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Abstract: This research introduces a new multifunction biquad filter based on voltage mode (VM)
current-feedback operational amplifier (CFOA) and a fully uncoupled quadrature oscillator (QO)
based on the proposed VM multifunction biquad filter. The proposed VM multifunction biquad
filter has high impedance to the input voltage signal, and uses three CFOAs as active components,
while using four resistors and two grounded capacitors as passive components. The VM CFOA-based
multifunction biquad filter realizes band-reject, band-pass, and low-pass transfer functions at
high-input impedance node simultaneously, which has the feature of easy cascading in VM operation
without the need for additional voltage buffers. Additionally, the filter control factor parameter
pole frequency (ωo) and quality factor (Q) of the proposed VM multifunction biquad filter can
be independently set by varying different resistors. By slightly modifying the VM multifunction
biquad filter topology, a VM fully-uncoupled QO is easily obtained. The difference from the previous
VM CFOA-based multifunction biquad filter is that the proposed VM CFOA-based multifunction
biquad filter can be independently controlled by the filter control factor parameters, ωo and Q.
The proposed VM CFOA-based multifunction biquad filter can be transformed into a VM QO with
fully-uncoupled adjustable of the oscillation condition and the oscillation frequency. The oscillation
condition and the oscillation frequency can be fully-uncoupled and controlled by varying two
sets of completely different resistors. The proposed VM fully-uncoupled QO solves the amplitude
instability. The constant amplitude ratio of two quadrature sinusoidal waveforms can be realized
when tuning FO. PSpice simulation and experimental results prove the performances of the proposed
VM multifunction filter and VM fully-uncoupled QO. Simulation and experimental results confirm
the theoretical analysis of the proposed circuits.

Keywords: active filter; current-feedback operational amplifiers (CFOAs); oscillators; circuit design

1. Introduction

Voltage-mode (VM) analog active filters and oscillators using different active components have
received extensive attention. Some innovative approaches to realize VM biquad filters [1–4] and
oscillators [5–9] can be found in the open study. Single-input three-output VM multifunction biquad
filters, such as band-pass filter (BPF), low-pass filter (LPF), high-pass filter (HPF) or band-reject filter
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(BRF), are applied to the phase-locked loop, the high fidelity 3-way speaker, the touch-tone telephone
tone decoder, and the phase sensitive detection (PSD) [8–11]. PSD is suitable for detecting and
measuring low frequency electrical signal from the sensor [8,9]. The conceptual scheme of a dual PSD
including a VM quadrature oscillator (QO), an auto-balancing bridge circuit, two multiplier circuits and
two LPF circuits module is shown in Figure 1 [8–10]. VM QO can generate two sinusoidal wave output
with a 90◦ phase difference and is the great significant part of a PSD [8,9]. Based on the dual PSD system,
low-frequency QOs and filters research are required. The potential applications and advantages of using
current-feedback operational amplifiers (CFOAs) to design VM biquads have attracted considerable
attention in [12–27]. CFOA can be obtained by the cascade of a positive second-generation current
conveyor and a voltage follower, so it can be implemented by the commercially integrated circuit
(IC) namely Analog Device AD844AN [28,29]. The voltage on the non-inverting input port +IN of
AD844AN is transferred to the inverting input port -IN, and the current flowing to the inverting port
-IN is replicated to the port Tz. The voltage output port O follows the port Tz voltage. Compared with
conventional operational amplifier (OP-AMP), AD844AN has the advantages of wider bandwidth
and higher slew rate [28,29]. Therefore, for a specific purpose design, a dual PSD system, or a small
number of circuits, using a commercially available ICs to design a VM biquad filters and QOs is better
choice. According to the AD844AN datasheet [29], the rated temperature range of AD844AN is −40 ◦C
to +85 ◦C, which is industrial temperature range, and the power supply range of AD844AN is ±4.5 V
to ±18 V. Hence, when the circuits operate at different temperatures, the performances of the circuits
will not have obvious fluctuations. Based on the above advantages, AD844AN has been widely used
in the open literature [12–32].
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As mentioned above, it is beneficial to use CFOA as an active component to implement a variety
of high-input impedance VM multifunction biquads. The VM biquads, which has a high impedance for
the input voltage signal, has aroused great interest because this biquads can be easily cascaded without
any voltage buffer [21–27]. Singh and Senani [23] proposed a VM multifunction biquad HPF, LPF,
and BPF transfer functions, but it employed four CFOAs and eight passive components. Horng and
Lee [24] proposed a VM multifunction biquad HPF, LPF, and BPF transfer functions using three CFOAs
and seven passive components, but it had the disadvantage of using three capacitors. Shan and
Malik [25] proposed another VM multifunction biquad BRF, BPF, LPF, and HPF transfer functions
using four CFOAs and six passive components, but it had the disadvantage of using four CFOAs.
CFOA-based VM multifunction biquad HPF, LPF, and BPF has been proposed [26]. The transfer
functions of the proposed filter use three CFOAs and four passive components, where one of the X
terminals of the CFOA is connected to a grounded capacitor, which will lead to an improper transfer
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function and poor performance at high frequency. In 2019, a CFOA-based high-input impedance
VM multifunction biquad has been proposed [27]. This circuit has important advantages, such as
using only three CFOAs and realizing the transfer functions of BRF, BPF and LPF at the same time.
In addition, the circuit also has the advantages of single input and three outputs, high-input impedance,
and quadrature adjustable pole frequency (ωo) and quality factor (Q), and easily converted to VM QO.
However, a further advantage cannot be achieved in [27], that is, the independent tunability of the
filter control factor parameters ωo and Q. Although the topology of VM multifunction biquad [27]
can be converted to VM QO, it cannot achieve a fully-uncoupled tuning methods, and cannot obtain
the condition of oscillation (CO) and the frequency of oscillation (FO). Note that only when CO and
FO are determined by two completely different sets of components, CO and FO are called completely
decoupled [30].

