with asthma (14, 15). These findings are pivotal, particularly in the
light of sustaining discussions with regard to the role of ambient
NO, concentrations on population health. It emphasizes the
need to have strategies that not only reduce exhaust particulate
but also scavenge NO,, particularly within congested urban

areas, where diesel vehicles make up a significant proportion

of the fleet.
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3 Validation of Imaging Measures in Chronic Obstructive

Pulmonary Disease

Imaging provides an amazing opportunity to glean in vivo
insights into acute and chronic diseases. The imaging
community has described many features that can be used to
detect disease and stratify its severity, predict outcomes, and
even assess disease progression. These typically begin with the

8This article is open access and distributed under the terms of the Creative
Commons Attribution Non-Commercial No Derivatives License 4.0
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identification of a novel structural aspect of an organ, obtaining
a range of measures of that feature and then demonstrating
that those measures remain statistically significantly associated
with an outcome of interest despite exhaustive multivariable
adjustment. These approaches are not wrong, but they are often
accompanied, appropriately, by disclaimers in the limitations
section of the discussion or even a modification of the name

of the feature to communicate an appropriate degree of
uncertainty as to what is actually being measured. Few of the
imaging-based measures reported in the literature are backed
by histopathology or knowledge of what is occurring on the
microscopic level.
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In this issue of the Journal, Vasilescu and colleagues (pp.
575-581) report the results of their investigation linking data
collected using both clinical computed tomography (CT) and
micro-CT (1). Their features of interest were derived by a technique
called parametric response mapping (PRM) (2) and their goal was to
demonstrate that the application of their approach to clinical CT scans
could noninvasively disambiguate the contributions of emphysema
and small airway disease to gas trapping observed on expiratory
images. To do so, they collected explanted lungs from 14 subjects,
inflated and then froze them before sectioning and taking 1.5-cm core
samples. They then performed micro-CT scanning on these core
specimens (33 from patients with COPD and 22 from control
subjects), and assessed the resultant images for features indicative of
emphysema, such as airspace size and alveolar surface area, as well as
those suggestive of small airway disease, including wall thickening,
decreased circularity, and obstruction of the terminal bronchioles.

The core samples from COPD lungs had increased airspace
size, greater airway obstruction, and decreased numbers of terminal
bronchioles compared with cores from control lungs. The authors
also found that the PRM-based measures of emphysema (PRME™Phy
were highly significantly associated with the corresponding tissue
destruction observed on micro-CT. These findings are not
surprising given work by this group linking the loss of small
airways to COPD (3, 4), as well as the more extensive body of
older literature linking densitometric assessments of the lung
parenchyma to airspace dilation observed on direct assessment of
the explanted lung tissue (5, 6). Although these findings establish
the overall validity of their experiment, the true novelties in this
work are the links established between the tissue-based measures of
small airway disease and the PRM™P.

Greater amounts of PRM™*P were associated with lower
numbers of terminal bronchioles as well as reduced lumen area,
circularity, and more frequent obstruction of those that remained.
What is equally compelling but elicited little comment is the lack of
association between the fSAD measure and both the mean linear
intercept and alveolar surface area. These measures were uniquely
associated with the PRM-based measure of emphysema. This lack
of association between PRM™*P and measures of emphysema on
micro-CT must have elicited relief from the investigative team.
This allows them to state that the technique has some degree of
specificity and can appropriately classify these processes as either
emphysema or airway disease.

Where does this leave us? The first place to look may be back on
the increasing body of literature focused on the application of these
measures in smokers. One important clinical validation is the
finding that PRM™*P was associated with a faster FEV, decline,
and contributed more to FEV, decline than PRM®™" (7). Another
interesting finding is the use of PRM measures in longitudinal
imaging, and a recent paper by Labaki and colleagues reported
something quite interesting (8). In a cohort of 725 smokers
spanning a range of COPD severities, those with predominantly
normal tissue on CT tended to have the greatest increase in
PRM®AP (and not PRME™), and those with higher amounts of
emphysema and fSAD at baseline tended to have the greatest
subsequent increase in emphysema. This suggests that PRM™AP
and PRM"™" are measures of distinct COPD phenotypes with
different (and important) implications for disease progression.
Considering what Vasilescu and colleagues just reported, one may
conclude that they reflect pathologic phenotypes as well.

Editorials

The imaging community has greatly benefitted from the
deployment of software libraries that enable deep learning
approaches to image postprocessing. These tools have led to a
divergence of efforts surrounding image analytics. Unlike those
focused on hypothesis-driven approaches that involve segmentation
and quantification of anatomic features believed to be related to the
condition of interest, deep learning-based efforts may converge on
a clinical signal without human input. One thing that is generally
common to both is the belief that the validation of these techniques
requires a demonstration of clinical association. Although such
findings may substantiate the methods being presented, we cannot
conflate substantiation with true validation. With imaging, the
latter can really only be done with tissue. Vasilescu and colleagues
should be congratulated for taking on such a challenging study long
after the medical community had accepted PRM, and establishing
this link between noninvasive imaging features and pathologic findings
in severe COPD. Future work may help establish these measures in
early or mild COPD, from which conclusions about pathologic
contributions to disease progression in COPD may be better inferred.
For now, at the very least, we can drop the word “functional” and
embrace this as a metric for small airway disease in smokers.
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