SCN), each of which has inter-

locked positive and negative genetic feedback loops in transcription and

post-translational modifications that generate oscillations in the concentrations

of core clock proteins with a period of 24 h. While many of the components of

these timekeeping systems have been identified, how interactions between com-

ponents at each of the three levels contribute to the generation of robust rhythms

remains to be investigated. Here, we explore interactions at these three scales.
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1.1. Transcriptional regulatory elements
Genetic negative feedback loops lie at the core of many rhyth-

mic processes within cells, including those involved in

circadian timekeeping [1,2], embryogenesis [3], cell cycle [4]

and DNA damage repair [5]. For example, at the core of the

mammalian circadian clock is a negative feedback loop in

which a transcriptional activating complex (BMAL::CLOCK)

binds to E-boxes, transcriptional regulatory sites, in the promo-

ters of the Per and Cry genes, activating their transcription. The

protein products of these genes then form complexes, which

return to the nucleus to bind to and deactivate BMAL::CLOCK,

thereby inhibiting their own production. While multiple E-box

DNA-binding sites for BMAL::CLOCK exist [6], little is known

about their interaction.

A similar feedback loop structure exists in the circadian

clocks of Drosophila and Neurospora [7,8]. One interesting

twist is that the core repressor of the Neurospora clock, FRQ,

also can stabilize activators, causing it to act as an activator

as well [9]. Another Neurospora transcription factor involved

in circadian timekeeping, VIVID, also acts as both an activa-

tor and repressor [10]. The bacterial transcription factor araC,

used in a synthetic clock [11], can act as either a repressor or

an activator at different sites [12]. Many other transcription

factors show this property [13]. Thus, another possibility

could be that a protein could act as both an activator and

repressor by binding to different sites, which is a motif that

remains to be explored in models of circadian clocks.

1.2. Protein complex formation
Following transcriptional regulation, many important phos-

phorylation and complex formation steps occur in cellular

rhythm-generating systems [14,15]. They are difficult to

model, as the number of possible complexes grows exponen-

tially in the number of protein species that can bind. For

example, in a recent detailed model of the mammalian circa-

dian clock by Kim & Forger [16], the core negative feedback

loop of the model focused on only six different proteins.

However, the model had to account for almost 150 different

possible species once all complexes were included, as well

as nuclear transport and the action of kinases.

One specific example of complex formation in rhythm

generation can be found in the Drosophila circadian clock. The

expressions of four proteins, PERIOD (PER), TIMELESS

(TIM), NEMO (NMO) and SHAGGY (SGG), are all under the

control of a transcriptional complex, formed by the CLK and

CYC proteins, that binds rhythmically to genes with E-boxes

[17]. PER, TIM, NMO and SGG form a complex, where post-

translational modifications occur, which control the rhythmic

activation by CLK and CYC [18,19]. A similar complex is cre-

ated in the mammalian and Neurospora circadian clocks. An

outstanding question is whether the mechanism of protein

complex formation matters in rhythm generation.

1.3. Coupled cellular networks
Finally, in addition to intracellular dynamics, intercellular sig-

nalling between cells also plays an important role in cellular

rhythm-generating systems [20]. For example, isolated neurons

of the SCN show weak, noisy rhythms [21] that can gain or lose

rhythmicity in response to external stimuli [22]. When coupled

together, however, these neurons form a robust circuit with

precise 24 h oscillations that is resistant to genomic mutations
[23]. Thus, important interactions on the network level lead

to emergent behaviours that cannot be seen by considering

only a single cell.

Here, we extend the Kim & Forger model [16] of intra-

cellular dynamics to make a detailed multicellular model of

the SCN. We explore how a multicellular SCN model is

able to reproduce differences in phenotype between dis-

persed SCN neurons and the SCN network, which shows

robust oscillations less affected by genomic mutations as

well as external stimuli.