This research proposes a new topology for the realization of an independently tunable VM
multifunction biquad filter. The proposed topology uses three CFOAs as active components, while using
four resistors and two grounded capacitors as passive components. The advantages of the proposed
CFOA-based VM multifunction biquad filter are follows: (i) use only three CFOAs, (ii) use only two
grounded capacitors, (iii) realize three standard filter transfer functions with one input and three outputs
at the same time, (iv) high-input impedance, (v) the input parasitic resistances of the X ports of the
CFOAs can be easily accommodated in an external resistors, (vi) independent control of the filter control
factor parametersωo and Q, and (vii) transformed into a VM QO with fully-uncoupled adjustable of
CO and FO. Table 1 compares the proposed VM multifunction biquad filter with previously published
researches [12–27]. It can be seen that the proposed VM multifunction biquad filter can simultaneously
achieve all the above imported properties. Unlike the recently reported in [27], the attractive feature of
the proposed VM multifunction biquad filter can be controlled independently of the control factor
parameters ωo and Q, and transformed into a VM QO with fully-uncoupled adjustable of CO and
FO. Furthermore, the proposed VM QO with fully-uncoupled is advantageous to achieve amplitude
stability. Table 2 summarizes the performance of the filter and oscillator, and compares the specific
characteristics of the study [27].

Table 1. Comparison of the previous reported CFOA-based VM biquad filters.

Parameter (i) (ii) (iii) (iv) (v) (vi) (vii) Simul./Meas. Supply (V) Technology

Ref. [12] yes no no no yes no no Meas. N/A AD844 ICs
Ref. [13] yes no no no yes no no Meas. N/A AD844 ICs
Ref. [14] yes no no no yes no no Simul. ±12 AD844 model
Ref. [15] yes no yes no yes no no Simul. N/A AD844 model
Ref. [16] yes no no no yes no no Simul. N/A AD844 model
Ref. [17] no yes yes no yes no no Both ±12 AD844 ICs
Ref. [18] yes no no no yes no no Meas. N/A AD844 ICs
Ref. [19] yes yes yes no yes no no Meas. N/A AD844 ICs
Ref. [20] yes no no no no no no Simul. N/A AD844 model
Ref. [21] no yes no yes yes no no Meas. ±5 AD844 ICs
Ref. [22] yes yes no yes yes no no Simul. ±5 AD844 model
Ref. [23] no yes yes yes yes no no Simul. N/A AD844 model
Ref. [24] yes no yes yes no no no Simul. N/A AD844 model
Ref. [25] no yes yes yes yes no no Both N/A AD844 ICs
Ref. [26] yes yes yes yes no no no Simul. ±12 AD844 model
Ref. [27] yes yes yes yes yes no no Both ±6 AD844 ICs
Proposed yes yes yes yes yes yes yes Both ±6 AD844 ICs

Note: (i) Use up to three CFOAs; (ii) use only two grounded capacitors; (iii) realize three standard filter transfer
functions simultaneously; (iv) high-input impedance; (v) CFOA’s X ports input parasitic resistances can be easily
accommodated in an external resistors; (vi) independent control of the filter control factor parameters pole frequency
and quality factor; (vii) transformed into a voltage-mode QO with fully-uncoupled adjustable of the condition of
oscillation and the frequency of oscillation; Simul.: simulation result; Meas.: measurement result; ICs: integrated
circuits; N/A—not available or not tested.
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Table 2. Characteristic comparisons with recent previous study.

Parameter Ref. [27] Proposed

Number of active and passive components of the biquad filter 3 CFOAs, 3 R, 2 C 3 CFOAs, 4 R, 2 C
Number of active and passive components of the quadrature oscillator 3 CFOAs, 4 R, 2 C 3 CFOAs, 4 R, 2 C

Center frequency of the biquad filter (kHz) 39.79 102
Independent tuning of the filter control factor parametersωo and Q no yes

Fully-uncoupled tuning of the oscillator parameters CO and FO no yes
Constant amplitude ratio of quadrature waveforms no yes

Measured the oscillation frequency range (kHz) N/A 8.16~628
Measured the total harmonic distortion of the quadrature oscillator (%) N/A <0.7

Measured the power dissipation (mW) 180 168
Measured the input one-dB power gain compression point (dBm) 12 22
Measured the third-order intermodulation distortion point (dBm) 21.59 33.84

In this research, a new VM multifunction biquad filter with high-input impedance and a VM
fully-uncoupled QO using the proposed VM multifunction biquad filter are presented. Compared with
the previous research [27], the proposed VM multifunction biquad filter can overcome the independent
control of the filter control factor parametersωo and Q, and the proposed VM CFOA-based QO can
also overcome the fully-uncoupled adjustability of CO and FO. The CFOA-based biquad filter and QO
are suitable for PSD system based on the use of commercially available ICs. The filter control factor
parametersωo and Q are independently tuned and controlled. The QO control factor parameters CO
and FO are fully-uncoupled tuning controlled. The effective frequency ranges of the bqiaud filter circuit
is around 1 MHz, and the QO oscillation frequency varies from 8.16 to 628 kHz. Moreover, the proposed
QO with fully-uncoupled is advantageous to achieve amplitude stabilization. The remaining sections
of the research is structured as follows. Section 2 will introduce the characteristics and non-ideality
of the VM CFOA-based multifunction biquadratic filter. Subsequently, based on the proposed VM
CFOA-based multifunction filter, the VM fully-uncoupled QO is introduced. Section 3 verifies the
proposed VM CFOA-based circuits and the theoretical comparison between experimental data and
simulation data. Finally, Section 4 will summarize the research.

