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Abstract Acquired aplastic anemia (AA) is a life-threatening bone marrow failure caused by
an autoimmune cytotoxic T lymphocyte attack on hematopoietic stem and progenitor cells.
Factors contributing to aberrant autoimmune activation in AA include a deficit of T regula-
tory cells and high levels of inflammatory cytokines. Several acquired conditions of immune
dysregulation and genetic polymorphisms in inflammatory cytokines and human leukocyte
antigen genes have been linked to an increased risk of AA. However, AA has not been re-
ported in patients with Mendelian disorders of immune regulation. Here we report a patient
with familial common variable immunodeficiency (CVID) caused by a pathogenic variant in
NFKB1, who developed AA as an adult. The patient had a difficult clinical course and was
unable to tolerate standard AA therapy with cyclosporine A and eltrombopag, with compli-
cations attributed in part to the effect of cyclosporine A on NF-κB signaling. Our case sug-
gests a novel link between genetic disorders of immune regulation and AA and highlights
the importance of recognizing inherited autoimmunity syndromes in AA patients for the se-
lection of optimal therapy and prognostic counseling.

[Supplemental material is available for this article.]

INTRODUCTION

Acquired aplastic anemia (AA) is a rare life-threatening blood disease characterized patho-
logically by pancytopenia and a hypocellular bonemarrow due to the immune-mediated de-
struction of early hematopoietic cells by cytotoxic T lymphocytes (Young 2018). Specific
triggers of autoimmunity or the identities of autoantigens immunologically targeted in AA
remain unknown. Several acquired conditions involving immune dysregulation have been
linked to AA, such as Hodgkin lymphoma (Linaburg et al. 2019), immune checkpoint inhib-
itor therapy (Davis et al. 2019), thymoma (Gendron et al. 2020), autoimmune hepatitis (Brown
et al. 1997), and eosinophilic fasciitis (deMasson et al. 2013). Additionally, a number of poly-
morphisms associated with overproduction of inflammatory cytokines (e.g., interferon-γ
[Dufour et al. 2004]) and certain human leukocyte antigen genes (Nakao et al. 1994;
Babushok et al. 2017; Zaimoku et al. 2017) have been linked to an increased risk of AA.
However, AA has not been previously reported in patients with inherited diseases of immune
dysregulation. Here, we report a patient with common variable immune deficiency (CVID)
caused by a pathogenic variant in the NF-κB1 gene (NFKB1), who developed AA during
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her adult life and clinically rapidly declined despite attempts at standard AA therapy. Our
patient’s case suggests a new connection between the immune dysregulation seen in prima-
ry immunodeficiencies and AA. Furthermore, we propose that alterations in NF-κB signaling
as well as the more general complications associated with CVID, including liver dysfunction
and enteropathy, may present unique challenges in the management of AA with currently
available therapeutics.

RESULTS

Clinical Presentation and Family History
A 50-yr-old female was referred for an evaluation of suspected AA. Her past medical history
was notable for CVID, which was diagnosed at the age of 12 yr, after having frequent upper
respiratory infections as a child, and was managed with monthly intravenous immunoglobu-
lin (IVIG). The patient’s CVID-associated complications included a remote history of autoim-
mune hemolytic anemia, currently in remission, which was diagnosed in the patient’s 20s and
wasmanagedwith a variety of immunosuppressants and splenectomy. In her 30s, the patient
was diagnosed with Plummer–Vinson syndrome, a classical triad of iron deficiency, esopha-
geal webs, and dysphagia, which has been associated with autoimmune disorders and car-
ries an increased risk of squamous cell carcinoma of the oropharynx (Chisholm 1974;
Messmann 2001). At the age of 38 yr, the patient developed a squamous cell carcinoma
of the tongue, which was cured with surgical resection. She was subsequently well over
the following 10 years, until 2 years prior to her current presentation when she developed
anemia. Her initial evaluation was notable for a low reticulocyte count and a hypocellular
marrow with an absence of erythroid precursors, consistent with acquired red cell aplasia.
She was treated with corticosteroids and low-dose cyclosporine without response and even-
tually progressed to aplastic anemia.

The patient’s family history was notable for Northern European and English ancestry, two
healthy sisters who were monozygotic twins, a mother who died from glioblastoma at the
age of 68 yr, and a maternal aunt with multiple sclerosis.