1.4. Overall goals
While our simulations have implications for specific rhythm-

generating systems, especially circadian timekeeping in

higher organisms, our results show that many important

details of the biochemical mechanisms underlying rhythm

generation in many systems remain unexplored. This may

be because these simulations often require advanced comput-

ing techniques, such as the use of graphics processing units

(GPUs) employed here, to simulate detailed multicellular bio-

chemical models. While GPU computing is not the only

method available for performing these simulations, it is par-

ticularly well suited for simulating networks of biological

cells as the models are easily parallelizable on GPU cards

and require sharing information between cells, which can

be done rapidly using the globally available memory on a

GPU card. With models at three different scales, we find

that the interaction mechanisms used in circadian clocks

favour robust oscillations.
2. Interactions between promoter-binding sites
Genetic networks require fine-tuning and control, generally

provided in the form of transcriptional regulation. Even in

a simple eukaryote such as yeast, as many as 37% of promo-

ters were found to bind transcriptional regulators, and of

these, more than one-third bound two or more regulators

[24]. While these regulatory sites are now easily identified

using high throughput assays such as ChIPSeq [25], inter-

actions between transcriptional regulators are much more

difficult to characterize.

Here, we study transcriptional regulation in the context of a

generalized feedback loop model based on that by Goodwin

[26]. The model and corresponding equations are shown in

box 1. We allow a general transcription rate, f(PL), which is a

function of the concentration of a transcription factor PL. We

model two sites where PL can bind. In the first model, there

are two repressive sites that act independently, as seen, for

example in the E-boxes in the Per1 promoter [27]. It has pre-

viously been shown that complex behaviours, e.g. chaos,

cannot be seen in such a simple system [28]. In the second

model, two sites are again modelled, but one site acts to repress

and one activates. Through this, we study how the interac-

tions between transcriptional regulatory sites within a genetic

feedback loop change oscillatory behaviour.

We searched for different types of oscillatory behaviour

with different mechanisms of transcriptional regulation. To

our surprise, we saw many types of behaviour, which had

not yet been classified in genetic networks with just one feed-

back loop (although several had been seen in more complex

networks [29,30]). One behaviour is called bistability, or

hard excitation (figure 1a–c), where a stable steady state



Box 1. Description of a simple transcription – translation feedback loop model, with which we study the effects of transcriptional regulation mechanisms.
A diagram of the feedback loop is shown, along with differential equations describing the dynamics of each of the protein species involved, and all
parameters and initial conditions used.

transcription

PL PL

P1 P2 PL

translation
post-translational

modification

The model equations take the form

dP1

dt
¼ f(PL)� n1P1 and

dPi

dt
¼ miPi�1 � niPi, 2 � i � L:

This simple model of a biochemical feedback loop tracks the concentration of transcripts from a gene (P1), and the concen-

tration of protein translated from these transcripts. The protein can exist in several states (P2, . . . , PL) due to post-translational

modifications that eventually allow the protein to act as a transcription factor (PL). The constant n1 is the degradation rate of

the transcript, and for i . 1, ni is the sum of the rate of clearance for protein state Pi and the conversion rate of protein state Pi

into the next state, Piþ1. Similarly, m2 is the rate of translation of the protein, and mi (i . 2) is the rate of conversion of protein

Pi21 into protein Pi. Here, we choose L ¼ 5 and all rate constants to be 1. We also assume that there are two binding sites for

P5 on the gene. For simulations in figure 1b,c, the transcription rate (shown in figure 1a) was chosen to be

f(P5) ¼ ap

ap þ Pp
5

þ c
bp

bp þ Pp
5

,

where a ¼ 0.5, b ¼ 0.75, c ¼ 0.75 and p ¼ 8. In figure 1b, all initial conditions were chosen to be 0.5, and in figure 1c all initial

conditions were chosen to be 0.7. In figure 1d– i, the transcriptional regulation function was of the form

f(P5) ¼ dþ cpPp
5

ap þ Pp
5

 !
bq

bq þ Pq
5

 !
:

For figure 1b, p ¼ 10, q ¼ 25, a ¼ 2, b ¼ 0.2 and c ¼ 9.25446. In figure 1e, d was chosen to be 0.055 and in figure 1h it was

chosen to be 0.052826. These parameters were specifically chosen to show that a small change in parameters can yield a

large change in behaviour. The initial conditions for figure 1e,h were that all variables started at values of 0.176. In figure

1c, p ¼ 10, q ¼ 13, c ¼ 1.0824, a ¼ 0.423, b ¼ 0.44 and d was chosen to be 0. The initial conditions for figure 1f,i were

P1 ¼ 0.07, P2 ¼ 0.4, P3 ¼ 0.8, P4 ¼ 0.2 and P5 ¼ 0.5.
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and a stable oscillatory state coexist [31]. The feedback

loop displays either oscillations (figure 1b) or quiescence

(figure 1c) depending on the initial conditions. In this

model, oscillations can be started or stopped by external sig-

nals to the genetic network. This is a hallmark of many

circadian clocks [29,32] and was found with the model of

two repressive sites.