2. Proposed VM CFOA-Based Circuits

2.1. Proposed VM CFOA-Based Multifunction Biquad Filter

CFOA is a four-port versatile active component and its commercially available IC is AD844-type
CFOA. The four-port characteristic of CFOA can be described by VX = VY, VO = VZ, IY = 0 and
IX = IZ [31,32]. Figure 2 shows the proposed CFOA-based VM multifunction biquad filter with
high-input impedance, including three CFOAs as active components, four resistors, and two grounded
capacitors. Using only two grounded capacitors is particularly attractive for IC implementation. Routine
analysis of the proposed filter yields the following BPF, LPF, and BRF voltage transfer functions.
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As shown in Equations (1) to (3), the biquadratic BPF transfer function is obtained from Vo1,
the biquadratic LPF transfer function is obtained from Vo2, and the biquadratic BRF transfer function is
obtained from Vo3. The pass-band gain of the biquadratic BPF transfer function is unity. The pass-band
gains, GLP and GBR, of biquadratic LPF and BRF transfer functions are given by

GLP = GBR =
R3

R4
(4)

According to the denominator polynomial of the transfer functions of the CFOA-based VM
multifunction biquad filter given in Equations (1) to (3), the filter control factor parameters Q andωo

of the filter can be calculated as

Q =
R4

R3

√
C1R1

C2R2
, ωo =

√
1

C1C2R1R2
(5)

Based on Equation (5), the following techniques for obtaining independent control of Q andωo can
be suggested. By changing R3 and/or R4, the control factor parameter Q can be independently controlled
without disturbing ωo. For fixed-value capacitors, by simultaneously changing R1 and R2 while
keeping the ratio of R1 and R2 constant, the control factor parameterωo can be independently controlled
without disturbing Q. Thus, the CFOA-based VM multifunction biquad filter has independent tuning
capability for the filter control factor parametersωo and Q. Assuming that C1 = C2 = C and R1 = R2 = R,
the filter control factor parameters of Q andωo in Equation (5) become

ωo =
1

CR
, Q =

R4

R3
(6)
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Equation (6) describes that the control factor parameterωo can be independently controlled by
changing R, and the control factor parameter Q can be independently controlled by changing R3

and/or R4. Hence, the filter control factor parameters of Q andωo of the CFOA-based VM multifunction
biquad filter can be independently controlled.

Next, the parasitic impedances of non-ideal CFOA is studied. The non-ideal CFOA model has
parasitic resistances and capacitances from the Y port and Z port to the ground, and a series parasitic
resistance RX at the port X. The parasitic impedances of non-ideal CFOA are RYj//CYj of port Yj, RZj//CZj

of port Zj, and Rxj of port Xj where j = 1, 2, 3 and represents the jth non-ideal CFOA [22]. Taking
into account the parasitic impedances of non-ideal CFOA, the biquad filter presented in Figure 2 is
modified to Figure 3. The proposed VM multifunction biquad filter employs external capacitors C1

and C2 connected in parallel at the first and second CFOA Z ports, respectively. This method has the
characteristic that the parasitic capacitance, CZ, is directly incorporated into Z terminal of CFOA as a
part of the main capacitance. Hence, C1 and C2 can be selected to increase the parasitic capacitances at
the Z ports of CFOAs. Each X port of the CFOA is directly connected to a resistor. This method has
the feature of incorporating parasitic resistance, RX, directly into the X port of CFOA as a part of the
main resistance. However, the parasitic resistances at the Z port of CFOA will change the type of the
impedances. If the following conditions can be satisfied, the influence of the non-ideal CFOA parasitic
impedances in Figure 3 can be ignored.

1
s(C 1 + CZ1)

<< RZ1 (7)

1
s(C 2 + CZ2)

<< RZ2 (8)

R3 <<
RZ3

1 + sRZ3CZ3
(9)
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2.2. Proposed Fully-Uncoupled VM QO

Based on the VM multifunction biquad filter structure in Figure 2, the input signal Vin is grounded,
the grounding resistor R3 is floating, and the floating terminal of the resistor R3 is connected to the
output voltage signal Vo1. Thus, the CFOA-based VM multifunction biquad filter can be transferred to
the VM fully-uncoupled QO as shown in Figure 4. Routine analysis of the proposed VM fully-uncoupled
QO results in the following characteristic equation.
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s2 + s
1

C1R1
(

R3

R4
− 1) +

1
C1C2R1R2

= 0 (10)

According to Equation (10), the CO and FO of Figure 4 are obtained as:

CO : R3 ≤ R4 (11)

FO : ωo =

√
1

C1C2R1R2
(12)

Equations (11) and (12) illustrate that by controlling R3 and/or R4, CO can be tuned fully
independently without affecting FO. Similarly, by controlling R1 and/or R2, FO can be tuned fully
independently without affecting CO. This means that both CO and FO can be fully-uncoupled controlled
by adjusting two sets of completely different resistors. The QO output voltages Vo1 and Vo2 are
given by

Vo1 = sC2R2Vo2 (13)

In the steady state, the QO output voltages Vo1 and Vo2 are expressed as

Vo1 = ωoC2R2ejϕVo2 (14)

where the phase difference ϕ = 90◦ to ensure that the output voltages, Vo1 and Vo2 are in quadrature
phase shifted.