On physical exam, the patient was a thin middle-aged woman, weighing 106 lbs at a
height of 5′7′′. Physical exam was notable for a well-healed partial glossectomy without ev-
idence of tongue carcinoma recurrence and no oral lesions or leukoplakia. Sclera were
icteric. Cardiopulmonary exam was normal. There was no lymphadenopathy or hepatosple-
nomegaly. Skin exam showed no rashes, café-au-lait spots, or hypo- or hyperpigmented le-
sions. There was no nail dystrophy. Musculoskeletal exam was normal, with no thumb or
radial anomalies.

Laboratory studies revealed a white blood cell count of 4 ×109 cells/L with a normal leu-
kocyte differential, normocytic anemia (hemoglobin of 7 g/dL; mean corpuscular volume of
88 fL), a low reticulocyte count of 22×109 cells/L, and severe thrombocytopenia (19 ×109

platelets/L). A bone marrow biopsy revealed a severely hypocellular bone marrow with
marked trilineage hypoplasia and scattered lymphohistiocytic aggregates, consistent with
AA (Fig. 1). Cytogenetic examination of the bone marrow demonstrated a normal karyotype
and targeted massively parallel sequencing of genes commonly mutated in hematologic
malignancies showed no clinically significant variants. Consistent with an immunodominant
antigen-driven autoimmune process in AA, polymerase chain reaction (PCR) analysis of the
T-cell receptor gamma chain gene revealed a monoclonal rearrangement within a much
more prominent polyclonal background (Risitano et al. 2004). There was no immunopheno-
typic evidence of clonal lymphoproliferative disorder or pan-T-cell antigen loss. Flow cytom-
etry for paroxysmal nocturnal hemoglobinuria (PNH) revealed a subclinical (0.39%) PNH
clone in granulocytes. Extensive evaluation for alternative etiologies of the patient’s bone
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marrow failure, including underlying viral infection or nutritional deficiency was unrevealing
(Supplemental Table S1). Chromosome breakage of the patient’s peripheral blood lympho-
cytes in the presence of mitomycin C and diepoxybutane was normal. Telomere testing
showed low median lymphocyte telomere lengths between the first and fifth percentile
for age in total lymphocytes as well as in the naive and memory T-cell and natural killer
(NK)-cell subsets. The low telomere length was interpreted to likely reflect telomere attrition
because of the underlying autoimmunity; however, to exclude an atypical telomeropathy or
another occult inheritedmarrow failure syndrome, whole-exome sequencing was requested.
Given the clinical urgency, the patient was started on treatment with cyclosporine and
eltrombopag for a presumed diagnosis of AA, while awaiting genetic testing results to deter-
mine more definitive therapy. An evaluation for allogeneic hematopoietic stem cell trans-
plant was initiated. Unexpectedly, the patient was not able to tolerate cyclosporine at
therapeutic doses, with an unusual degree of complications including progressive failure
to thrive, >10 lb weight loss (∼10% body weight), fatigue, generalized pain and weakness,
and septicemia within 2–3 wk of therapeutic cyclosporine dosing, requiring hospitalization.
Cyclosporine was discontinued. Progressive liver dysfunction with rising hyperbilirubinemia
and ascites precluded therapy with eltrombopag. Whole-exome sequencing revealed no
disease-associated variants in genes associated with inherited bonemarrow failure but iden-
tified a heterozygous variant inNFKB1 (Fig. 2; Table 1). Unfortunately, the patient continued
to have a progressively deteriorating course and died within 4 mo of AA diagnosis frommul-
tiple complications, including recurrent neutropenic sepsis, severemalnutrition due to CVID-
related enteropathy, and hepatic dysfunction.

Variant Interpretation
A constellation of a congenital immune deficiency, short lymphocyte telomere lengths, mal-
nutrition, and progressive bone marrow failure was suspicious for an underlying inherited

B C

A

Figure 1. Bone marrow biopsy demonstrating hematopoietic trilineage hypoplasia. Hematoxylin and eosin
(H&E)-stained sections at (A) 5× and (B) 20× magnification illustrate a profoundly hypocellular marrow
(5%–10% cellularity). Scattered interstitial lymphohistiocytic aggregates account for the majority of cellularity.
(C ) A concurrent bonemarrowaspirate is hypocellular and composed predominantly of small lymphocytes and
occasional left-shifted myeloid precursors, with virtually absent erythroid cells and megakaryocytes.
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bone marrow failure syndrome. To screen the patient for an inherited etiology of her bone
marrow failure, we performed whole-exome sequencing including sequencing of mito-
chondrial DNA. One heterozygous pathogenic variant in exon 8 of the NFKB1 gene
(p.V235Wfs∗17, c.702delC) was identified (Fig. 2). There were two additional variants in a
gene associated with bone marrow failure and immunologic disorders (Supplemental
Table S2); however, these were determined not to contribute to the patient’s phenotype.
Two variants in the DOCK8 gene, linked to autosomal recessive hyper IgE syndrome,
were located in cis in the same allele and the patient lacked clinical features of hyper IgE syn-
drome with no eosinophilia, eczema, or recurrent viral infections. The identified pathogenic
variant in NFKB1 is predicted to lead to NFKB1 haploinsufficiency because of protein trun-
cation or nonsense-mediated mRNA decay. It has not been previously reported in associa-
tion with CVID and has not been previously identified in population databases (Genomes