Allowing for interactions between an activator and repres-

sor site greatly increases the behaviours that are possible. For

example, during the course of an oscillation, the system

comes very close to an equilibrium point (figure 1f ), slowing

as it approaches the equilibrium point, causing the oscillations

to develop a long period. This is one example where small

changes in transcription rate change the shape of the time

course of oscillations by controlling how long the oscillator

spends near an equilibrium point. This additional equilibrium

point could not be seen in the model of two repressive sites,

because the transcription regulation function was monotonic.

Finally, we note that more complex behaviours including

chaos, with sensitive dependence on initial conditions, can

also be seen (figure 1g– i) with an activator and repressor

sites. This is not possible in the model of two repressive

sites [28]. These results show that it is not sufficient to

simply know that a given transcription factor binds to a regu-

latory site on a gene. On the contrary, the mechanism of

interaction between transcriptional regulatory sites can
greatly influence the rhythmic behaviours created in a genetic

feedback loop.
3. Interactions between proteins in complex
formation

We next consider the mechanisms of post-translational modi-

fication, in particular complex formation. Inspired by the

Drosophila circadian clock (see Introduction), we begin by

considering a general system of N distinct proteins (num-

bered 1 through N ) that may combine to form complexes.

Initially, the protein monomers are unbound, and we

assume that proteins may not be repeated within a complex.

We analyse the binding dynamics seen under three different

models of complex formation:

— Model 1—individual proteins must bind one at a time to

other individual proteins or existing complexes to create

new complexes;

— Model 2—any individual protein or existing complex can

bind to any other as long as no proteins are repeated

within a complex; and

— Model 3—only proteins with consecutive indices can form

a link in order to form a complex (i.e. 1 can only bind to

2, 2 can only bind to 1 or 3, 3 can only bind to 2 or 4, etc.).
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Figure 1. Changes in transcriptional regulation can drastically affect the behaviour of genetic oscillators. We consider three possible mechanisms of transcriptional
regulation, where the rate of transcription as a function of a transcription factor is plotted in (a), (d ) and (g) (box 1). Each assumes that there are two regions on a
promoter where a transcription factor (PL) can bind. In the first model (shown in (a)), binding to either site can stop transcription. For this mechanism, the system
can either show oscillations (b) or quiescence (c) depending on the initial state of the system. In models (d ) and (g), binding at one site activates transcription and
binding at the other site represses transcription. For model (d ), small changes in the transcription regulation function can change the shape of oscillations and can
lengthen the period (e – f ). With a different choice of transcriptional regulation function, shown in (g), chaotic behaviour can also be seen (h – i). Rate constants and
initial conditions can be found in box 1. For each simulation, an initial transient is not shown.
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These three models are depicted in figure 2 for the case N¼ 4,

which we will use as an illustrative example because our motiv-

ating problem in Drosophila contains four proteins. Beginning

with the four unbound proteins, figure 2 shows the sequence

of reactions needed in order to make all possible complexes

allowed under each binding model. Models 1 and 2 lead to the

formation of the same intermediate complexes before a full com-

plex containing all four subunits is formed, but they are formed

through different reactions. For example, in Model 2, hetero-

dimer 12 may bind with 34 to form the full complex 1234. Such

a reaction is not permissible under Model 1. With Model 3,

some complexes cannot form, for example the heterodimers

13, 14 and 24 are never produced. Table 1 summarizes all of

the complexes that may be formed for the three models.