From Equation (14), the magnitude ratio of the quadrature output voltages Vo1 and Vo2 is given by∣∣∣∣∣Vo1

Vo2

∣∣∣∣∣ = ωoC2R2 =

√
C2R2

C1R1
(15)

Assuming that C1 = C2 and R1 = R2, the magnitude ratio of the QO output voltages Vo1 and Vo2

in Equation (15) becomes ∣∣∣∣∣Vo1

Vo2

∣∣∣∣∣
C1=C2, R1=R2

= 1 (16)

Equation (16) describes that the phase shift of the two quadrature output voltages is 90◦,
and the magnitude ratio of two quadrature output voltages is also equal. Thus, the proposed VM
fully-uncoupled QO solves the amplitude instability and improves the unbalance of the generated
quadrature output amplitudes Vo1 and Vo2. When tuning FO, the constant amplitude ratio of two
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quadrature sinusoidal waveforms can be realized. Hence, the proposed VM fully-uncoupled QO is
advantageous to the stability of the combined amplitude.

The phase noise figure-of-merit (FoM) for oscillators summarizes the important performance
parameters. The conventional phase noise FoM of the oscillators is defined as follows [33].

FoM(∆ω) = −L(∆ω) + 20 log(
ωo

∆ω
) − 10 log(

PDC

1mW
) (17)

where ∆ω is the offset frequency relative to the carrier,ωo is the oscillation frequency, and L(∆ω) is
the phase noise at the offset frequency to the carrier. PDC is the power (in mW) consumed by the
oscillator. In order to estimate FoM of the proposed VM fully-uncoupled QO, the phase noise FoM will
be discussed in the next Section.

3. Simulation and Experimental Results

3.1. Test Setup

In order to use the commercial AD844AN IC to prove the real behavior of the proposed VM
multifunction biquad filter and fully-uncoupled QO, an experimental test bench was developed,
as shown in Figure 5. In Figure 5, the experimental setup uses a printed circuit board (PCB), DC power
supply voltage, signal generator, oscilloscope, network analyzer, and signal analyzer. Keithley
2231A-30-3 power supply provides DC power supply voltage to PCB. The time domain of the filter and
the output voltage swing of the oscillator are measured by the Tektronix DPO 2048B oscilloscope, and a
Tektronix AFG1022 signal generator is used to generate the input signal of the filter. The frequency
domain of biquad filter responses is measured by Keysight E5061B-3L5 network analyzer. One dB
power gain compression point (P1dB), intermodulation distortion (IMD), phase noise, and output
frequency spectrum are measured by the Keysight-Agilent N9000A CXA signal analyzer.
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Figure 5. Experimental setup. (a) Test setup block diagram; (b) the top and bottom of the
measured prototype; (c) Tektronix DPO 2048B oscilloscope for measuring time domain voltage
output, Tektronix AFG1022 signal generator for generating input signal, and Keithley 2231A-30-3
for power supply; (d) Keysight E5061B-3L5 network analyzer for measuring frequency domain filter
responses; and (e) Keysight-Agilent N9000A CXA signal analyzer for measuring filter and oscillator
output spectrum.

3.2. Effective Frequency Ranges of AD844AN-Based Circuit

The proposed VM multifunction biquad filter and fully-uncoupled QO circuits are simulated
by Cadence OrCAD PSpice version 16.6 software. The model parameters of CFOA come from the
built-in library AD844/AD. Programming using Intel Core i5-8400 CPU and MATLAB version 2019a has
confirmed the effectiveness of simulation and theoretical analysis. For the experiments, the proposed
CFOA-based VM multifunction biquad filter and fully-uncoupled QO circuits use AD844AN ICs.
The supply voltages for simulation and experiment are ±6 V. In general, the applicability of such
filters and oscillators based on CFOA circuits and using AD844AN ICs is usually limited to a few
hundred kilohertz [31,32]. To test the frequency ranges of AD844AN, the test circuit based on
AD844AN is shown in Figure 6. The supply voltages are ±6 V. In Figure 6a, the selected resistance
values are R1 = R2 = R = 2 kΩ (4 kΩ, 6 kΩ, 10 kΩ). Figure 6b shows the measured gain responses
of the AD844AN characteristics. Figure 6c shows the measured phase responses of the AD844AN
characteristics. As shown in Figure 6, the frequency range of the AD844AN-based circuit is limited to
1 MHz.
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(a) Circuit diagram for testing gain and phase response frequency ranges of AD844AN; (b) measured
gain responses of AD844AN; and (c) measured gain responses of AD844AN.
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3.3. Proposed CFOA-Based VM Multifunction Biquad Filter