BA

Figure 2. The pathogenic variant in the NFKB1 gene (c.702delC; p.V235WfsX17) identified in a patient with
CVID who developed AA as an adult. (A) Screenshot from Integrative Genome Viewer (IGV) showing a single-
nucleotide deletion in theNFKB1 gene (c.702delC; black arrow). (B) Confirmatory Sanger sequencing demon-
strating the region containing the frameshift mutation (black arrow; region is shown in reverse complement).

Table 1. Genomic findings

Gene Disease Mode of inheritance Variant Coding DNA Zygosity Inherited from Variant classification

NFKB1 Common variable
immunodeficiency

Autosomal dominant p.V235Wfs∗17 c.702delC Heterozygous Unknown Pathogenic
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Project Consortium et al. 2015; Lek et al. 2016; Exome Variant Server, Genome aggregation
database [gnomAD]). Although germline status of the NFKB1 variant in our patient was not
formally verified in paired nonhematopoietic tissue, NFKB1 is not a known cancer gene
(Sondka et al. 2018), and NFKB1 mutations have not been described in age-related clonal
hematopoiesis (Genovese et al. 2014; Jaiswal et al. 2014). The patient’s clinical presentation
(Table 2), together with a pathogenic heterozygous variant in NFKB1 detected in the pa-
tient’s peripheral blood, is most consistent with autosomal dominant CVID caused by a
germline NFKB1 variant. The patient’s sisters (monozygotic twins) were negative for the var-
iant, and the other family members were not tested. Given the family history of glioblastoma
in the patient’s mother and multiple sclerosis in the maternal aunt, two conditions linked to
NF-κB dysregulation (Rajaraman et al. 2009; Mieczkowski et al. 2015; Cartwright et al. 2016;
Kina et al. 2019; Zhou et al. 2020), the patient’s NFKB1 variant could have been inherited
from the maternal side of her family; alternatively, the variant may have emerged de novo.

DISCUSSION

In this report, we present a patient with familial NFKB1-associated CVID syndrome who de-
veloped AA in adulthood. Although CVID can be associated with a variety of autoimmune
complications, including autoimmune cytopenias such as immune thrombocytopenia
(ITP), hemolytic anemia, Evans syndrome, and autoimmune neutropenia (Podjasek and
Abraham 2012), neither immune-mediated bonemarrow failure nor AA have been previous-
ly reported. The patient was unable to tolerate standard AA therapies and rapidly declined.
Our case highlights the importance of recognizing inherited syndromes of immune dysregu-
lation such as CVID in AA patients, because of their unique complications and the potential
implications for AA therapy, including the use of calcineurin inhibitors and timing and donor
selection for hematopoietic stem cell transplantation.

CVID is themost common primary immunodeficiency caused by a failure of B-cell differen-
tiation into functional plasma cells leading to immunoglobulin deficiency and recurrent
sinopulmonary infections. Some CVID patients also have autoimmune and inflammatory man-
ifestations (Table 1; Patuzzo et al. 2016; Lorenzini et al. 2020). In up to 20% of CVID patients, a
genetic cause can be identified. Monoallelic loss-of-function mutations inNFKB1 are found in
4% of CVID patients and are the most common cause of familial CVID (Kaustio et al. 2017;
Tuijnenburg et al. 2018; Lorenzini et al. 2020). NF-κB proteins are a family of five transcription
factors (p50/p105, p52/p100, RelA, RelB, and c-Rel) characterized by a conserved DNA-bind-
ing domain (Rel homology domain). Dimers of NF-κB proteins direct transcriptional regulation
of genes involved in various cellular processes including immune and inflammatory responses
(Karin and Lin 2002; Lougaris et al. 2017). Intact NF-κB signaling contributes to proper
B-cell maturation, survival, differentiation, and T-cell-independent antibody class switching
(Vallabhapurapu and Karin 2009; Gerondakis and Siebenlist 2010; Kaileh and Sen 2012).