For each model, we consider initial concentrations of 1 for

each of the four proteins and set all rate constants to 1. All

reactions are assumed to occur by standard mass action kin-

etics. We initially consider only complex formation reactions

and do not model transcription, translation or degradation of

any of the protein monomers. Thus, no new monomers will

be formed, and monomers are lost only to complex for-

mation. Figure 3a shows the accumulation of the tetramer

1234 over time under each of the three models. Only in

Model 3 does the concentration of the tetramer approach a

value near 1, indicating that nearly all the individual proteins

eventually participate in the formation of this complex. In the
other models, most of the individual proteins are locked up in

intermediate complexes that are unable to bind together. This

is depicted in figure 3b, which shows the steady-state distri-

bution of the protein complexes formed under each of the

three models. Models 1 and 2 result in many intermediate

complexes that are unable to bind to one another. Under

Model 3, on the other hand, almost all monomers are

bound in a tetramer.

This simple example illustrates that the mechanism of

protein binding strongly effects the distribution and dynamics

of complex formation. To apply this principle to study biologi-

cal rhythms generated by a transcription–translation feedback

loop (TTFL), we consider the case that the full tetramer (1234)

negatively feeds back on the production of the four monomers,

which are also linearly degraded. This leads to differential

equations of the form

dMi

dt
¼ 1

1þ (P1234/Kr)
n �Mi, i ¼ 1, . . . , 4

and

dPi

dt
¼Mi � vPi � gi(P1, . . . , P1234), i ¼ 1, . . . , 4,

where Mi and Pi are the concentrations of mRNA and protein

for monomer i, and v is the protein degradation rate. The func-

tions gi describe the mass action binding reactions between Pi

and the other species, and differ for the three models of
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Figure 2. Three generic models of complex formation. Here, we consider four proteins, which can bind by several mechanisms of complex formation. In (a), we
assume that any protein complex can bind only with individual proteins that are not part of the complex. In (b), we assume that any complex can bind with any
other complex so long as they do not both contain any common individual proteins. In (c), we assume that only proteins with consecutive indices can form a link in
order to form a complex. The left most panel indicates the isolated proteins. The next panels show the possible complexes that can form after one, two or three
reactions, respectively. Complexes with one, two, three or four proteins are represented as circles of increasing sizes (coloured blue, orange, green and red,
respectively, in the online version). (Online version in colour.)

Table 1. Complete list of all protein complexes formed for the case N ¼ 4
in the three models. Models 1 and 2 lead to the formation of the same
complexes, but not all of these complexes can be formed in Model 3.
(Online version in colour.)
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complex formation described previously. We assume that

degradation and translation of the transcripts for each protein

occur with rate 1. Transcription occurs according to a standard

Hill function with Hill coefficient n and repression constant Kr.

As before, complexes are gained and lost through binding

events, but now in addition, they undergo linear degradation
with rate constant v. We assume saturating degradation for

the final tetramer, leading to a differential equation of the form

dP1234

dt
¼ f1234(P1, . . . , P1234)� v1234P1234

Km þ P1234
,

where f1234 describes the binding reactions which form P1234,

and v1234 and Km are the maximal degradation rate and associ-

ated Michaelis–Menten constant, respectively. Our motivation

for this is to create a stable final complex, at least for higher

concentrations, which is in agreement with the available

biochemical data [33].

After searching the parameter space, we were able to

obtain oscillations in each of the models. We plot the concen-

tration of protein 1 for all three models in figure 4a and the

concentration of the final tetrameric complex in figure 4b
for a nominal choice of parameters for which all three

models oscillate. The value of the Hill coefficient determines

whether oscillations are seen, and their frequency and ampli-

tude. To study this, we show a bifurcation diagram in n in

figure 4c. Oscillations occur as the Hill coefficient is increased.

The value of n for which oscillations first occur is smallest for

Model 3, then Model 2 and finally Model 1. This nesting of

the oscillatory region also occurs for the Km parameter. In

figure 4d, we show a bifurcation diagram in Km, which con-

trols the location of the onset of saturating degradation of

the tetramer. All three models oscillate for small Km and

are non-oscillatory for large Km. For intermediate Km (so that

the mean value of the tetramer is near Km), Models 1, 2 and 3

do not oscillate, oscillate with small amplitude and strongly

oscillate, respectively. The nesting of the oscillatory regions

for the three models holds true for other choices of nominal
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Figure 3. Mechanism of complex formation determines dynamics of tetramer production and prevalence of intermediates. Panel (a) shows the monotonic approach
of the concentration of the tetramer to its steady-state value for each of the three models. The steady-state composition is shown in panel (b) for each of the three
models (Models 3, 2 and 1 from top to bottom). With Model 3, the concentration of the tetrameter makes a slow approach to a value near 1, while only small
amounts of the intermediate complexes remain. Model 2 results in more intermediate complexes, with some of each of the trimers remaining, while Model 1 results
in many dimers and trimers.
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parameters as can in part be seen from the Km � n two-

parameter bifurcation diagram in the electronic supplementary

material, figure S1.