To validate the theoretical study of Figure 2, Figure 7a–c show the simulation and experimental
results of the BPF, LPF and BRF with the theory responses, respectively. In Figure 7, the values of
passive elements are selected as C1 = C2 = 390 pF and R1 = R2 = R3 = R4 = 4 kΩ. The selection of
these values is to obtain a VM multifunction biquad filter with a center frequency of fo = 102 kHz
and a quality factor of Q =1. The total power consumption of the simulation and experimental
results is about 255 mW and 168 mW, respectively. By keeping the values of C1 = C2 = 390 pF,
R1 = R2 = R3 = 4 kΩ, the control factor parameter Q of the characteristic filter can be tuned without
disturbing fo. When the value of R4 changes between 16 kΩ, 8 kΩ, and 4 kΩ, this resulted in BPF
responses are shown in Figure 8a. Similarly, by keeping the values of C1 = C2 = 390 pF, R3 = R4 = 4 kΩ,
the control factor parameter fo of the characteristic filter can be tuned without disturbing Q. When Q = 1,
and R1 and R2 are varied between 8 kΩ, 4 kΩ, and 2 kΩ, this resulted in BPF responses are shown in
Figure 8b. This range is dependent on the bandwidth of AD844AN. Figure 8a,b show the CFOA-based
multifunction biquad filter, whose filter control factor parameters Q and fo have independent tuning
capabilities. Figures 9–11 show the measured BPF, LPF and BRF responses obtained by a network
analyzer, respectively. Figures 12 and 13 show the measured gain responses of Q and fo respectively,
as explained in Equation (5). In order to compare the theoretical analysis, the authors derived the
measurement data of Figures 9–13 and added them as additional traces to Figures 7a–c and 8a,b,
respectively. As can be seen, the simulation and experimental results are consistent with the theoretical
values. However, the real active components have non-ideal characteristics, such as the parasitic
impedance effect of AD844AN, the non-ideal characteristics caused by the frequency dependence of
the internal voltage and current transmission of the AD844AN, and the parasitic impedance effect of
PCB layout issue. These additional parasitic resistances and capacitances of the AD844AN, the PCB
layout issue, and the tolerances of the working resistors and capacitors will have main effects on
circuit accuracy.

Sensors 2020, 20, 6681 13 of 25
Sensors 2020, 20, x FOR PEER REVIEW 13 of 26 

 

 
(a) 

 
(b) 

 
(c) 

Figure 7. Simulated and experimental filter gain and phase responses with the theory responses. (a) 
The band-pass filter response; (b) the low-pass filter response; and (c) the band-reject filter response. 
Figure 7. Simulated and experimental filter gain and phase responses with the theory responses.
(a) The band-pass filter response; (b) the low-pass filter response; and (c) the band-reject filter response.

Figure 7. Cont.



Sensors 2020, 20, 6681 13 of 25

Sensors 2020, 20, 6681 13 of 25
Sensors 2020, 20, x FOR PEER REVIEW 13 of 26 

 

 
(a) 

 
(b) 

 
(c) 

Figure 7. Simulated and experimental filter gain and phase responses with the theory responses. (a) 
The band-pass filter response; (b) the low-pass filter response; and (c) the band-reject filter response. 
Figure 7. Simulated and experimental filter gain and phase responses with the theory responses.
(a) The band-pass filter response; (b) the low-pass filter response; and (c) the band-reject filter response.

Figure 7. Simulated and experimental filter gain and phase responses with the theory responses.
(a) The band-pass filter response; (b) the low-pass filter response; and (c) the band-reject filter response.Sensors 2020, 20, x FOR PEER REVIEW 14 of 26 

 

 
(a) 

 
(b) 

Figure 8. Theoretical, simulated, and experimental gain response of the band-pass filter responses. (a) 
Variation in Q while keeping fo; and (b) variation in fo while keeping Q. 

 

Figure 9. The experimental results of gain and phase responses of the BPF in Figure 2. 

Figure 8. Cont.



Sensors 2020, 20, 6681 14 of 25

Sensors 2020, 20, x FOR PEER REVIEW 14 of 26 

 

 
(a) 

 
(b) 

Figure 8. Theoretical, simulated, and experimental gain response of the band-pass filter responses. (a) 
Variation in Q while keeping fo; and (b) variation in fo while keeping Q. 

 

Figure 9. The experimental results of gain and phase responses of the BPF in Figure 2. 

Figure 8. Theoretical, simulated, and experimental gain response of the band-pass filter responses.
(a) Variation in Q while keeping fo; and (b) variation in fo while keeping Q.

Sensors 2020, 20, x FOR PEER REVIEW 14 of 26 

 

 
(a) 

 
(b) 

Figure 8. Theoretical, simulated, and experimental gain response of the band-pass filter responses. (a) 
Variation in Q while keeping fo; and (b) variation in fo while keeping Q. 

 

Figure 9. The experimental results of gain and phase responses of the BPF in Figure 2. Figure 9. The experimental results of gain and phase responses of the BPF in Figure 2.Sensors 2020, 20, x FOR PEER REVIEW 15 of 26 

 

 

Figure 10. The experimental results of gain and phase responses of the LPF in Figure 2. 

 

Figure 11. The experimental results of gain and phase responses of the BRF in Figure 2. 

 

Figure 12. The experimental results of gain responses by varying Q while keeping fo (Q = 1.12—blue 
line; Q = 2.04—red line; and Q = 3.91—green line).  

Figure 10. The experimental results of gain and phase responses of the LPF in Figure 2.



Sensors 2020, 20, 6681 15 of 25

Sensors 2020, 20, x FOR PEER REVIEW 15 of 26 

 

 

Figure 10. The experimental results of gain and phase responses of the LPF in Figure 2. 

 

Figure 11. The experimental results of gain and phase responses of the BRF in Figure 2. 

 

Figure 12. The experimental results of gain responses by varying Q while keeping fo (Q = 1.12—blue 
line; Q = 2.04—red line; and Q = 3.91—green line).  