Although immune-mediated bone marrow failure has not been previously reported in
CVID patients, the association of NFKB1-mutated CVID with other autoimmune disorders
suggests that the cooccurrence of AA and CVID in our patient was not coincidental. In
fact, NFKB1 was previously found to have a critical role for maintaining a resting state of
dendritic cells (DCs), induction of T-cell tolerance, and CD8+ lymphocyte cytotoxicity
(Dissanayake et al. 2011). When pulsed with self-antigens, unstimulated DCs lacking
NFKB1 may activate CD8+ T lymphocytes, leading to autoimmunity (Dissanayake et al.
2011). The absence of NFKB1 in resting antigen-presenting cells is associated with poor in-
duction of T-cell tolerance and higher granzyme B expression in cytotoxic T cells, pointing to
the role of dendritic cell defects in the establishment of autoimmunity in NKFB1-deficient
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Table 2. Clinical findings in autosomal dominant NFKB1 deficiency

Clinical features Patient

Autosomal dominant inheritance Yes

Respiratory system

Upper respiratory tract infections (83.0%) Yes

Pneumonia (59.0%)

Bronchiectasis (25.6%)

Granulomatous lymphocytic interstitial lung disease (GLILD) (7.4%)

Gastrointestinal complications

Gastrointestinal infections (28.6%)

Autoimmune enteropathy (13.9%) Yes

Celiac-like disease (9.3%)

IBD-like disease (5.6%)

Diarrhea of unknown etiology (8.3%)

Atrophic gastritis (4.6%)

Liver

Hepatomegaly (24.7%)

Liver disease (19.5%) Yes

Malignancies (16.8%)

Lymphoma (11.1%)

Solid organ cancer (4.6%) Yes

Spleen

Splenomegaly (48.5%)

Splenectomy (11.9%) Yes

Bone marrow

Antibody deficiency (88.9%) Yes

Low IgA (87.4%) Yes

Low IgG (74.4%) Yes

Low IgM (70.9%) Yes

Cytopenia (43.9%) Yes

Novel clinical features

Acquired aplastic anemia Yes

Skin

Skin infections (37.7%)

Rosacea

Autoimmune (14.9%)

Psoriasis

Eczema

Necrotizing fasciitis

Alopecia

Thyroiditis (6.5%)

Cardiovascular system

Cardiovascular complications (17.8%)

Behçet disease (5.6%)

Vasculitis (4.6%)

(Continued on next page.)

Aplastic anemia in an NFKB1-mutated CVID patient

C O L D S P R I N G H A R B O R

Molecular Case Studies

Sklarz et al. 2020 Cold Spring Harb Mol Case Stud 6: a005769 6 of 11



patients (Dissanayake et al. 2011). Additionally, CVID patients were previously found to have
lower numbers of T regulatory cells, which may also contribute to the development of AA
(Fevang et al. 2007). Further studies are needed to better evaluate the role of NFKB1 and
other genetic variants of immune regulation in the development of AA.

After the development of AA, our patient experienced rapid decline, further complicat-
ed by the difficulty in tolerating standard aplastic anemia therapy. Within days of starting
therapeutic doses of cyclosporine, the patient experienced generalized failure to thrive,
weight loss, hepatic dysfunction, and recurrent infections. The patient also recalled that
during her previous treatment with low-dose cyclosporine, she also subjectively felt that
“cyclosporine did not agree with her.” Notably, cyclosporine is a potent inhibitor of T-
cell activation and has multiple cellular functions, the best known of which is inhibition
of calcineurin. Intracellular calcium release and its regulation by calcineurin were also
found to be critical for NF-κB activation (Frantz et al. 1994; Steffan et al. 1995; Chan
et al. 2013), and treatment with calcineurin inhibitors cyclosporine and tacrolimus has
been shown to suppress NF-κB signaling (Venkataraman et al. 1995; Marienfeld et al.
1997; Meyer et al. 1997; Jin et al. 2015). We suspect that the use of cyclosporine in the
context of NFKB1 haploinsufficiency may have led to enhanced toxicity as a result of fur-
ther inhibition of NF-κB-dependent processes. Other CVID-related complications contrib-
uting to the poor outcome in our patient include recurrent infections, CVID enteropathy,
and hepatic dysfunction.