Together, these results show that the mechanism of repres-

sor complex formation in a negative feedback loop strongly

affects whether or not rhythms are generated. Moreover, we

find that Model 3 (which seems the most likely candidate

used in the Drosophila circadian clock) has the most likely

chance of yielding oscillations.
4. Interactions between cells in a network
We next study how interactions between cells within the SCN,

the central mammalian circadian pacemaker, can determine

the behaviour of the tissue. Previous studies of the circadian

timekeeping system have shown that coupling between cells

can help heterogeneous neurons with weak, damped oscil-

lations [35,36] or only stochastic oscillations [37] to generate

rhythms as a synchronized network. Coupling has also been

shown to affect the ability of the network to entrain to external

stimuli [38]. Indeed, several previous models of the SCN have

been built [2,16,35,36,39–46], but generally many of the details

of transcriptional and post-translational regulation are left out.

Additionally, the role of coupling between cells in the model is

important for fitting parameters, which is often not considered.
Models of individual cells are routinely fitted to data from

populations. Here, we develop a detailed biochemical model

of the SCN, fit parameters that incorporate intercellular coup-

ling to population data, and then compare the result to the

same model when coupling is removed. Our goal is to use

the model to understand how intercellular signalling leads to

emergent phenomena at the network level.

We aim to match experimental measurements of the SCN

from both the dispersed cell culture (uncoupled neurons) and

organotypic slice preparations (coupled neurons). SCN slices

contain a two-dimensional array of neurons, each of which

could generate timekeeping. To represent the intracellular

rhythms, we use the Kim & Forger model [16] for the mam-

malian circadian clock, which includes detailed descriptions

of complex formation, and transcriptional regulation by the

repressor complexes formed. We chose the Kim and Forger

model because of its detail and predictive accuracy.
4.1. Suprachiasmatic nuclei model formulation
We first extend the Kim and Forger model of intracellular

rhythms in the SCN to a tissue-level SCN model by incorporat-

ing intercellular signalling. In particular, we focus on the effects

of the neuropeptide vasoactive intestinal peptide (VIP), which

has been reported to be the most essential signalling molecule

in the SCN [20,47–51]. VIP is released by roughly 20% of the
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VPAC2R, inhibiting it. Activated CREB binds to CRE sites on the promoters of the
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neurons of the SCN and received by the cell-surface VPAC2

receptor (VPAC2R). This receptor has been shown to be present

on the surface of upwards of 90%, if not all cells in the SCN [52],

so we will assume all cells can receive VIP. Reports about

whether VIP is produced rhythmically or not conflict

[53–55], but it is generally agreed upon that VIP release

should be rhythmic [56], so we focus only on VIP release.

Binding of VIP to the receptor initiates an intracellular sig-

nalling cascade with several steps occurring on a very fast time

scale (figure 5). Condensing this fast time scale, we model only

the ligand–receptor binding and a few key steps in the path-

way for which we have experimental data to compare.

Specifically, we assume that VIP binding to the receptor

leads to an increase in cAMP, which promotes phosphoryl-

ation and activation of cyclic AMP response element binding

protein (CREB). The activated CREB then binds to the cyclic

AMP response element (CRE) sites in the promoter regions

of the Per1 and Per2 genes, increasing their transcription [57].

The rate of VIP release is assumed to be proportional to intra-

cellular calcium levels, and calcium can also, through a parallel

pathway, promote the phosphorylation of CREB directly [58].

Intracellular calcium is assumed to increase at a rate pro-

portional to E-box activity and decrease at a linear rate.