Figure 11. The experimental results of gain and phase responses of the BRF in Figure 2.

Sensors 2020, 20, x FOR PEER REVIEW 15 of 26 

 

 

Figure 10. The experimental results of gain and phase responses of the LPF in Figure 2. 

 

Figure 11. The experimental results of gain and phase responses of the BRF in Figure 2. 

 

Figure 12. The experimental results of gain responses by varying Q while keeping fo (Q = 1.12—blue 
line; Q = 2.04—red line; and Q = 3.91—green line).  

Figure 12. The experimental results of gain responses by varying Q while keeping fo (Q = 1.12—blue
line; Q = 2.04—red line; and Q = 3.91—green line).Sensors 2020, 20, x FOR PEER REVIEW 16 of 26 

 

 

Figure 13. The experimental results of gain responses by varying fo while keeping Q  
(fo = 52.4 kHz—blue line; fo = 104.4 kHz—red line; and fo = 203.8 kHz—green line). 

The Monte Carlo analysis method is used to study the VM CFOA-based multifunction biquad 
filter. Statistical analysis of Monte Carlo 100 simulation can be performed. Figure 14 shows the 
histogram of center frequency obtained from the Monte-Carlo analysis of the BPF response in  
Figure 2. The resistor and capacitor values in Figure 2 are chosen as 4 kΩ and 390 pF, respectively, 
and the Gaussian variation of the resistance and capacitance is 5%. According to Monte-Carlo 
simulation, the center frequency varies between 86.6 and 113.8 kHz and the fo value of the BPF 
response is affected in the range of −15.1% to 11.6%. 

 

 

Figure 14. Histogram of the Monte-Carlo analysis. 

87.9 90.7 93.4 96.1 98.8 101.6 104.3 107.0 109.7 112.5
0

4

8

12

16

20

24

28

Frequency, kHz

Pe
rc

en
t s

am
pl

es

n samples = 100
n divisions = 10
mean = 99,732.2
sigma = 5797.5
minimum = 86,579.7
10th % = 92,786
median = 99,267.8
90th % = 108,104
maximum = 113,831

Figure 13. The experimental results of gain responses by varying fo while keeping Q (fo = 52.4 kHz—blue
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The Monte Carlo analysis method is used to study the VM CFOA-based multifunction biquad
filter. Statistical analysis of Monte Carlo 100 simulation can be performed. Figure 14 shows the
histogram of center frequency obtained from the Monte-Carlo analysis of the BPF response in Figure 2.
The resistor and capacitor values in Figure 2 are chosen as 4 kΩ and 390 pF, respectively, and the
Gaussian variation of the resistance and capacitance is 5%. According to Monte-Carlo simulation,
the center frequency varies between 86.6 and 113.8 kHz and the fo value of the BPF response is affected
in the range of −15.1% to 11.6%.
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To obtain the input dynamic range of the proposed CFOA-based VM multifunction biquad
filter in Figure 2, the experiment was repeated for a sinusoidal input signal of 102 kHz to show the
filter operation in time-domain. Figure 15 shows the input and output voltage waveforms of the
experimental BPF. The waveform shows that the amplitude is 6.96 Vpp without signification distortion.
The measured center frequency is about 101.8 kHz, which is close to theoretical value of 102 kHz
with −0.2% error rate. To illustrate the linear range of the circuit, P1dB is an important parameter for
evaluating linear range of the circuit, when the output is saturated in the circuit. This is defined as the
input power that results in the circuit gain to decrease by 1 dB. Input and output power gain is the
relationship of output power = input power + gain. To evaluate the linear range of the VM biquad
filter, consider the BPF, LPF and BRF in Equations (1) to (3). Figure 16 shows the measured P1dB of the
BPF at an input power with a center frequency of 102 kHz. The P1dB of the BPF measured at Vo1 is
about 22 dBm with respect to input power. The measured linearity performance of P1dB and total
power consumption with different input signal voltages are summarized in Table 3. It should be noted
that Table 3 is the measurement results of spectrum analysis, whose input impedance is 50 Ω, so the
measurement result of output power has slightly attenuated. The parasitic resistances and capacitances
of the AD844AN, the PCB layout issue, and the tolerances of the working resistors and capacitors will
also have effects on circuit accuracy.
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Table 3. The linearity performance of P1dB and total power consumption with different input
signal voltages.

Supply
(V)

Band-Pass Filter (Vo1) Low-Pass Filter (Vo2) Band-Reject Filter (Vo3)

Power (dBm) PD
(mW)

P1dB
(dBm)

Power (dBm) PD
(mW)

P1dB
(dBm)

Power (dBm) PD
(mW)

P1dB
(dBm)Input Output Input Output Input Output

±6

−20 −21.56 264

22

−20 −21.38 264

21

−20 −21.19 264

22

−10 −11.53 264 −10 −11.32 264 −10 −11.15 264
0 −1.49 264 0 −1.26 264 0 −1.1 264
10 8.46 300 10 8.67 300 10 9 300
20 18.16 396 20 18.15 396 20 18.72 408
21 18.91 408 21 18.79 408 21 19.42 432
22 19.46 420 22 19.25 408 22 19.82 444
23 19.8 432 23 19.47 420 23 20.11 456
24 20.02 432 24 19.58 420 24 20.33 456
25 20.24 444 25 19.65 420 25 20.52 456