In summary, in this report we expand the spectrum of hematologic complications of CVID
to include AA and establish a novel link between genetic disorders of immune regulation and
AA. Our case highlights potential challenges in managing AA in patients with CVID because
of the underlying immune dysregulation, chronic complications of CVID, and what appears
to be an epistatic interaction of calcineurin inhibitors in patients with genetic alterations of
the NF-κB pathway. Increased recognition of immune-mediated bone marrow failure as a
potential etiology of cytopenias in patients with CVIDmay improve outcomes by intervening
at earlier stages of the disease and by anticipating potential complications. Allogeneic stem
cell transplantation can be considered in selected patients; however, historical outcomes in
CVID patients treated with bone marrow transplant have been poor, because of the high
rates of treatment-refractory graft-versus-host disease and poor immune reconstitution lead-
ing to infectious complications (Wehr et al. 2015). Future studies are needed to determine
optimal immunosuppressive therapies and transplant approaches in this difficult-to-treat pa-
tient population.

Table 2. (Continued )

Clinical features Patient

Bone/Joints

Osteopenia (12.9%)

Arthritis (10.3%)

Enthesiopathy

Aphthous ulcerations (17.8%)

Neurological complications (13.9%)

Noninfectious fever (12.0%)

Lymphoproliferation

Lymphadenopathy (35.3%)

The summary of clinical features is adapted from Lorenzini et al. 2020.
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METHODS

Patient Recruitment and Regulatory Approval
The patient was enrolled into Penn–CHOP Bone Marrow Failure cohort, a bone marrow fail-
ure registry study approved by the Institutional Review Boards of Children’s Hospital of
Philadelphia and the University of Pennsylvania (IRB # 10-007569). Informed consent from
the patient was obtained in accordance with the Declaration of Helsinki. The diagnosis of
aplastic anemia was established using standard criteria (International Agranulocytosis and
Aplastic Anemia Study 1987; Wilson et al. 2014).

Whole-Exome Sequencing
Whole-exome sequencingwas performed on patient’s genomic DNA extracted fromperiph-
eral blood by paired-end massively parallel sequencing at the CLIA-approved commercial
genetic testing laboratory (XomeDxPlus test, GeneDx). The exonic regions and flanking
splice junctions were captured using a GeneDx proprietary system and sequenced at a
mean depth of coverage of 158×, with 98.7% of the captured regions covered by at least
10 sequence reads. Reads were aligned to human genome build GRCh37/UCSC hg19
and analyzed using a custom-developed analysis tool (XomeAnalyzer, GeneDx). Capillary se-
quencing was used to confirm all potentially reportable variants (Fig. 2).

Hematopathology and Ancillary Studies
Bone marrow histology was evaluated by a hematopathologist prior to the study enrollment.
Cytogenetic analysis was performed by standard karyotyping techniques. Analysis of
somatic mutations in genes associated with hematologic malignancies was performed at
the University of Pennsylvania Center for Personalized Diagnostics as previously described
(Fox et al. 2016), with the following 68 genes analyzed (ABL1, ASXL1, ATM, BCOR,
BCORL1, BIRC3, BRAF, CALR, CBL, CDKN2A, CEBPA, CSF1R, CSF3R, DDX3X, DNMT3A,
ETV6, EZH2, FAM5C, FBXW7, FLT3, GATA2, GNAS, HNRNPK, IDH1, IDH2, IL7R, JAK2,
KIT, KLHL6, KRAS, MAP2K1, MAPK1, MIR142, MPL, MYC, MYCN, MYD88, NF1,
NOTCH1, NOTCH2, NPM1, NRAS, PDGFRA, PHF6, POT1, PRPF40B, PTEN, PTPN11,
RAD21, RIT1, RUNX1, SETBP1, SF1, SF3A1, SF3B1, SMC1A, SRSF2, STAG2, TBL1XR1,
TET2, TP53, TPMT, U2AF1, U2AF2, WT1, XPO1, ZMYM3, ZRSR2). TRG gene rearrange-
ments were analyzed by PCR-based amplification using consensus V and J primers and cap-
illary electrophoresis at the Penn Molecular Diagnostics Laboratory.

Telomere Length Measurement and Chromosome Breakage Testing
Flow-FISH telomere length measurements were performed on the lymphocyte subsets total
lymphocytes, CD45RA positive naive T cells, CD45RA negative memory T cells, and CD57
positive NK cells at the CLIA-certified clinical telomere length testing center (Repeat
Diagnostics, Inc.). Chromosome breakage testing in the presence or absence of mitomycin
C and diepoxybutane with appropriate controls was performed on patient’s lymphocytes at
the Comprehensive Center for Fanconi Anemia.

ADDITIONAL INFORMATION

Data Deposition and Access
The patient’s NFKB1 variant NM_003998.4(NFKB1):c.702del (p.Val235fs) was deposited to
ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/) under the accession number VCV00045
0428.2, variation ID: 450428. Patient consent was not granted to deposit WES data.
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