While this is a purely phenomenological assumption, it is con-

sistent with experimentally measured time courses of

intracellular calcium, which show the greatest increase roughly
at the time of maximal E-box activity [59,60], and creates a

phase difference between calcium and the molecular clock

components consistent with those found experimentally as

well as in previous modelling studies [43]. Finally, CRY1 and
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CRY2 are assumed to inhibit the adenylyl cyclase activity of

VPAC2R [61]. This pathway is diagrammed in figure 5, and

all equations, variables, and parameters modified from the

original Kim and Forger model, or added to make this new

model are given in the electronic supplementary material, S2.
4.2. Parameter estimation and simulating the
suprachiasmatic nuclei model with graphics
processing units

The addition of intercellular signalling to the Kim and Forger

model requires the fitting of 15 new parameters. To represent

a single cell, Per1 and Per2 maximal E-box transcription rates

(parameters trPo and trPt) were set to 40% of their originally

published maximal values, as recommended in the original

manuscript, and all other original parameters were unchanged

[16]. This was done to allow for additional Per transcription

initiated by CRE activation through VIP and calcium. The 15

new parameters were fitted using simulated annealing as in

the original Kim and Forger publication [16]. In addition to

the protein and mRNA time courses and protein abundance

data that the original model was fitted to, we additionally fit

to time courses of intracellular calcium and CRE activity
levels, extracted from published videos [59] using MATLAB. To

fit parameters for a single cell in the SCN network, we coupled

the cell to itself so that it received the VIP that it produced. This

allowed us to fit the activation of the CRE pathway by VIP in a

single cell. For simulation of the whole SCN, the VIP released

by each cell was divided by the number of VIP-producing

cells, so that the input signal from the network was of the

order of the originally fitted VIP level. Further details on the

methods of parameter estimation are given in the electronic

supplementary material, S3.1. Fits of the model to experimental

data obtained are shown in figure 6.

We simulate an SCN network model of 1024 cells in total

and assume that VIP is produced by 205 of the cells (approx.

20%). VIP is a small neuropeptide, which should diffuse

rapidly throughout the SCN compared with the time scale of

transcriptional activation. Therefore, we make the simplifying

assumption that the VIP-producing cells released VIP equally

to all cells in the SCN. To test the consequences of this assump-

tion, we compared the time courses obtained with this

connectivity to those seen with random network connectivity

of varying percentages ranging from 10 to 100%, normalizing

the VIP input to each cell by the number of upstream cells,

and saw no significant difference in synchrony, period,

amplitude or waveform (data not shown).
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Heterogeneity is included in the model by allowing

the Per1 and Per2 maximal transcription rates associated

with both E-box activation (parameters trPo and trPt, respect-

ively) and CRE activation (parameters CtrPo and CtrPt,

respectively) to vary between cells. For each cell, these four par-

ameters were drawn independently from normal distributions

with mean equal to the value from our fitted single-cell model,

and standard deviation 5% of the mean. This affects the

strength of oscillations seen in individual cells as well as their

intrinsic periods of oscillation. Only these transcription rates

were varied between cells; all other parameters were set to

the values fitted as described above.

Both the parameter estimation algorithm and simulation of

the network model are accelerated using GPU computing. This

architecture is well suited for these problems because of their

structure. Parameter estimation using simulated annealing is

embarrassingly parallel and fits entirely within the memory

onboard the GPU card. Simulation of the SCN network is

also sufficiently small to fit in memory; however it does require

some communication between threads. In particular, infor-

mation about intercellular coupling through VIP must be

passed between cells, but this is a small amount of data relative

to the computation of the intracellular dynamics, which can be

solved in independent blocks. For our problem, we choose to

simulate 1024 cells in parallel, either uncoupled for parameter

estimation, or coupled for the SCN network model, because

tests showed that this was a near optimal choice in terms of

speed of computation per number of cells (see the electronic

supplementary material, figure S2). Details of the compu-

tational methods used are given in the electronic

supplementary material, S3.

4.3. Differences between single cell and whole
suprachiasmatic nuclei behaviour

We consider our model both in the presence and absence of

coupling through VIP. Raster plots of PER2 levels for 200 ran-

domly selected cells (out of 1024) from the coupled SCN model

are shown in figure 7a. Cells within the intact SCN have

well-synchronized, high-amplitude rhythms. The uncoupled

model mimics the dispersed cell preparations often used exper-

imentally. In these simulations, the VIP release rate (parameter

vpr) is set to zero, as cells are assumed to be dispersed enough

that they are unable to signal through VIP release. Raster plots

of PER2 levels for the uncoupled model are shown in figure 7b.