±9

−20 −21.6 396

26.8

−20 −21.3 396

26.1

−20 −21.23 396

26.3

−10 −11.56 396 −10 −11.26 396 −10 −11.19 396
0 −1.5 396 0 −1.22 396 0 −1.12 396

10 8.44 450 10 8.68 450 10 8.97 450
20 18.35 666 20 18.4 666 20 19.02 684
24 22.26 846 24 22.2 846 24 22.92 864
25 23.18 900 25 23.09 900 25 23.76 918
26 23.92 936 26 23.77 936 26 24.23 972

26.8 24.2 972 26.1 23.8 936 26.3 24.3 972
27 24.28 990 27 24.11 972 27 24.51 990

±12

−20 −21.54 528

28.5

−20 −21.26 528

27.7

−20 −21.15 528

27.5

−10 −11.5 528 −10 −11.23 528 −10 −11.11 528
0 −1.46 528 0 −1.22 528 0 −1.06 528

10 8.49 600 10 8.7 600 10 9.04 600
20 18.35 888 20 18.46 888 20 19.04 912
25 23.3 1224 25 23.2 1224 25 24.08 1272
26 24.26 1320 26 24.03 1320 26 24.92 1368
27 25.12 1416 27 25.1 1416 27 25.35 1440
28 25.8 1608 27.7 25.58 1536 27.5 25.5 1464

28.5 26 1680 28 25.7 1584 28 25.72 1512

±15

−20 −21.48 660

28.8

−20 −21.17 660

28

−20 −21.8 630

27.5

−10 −11.36 660 −10 −11.14 660 −10 −11.04 630
0 −1.41 690 0 −1.1 690 0 −0.99 660
10 8.53 750 10 8.82 750 10 9.1 750
20 18.43 1110 20 18.57 1110 20 19.11 1110
25 23.35 1560 25 23.34 1560 25 23.98 1590
26 24.33 1680 26 24.36 1680 26 24.63 1710
27 25.15 1920 27 25.16 1830 27 25.4 1800
28 25.9 2010 28 25.8 2010 27.5 25.7 1830

28.8 26.4 2160 28.2 25.9 2040 28 25.8 1890

Note: PD: Dynamic power consumption; P1dB: input one-dB power gain compression point.

To represent the nonlinearity of the proposed VM multifunction biquad filter proposed in Figure 2,
the two-tone test of IMD has been used to characterize the nonlinearity of BPF response. Figure 17
shows the frequency spectrum analysis of BPF through intermodulation characteristics by applying
two-tone signals, f1 and f2, around the corner frequency of fo = 102 kHz. In Figure 17, a low-frequency
tone of f1 = 101 kHz and a high-frequency tone of f2 = 103 kHz are used with equal input amplitudes
of 4.5 Vpp. As shown in Figure 17, the measured value of the third-order IMD is around −48.54 dBc,
and the third-order intercept (TOI) point is around 33.84 dBm.
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3.4. Proposed CFOA-Based VM QO Experimental Results

In order to get the theoretical oscillation frequency fo = 102 kHz of the VM fully-uncoupled
QO proposed in Figure 4, the values of the passive components are selected as R1 = R2 = R3 = 4 kΩ,
and C1 = C2 = 390 pF, and R4 = 4.02 kΩ is greater than R3 to ensure that the oscillations starts. Figure 18a
shows the output waveforms of Vo1 and Vo2. Figure 18b shows Vo1 versus Vo2 in the X-Y plot. Figure 19
shows the frequency spectrum analysis of the oscillator output voltage. From Figures 18 and 19,
the measured oscillation frequency is 103.2 kHz, which is closed to theoretical result of 102 kHz.
The error percentage between the theoretical oscillation frequency and measured oscillation frequency
is 1.08%. Total harmonic distortion (THD) is about 0.63%. Figure 20 shows the measured value of
the oscillation frequency of Figure 4, which is measured by simultaneously changing the values of
resistors R1 and R2. According to Figure 20, the experimental oscillation frequency varies from 8.16 to
628 kHz. These measurement results are close to theoretical prediction and confirm the feasibility of
the proposed VM QO. Figure 21 shows the measured oscillation frequency relative to the magnitude
ratio of the two output voltages, as explained in Equation (16). As can be seen, the constant amplitude
ratio of two quadrature sinusoidal waveforms can be realized when tuning FO. The magnitude ratio of
the two output voltages fluctuates from −2.04% to 1.14%. Automatic level control can obtain better
oscillation amplitude [34]. Figure 22 shows the measured phase error percentage of the quadrature
voltage outputs. The VM QO operates at frequencies from 8.16 to 628 kHz, and the maximum deviation
from 90◦ is less than 4.12%. The THD of the quadrature output voltage waveforms is shown in
Figure 23. It was found that the measured THD percentage fluctuated between 0.2% and 0.66% when
VM QO was operating in the frequency range of 8.16 to 628 kHz. Obviously, the experimental results
are consistent with the theoretical values. However, the real active components have the non-ideal
characteristics of AD844AN parasitic impedance effect and PCB layout issue. According to AD844AN
datasheet [29], the actual AD844AN exhibits a non-zero input resistance of RIN = 50 Ω at the port
-IN. The parallel combination of RZ and CZ is the parasitic impedances connected from the current
output port TZ of the AD844AN. For AD844AN, the nominal values are RZ = 3 MΩ and CZ = 4.5 pF.
These additional parasitic resistances and capacitances of the AD844AN, the PCB layout issue, and the
tolerances of the working resistors and capacitors will have main effects on circuit accuracy.
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Figure 21. The measured relationship between the oscillation frequency and the magnitude ratio of
quadrature output voltages.
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Figure 22. The measured phase error of oscillation frequency.
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The noise of the oscillator will affect the characteristics of frequency spectrum and timing.
Even if a small amount of noise can cause large variants in the oscillator’s spectrum and timing.
The Keysight-Agilent N9000A CXA signal analyzer provides a phase noise measurement solution
starting at 3 Hz. Figure 24 shows the phase noise performance of the operating frequency from 3 Hz to
100 kHz with different frequency offsets. The phase noise measurement result in Figure 24 shows that
the phase noise of the proposed VM QO is less than −75.23 dBc/Hz at a 100 Hz offset, which has little
impact on the frequency spectrum and timing. Another interesting parameter is the phase noise FoM of
the proposed VM fully-uncoupled QO. Table 4 lists the phase noise performance measured at different
oscillator frequency at an offset frequency of 100 Hz with a supply voltages of ±6 V and a power
consumption of 300 mW. According to Equation (17), and using the data in Table 4, the minimum
phase noise FoMs of Vo1 and Vo2 are 90.3 dBc/Hz and 100.4 dBc/Hz, respectively. The measured phase
noise performance under different oscillator supply voltages are summarized in Table 5.
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Table 4. Phase noise performance measured at different oscillator frequencies.