In the absence of coupling, the cells desynchronize and show a

drastic reduction in rhythm amplitude, with some losing
rhythmicity altogether. While the uncoupled cells all begin

with similar initial conditions, they drift apart over time due

to their differences in intrinsic periods. Periods of individual

cells range from 24.0 to 25.6 with a mean of 24.79+0.29 and

are distributed roughly normally. Of the 1024 isolated cells

simulated, 966 showed sustained rhythms while the other 58

were arrhythmic or heavily damped.

Consistent with the original model [16], we find that our

uncoupled model matches known single-cell genotypic knock-

outs: 70% of Per12/2 and all Cry12/2 cells modelled were

arrhythmic, while Cry22/2 cells were mostly rhythmic (918

of 966 rhythmic) with a long period (mean 27.13+0.38 h).

This is all consistent with experimental data for SCN neurons

in dispersed culture [23]. In the coupled SCN model with

intact VIP signalling, cells synchronize with a period of

24.2 h, consistent with SCN explants [23]. Unlike the isolated

cells, the network model is resistant to genotypic knockouts,

showing robust rhythms in Per12/2, Cry12/2 and Cry22/2

individual knockouts, with no period change, period shorten-

ing by approx. 1 h, and period lengthening by approx. 1.5 h,

respectively, for the three knockouts.

To test the robustness of individual cellular rhythms, we

constructed a phase response curve (PRC) to VIP to see how

they phase change in response to external signalling. For this

curve, circadian time was determined relative to the cell’s

PER2 protein level, with the peak PER2 level defined as CT12.

Individual cells can show both large phase advances as well

as delays depending on the time at which the VIP is applied,

and surprisingly can also be made arrhythmic (denoted as a

gap in the PRC). A PRC for a single cell is shown in figure 8a.

For this particular cell, a VIP pulse between CT17.3 and

CT20.5 causes the cell’s rhythms to damp (figure 8c), in stark

contrast to the quickly recovered rhythms when the pulse is

given at other circadian times (figure 8d). This bistability was

surprising, as it had not been seen with the parameters used

in the original Kim and Forger model, and is a novel prediction

of our new single-cell model. It is, however, consistent with

experiments which have shown that application of forskolin, a

direct stimulant of the cAMP signalling pathway, to isolated

SCN neurons can cause the cells to gain or lose rhythmicity

[22]. Other models have also found this behaviour, notably in

the light response of the Drosophila circadian clock [29] and

in a particular range of parameters in an overall model of

mammalian circadian rhythms [62].

In our model, bistability is a property of the individual

cellular oscillators, but not of the SCN network. VIP pulses

of identical magnitudes applied to the SCN network show
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much smaller phase shifts, with a traditional type I PRC, as

described in [32], shown in figure 8b (note the difference in

scale). Thus, the intercellular coupling confers robustness

against external perturbations. The SCN network PRC quali-

tatively matches that found experimentally [47], with roughly

the same pattern of advances and delays. The main notable

difference is that the magnitude of the phase delays is not

as great as in [47], which could be explained by the pharma-

cokinetics of VIP, or small differences in the magnitude of the

VIP pulse given, as compared to our simulations.

To explore this bistability in single cells further, we tested

whether the reintroduction of VIP signalling could restart col-

lective rhythms in the network. Using our uncoupled model

from before, we began with half the cells in the rhythmic state

and the other half in the arrhythmic state, and reintroduced

VIP signalling. Plots of 32 representative cells from the 1024
in the network with varying initial amplitudes (with bright

to dark colours representing low to high initial amplitudes,

respectively) and phases are shown in figure 8e. After restor-

ing VIP signalling (time denoted by the red vertical line), all

of the cells in the network quickly regained high-amplitude

rhythms and resynchronized over time. This illustrates the

fact that bistability is not seen in the coupled network, but

is seen in isolated cells.
5. Discussion
Here, we have shown that the details of how parts of a

rhythm-generating system interact play a crucial role in deter-

mining the behaviour of biological clocks. These details are

often not included in the summary diagrams biologists use
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to describe biochemical interactions. Our results demonstrate

that they are crucially important at every step of rhythm gen-

eration in a genetic network; from transcriptional regulation,

to post-translational modification, and finally to intercellular

communication. We also show that much more investigation

may be needed to determine the parts of timekeeping

networks that are crucial for behaviour.

Combinatorial complexity is seen in many biological sys-

tems. This is because almost all cellular processes involve

protein complex formation. It is thus surprising that so few

studies have included the details of protein complex formation.

We find that they can be crucial in correctly predicting a sys-

tem’s behaviour. Many of the behaviours we have described

such as chaos and bistability have been seen in more complex

models of biological timekeeping [63–65]. By studying a

simple negative feedback loop, we show how they can be attrib-

uted to the way in which transcriptional regulators interact, an

often overlooked but essential step in rhythm generation.

The development of detailed multicellular models of bio-

logical tissues has the potential to explore many complicated

phenomena seen experimentally, and to try to explain the

mechanisms behind them. An important area for future work

is to study the differences in phase among neurons in the

SCN network. Heterogeneity of period and phase within the

SCN has been shown to be important for the coding of seasonal

changes in light and dark cycles [66–68]. Previous studies have

shown that cells in subregions of the SCN exhibit differences in

intrinsic period [66,69–71], and some have suggested that

these period differences drive the spatio-temporal pattern or

‘phase wave’ seen in SCN slices [71].

With our SCN model, we focused on the molecular mech-

anisms of rhythm generation. In the actual SCN, there is a

strong connection between the molecular clock and the elec-

trical activity of the cells [72], and previous studies have

shown that the rhythms in electrophysiology can strengthen

molecular rhythms [43]. While we have not considered this

aspect of rhythm generation here, we plan to explore it in

future work.

Here, we show how coupling can make the SCN more

resistant to perturbations, which is in agreement with exper-

imental findings [73]. Our findings also show how coupling

greatly increases the amplitude of rhythms, which also

matches experimental findings [20,74]. But most interestingly,

we find that when cellular coupling is included in model fit-

ting, individual cells lacking the coupling signal become

bistable. This matches data which show that timekeeping

within individual isolated neurons within the SCN can be

turned on or off by biochemical signals. It also raises
questions about our single-cell simulations of circadian

mutants and the data that we compare our simulations

against [23]. When single cells are arrhythmic, it remains to

be seen if that is due to bistability or if the cells are incapable

of rhythmicity. This needs to be explored both in simulations

and in the experimental preparation.

The designs we have tested are inspired by the experimen-

tal findings from the circadian clock found in several

organisms. While more work is needed, our findings point

towards circadian clocks using mechanisms that yield robust

oscillations. The results presented here are numerical, and

further mathematical analysis could expand these results

[75]. The core negative feedback loop that generates time-

keeping in many organisms is controlled by one or multiple

E-boxes, which are repressed by elements in the feedback

loop. We find this design can yield bistability, but not chaos.

Additionally, we find that bistability in intracellular timekeep-

ing, which makes timekeeping vulnerable to perturbations, can

be compensated for by intercellular coupling.

Further experimental work is needed to verify our predic-

tions. It would be interesting to build a synthetic clock where

a protein, under negative feedback, acts both as an activator

and repressor. Such a design could show behaviours not

yet seen in synthetic clocks, especially as the araC protein,

which can show this behaviour, has already been included

in a synthetic clock. We also predict that individual isolated

SCN neurons are bistable. This matches data presented in

Webb et al. [22], but better experimental data would charac-

terize the single-cell PRC to VIP and the possibility that it

could stop rhythmicity, offering experimental validation of

our prediction. We also note that the protein binding scheme

that is most likely to show oscillations matches what is cur-

rently known about NMO, PER, TIM and SGG, at least that

NMO binds PER, PER binds TIM and TIM binds SGG

[18,19]. However, the interactions between these four proteins

are not yet fully worked out, which could be validated by a

two-hybrid system followed by a detailed biochemical study.

While the details of these interactions could be difficult to

determine, our results indicate that their importance makes

this effort worthwhile.
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