Quadrature Output Voltage Vo1 Quadrature Output Voltage Vo2

fo
(kHz)

Phase Noise
(dBc/Hz)

FoM
(dBc/Hz)

fo
(kHz)

Phase Noise
(dBc/Hz)

FoM
(dBc/Hz)

8.1 85.23 98.5 8.1 87.6 101.2
13.3 83.36 103.9 13.3 84.35 102.2
20.7 84.27 105.7 20.7 80.59 102.3
30.9 84.98 110.0 30.9 84.61 109.8
41.6 83.56 111.2 41.6 81.87 109.7
46.1 84.09 112.4 46.1 84.39 113.1
52.1 82.84 112.4 52.1 82.66 112.4
59.6 81.95 112.7 59.6 83.29 114.2
69.3 80.74 112.8 69.3 81.76 114.0
83.4 92.25 126.5 83.4 82.21 116.0

104.1 75.23 110.8 104.1 74.24 110.0
138 68.28 120.8 138 65.43 103.6

205.8 62.26 118.4 205.8 76.57 118.2
256.7 47.09 90.3 256.7 76.48 120.1
300.5 75.29 119.9 300.5 71.3 116.3
356.9 73.92 119.9 356.9 53.93 100.4
402.7 73.54 120.7 402.7 72.43 119.9

Note: fo: Oscillation frequency; and FoM: Figure-of-Merit.

Table 5. Phase noise performance measured at different supply voltages.

VDC

Output Voltage Vo1 Output Voltage Vo2

Phase Noise
(dBc/Hz)

∆f
(Hz)

PDC
(mW)

fo
(kHz)

FoM
(dBc/Hz)

Phase Noise
(dBc/Hz)

∆f
(Hz)

PDC
(mW)

fo
(kHz)

FoM
(dBc/Hz)

±4.5 71.41 100 216 102 108.4 73.46 100 225 102 110.2
±6 72.26 100 300 102 107.8 74.24 100 300 102 109.8
±9 72.67 100 432 102 106.7 76.91 100 450 102 110.7
±12 71.9 100 576 102 104.6 71.6 100 624 102 103.9
±15 69.88 100 720 102 101.7 76.28 100 780 102 107.7

Note: VDC: Supply voltage; ∆f: Offset frequency; PDC: Power consumption; fo: Oscillation frequency; and
FoM: Figure-of-Merit.

4. Conclusions

The paper proposes an independently tunable VM multifunction biquad filter with high-input
impedance and a VM fully-uncoupled QO realized by the proposed VM multifunction biquad filter.
Both proposed circuits use three CFOAs as active components, while using four resistors and two
grounded capacitors as passive components. The proposed VM multifunction biquad filter offers
the following important features: (i) simultaneous realization of BRF, BPF, and LPF voltage transfer
functions without component value constraints, (ii) high-input impedance, (iii) using only two grounded
capacitors, (iv) the X ports of the CFOAs are connected directly to the resistors, (v) independent
controllability of the biquad filter control factor parameters ωo and Q, and (vi) fully-uncoupled
adjustable of CO and FO when transformed to VM QO. Unlike the recently reported VM CFOA-based
multifunction biquad filter [27], the attractive feature of the proposed VM multifunction biquad
filter is that it can independently control the filter control factor parameters ωo and Q, and due to
the characteristics of fully-uncoupled adjustable of CO and FO, it can be converted into VM QO.
The proposed VM fully-uncoupled QO improves unbalance of produced quadrature output voltages
Vo1 and Vo2, and solves the amplitude instability. The constant amplitude ratio of two quadrature
sinusoidal waveforms can be realized when tuning FO. The QO oscillation frequency could be tuned
in the range of 8.16 to 628 kHz and tested with ±6 V voltage power supplies. The minimum phase
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noise FoM in the entire tuning range is 90.3 dBc/Hz at 100 Hz offset frequency. The measured THD is
less than 0.7%. The measured P1dB and IMD of VM biquad filter are 22 and 33.84 dBm, respectively.
PSpice simulations and experimental results based on commercial IC AD844AN are used to verify the
theoretical characteristics of the proposed CFOA-based circuits.
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