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Effective decision-making, one of the most crucial functions of the brain, entails the
analysis of sensory information and the selection of appropriate behavior in response
to stimuli. Here, we consider the current state of knowledge on the mechanisms
of decision-making and action selection in the insect brain, with emphasis on the
olfactory processing system. Theoretical and computational models of decision-
making emphasize the importance of using inhibitory connections to couple evidence-
accumulating pathways; this coupling allows for effective discrimination between
competing alternatives and thus enables a decision maker to reach a stable unitary
decision. Theory also shows that the coupling of pathways can be implemented using
a variety of different mechanisms and vastly improves the performance of decision-
making systems. The vertebrate basal ganglia appear to resolve stable action selection
by being a point of convergence for multiple excitatory and inhibitory inputs such that
only one possible response is selected and all other alternatives are suppressed. Similar
principles appear to operate within the insect brain. The insect lateral protocerebrum
(LP) serves as a point of convergence for multiple excitatory and inhibitory channels
of olfactory information to effect stable decision and action selection, at least for
olfactory information. The LP is a rather understudied region of the insect brain, yet
this premotor region may be key to effective resolution of action section. We argue that
it may be beneficial to use models developed to explore the operation of the vertebrate
brain as inspiration when considering action selection in the invertebrate domain. Such
an approach may facilitate the proposal of new hypotheses and furthermore frame
experimental studies for how decision-making and action selection might be achieved in
insects.

Keywords: mushroom body, protocerebral calycal tract, leaky competing accumulator model, cross inhibition,
parallel inhibition, mutual inhibition, basal ganglia, lateral protocerebrum

Abbreviations: AL, antennal lobe; DDM, drift diffusion model; EN, extrinsic neuron; LCA, leaky competing accumulator;
LN, local neuron; LH, lateral horn; LP, lateral protocerebrum; MB, mushroom body; MSPRT, multihypothesis sequential
probability ratio test; MSN, Medium spiny neuron; PN, projection neuron; SPRT, sequential probability ratio test.
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Introduction

Decision-making involves analysis and classification of
information, and selection of the most appropriate response,
which often incorporates reference to memory of what has
been learned previously. As a consequence, decision-making
involves interaction between many brain systems: sensory,
sensory processing, learning and memory, and premotor and
motor systems. Effective decision-making is core to the stable
operation of any behavioral system, and it is clear that insects
are capable of very rapid decision-making (in the order of 10 s
of milliseconds; Krofczik et al., 2008; Strube-Bloss et al., 2012a)
despite the complexity of the process.

Examining how biological decision-making systems work is
an area of extremely active research that combines perspectives
from computational biology, machine learning and artificial
intelligence with neurobiological analyses of diverse organisms.
As mentioned above, decision-making can be divided into
the process of information analysis and classification and the
process of selection of appropriate responses (action selection).
Computationally these two processes are related since they both
involve mechanisms for the resolution of competing possibilities
to one outcome. Biologically it is increasingly clear that the two
processes are not separate, but rather interact and feedback to
support a stable outcome.

Our objective here is to consider how effective decision-
making might be achieved by the insect brain. By necessity,
much of our discussion considers the insect olfactory processing
pathway since this is by far the best understood sensory system
in insects. We consider how olfactory information might be
processed and weighted to contribute to a behavioral choice.
First we review the anatomy and operation of the insect brain
and the olfactory pathway. We then consider various decision-
makingmechanisms proposed by biologically-inspiredmodels of
decision-making, and neurobiological analyses of the vertebrate
basal ganglia (a key region for decision and action selection in the
mammalian brain; Chevalier and Deniau, 1990; Redgrave et al.,
1999; Bogacz and Gurney, 2007). These provide background
for a discussion of how decision-making and action selection
might operate within the insect brain. Models of decision-
making systems emphasize the need for convergence of evidence-
accumulating pathways and the importance of inhibitory
elements of the system to drive the resolution of a single
outcome from among the possible alternatives. These features of
system organization are common to both insect and vertebrate
brains. For example, both insect and vertebrate decision-making
systems involve convergence of multiple evidence-accumulating
pathways that collectively operate a selective relaxation of global
feedforward inhibition to enable a unitary decision. We discuss
why these similarities might exist.

The Insect Brain

A major advantage of the insect systems for neuroscientists
and modelers is their relative simplicity. In comparison to
mammalian brains, insect brains have a simpler anatomy, are
far smaller and contain far fewer neurons. The major regions

of neuropil and the major tracts connecting them are known
for much of the insect brain. The olfactory system is by far the
best understood sensory processing system of the insect brain,
largely because the key insect models for learning studies (honey
bee Apis mellifera and Drosophila) very readily learn olfactory
stimuli in robust lab paradigms. As a result it has been possible to
construct a conceptual model of the function of the insect brain
that runs from primary olfactory sensory processing to selection
of motor output (Galizia, 2014).

Significant progress has been made by combining inferences
made across different insect systems where this is appropriate,
to gain a systems overview of the olfactory processing pathway
(Galizia, 2014). The insects are, however, an enormously diverse
group: the major orders have evolved independently for at least
300 million years (Grimaldi and Engel, 2005). Insect species
can differ enormously in brain size and relative size of different
regions of neuropil (Søvik et al., 2015). It is not the intention of
this approach (or this section) to imply that all details of brain
organization are common to all orders, however basic structural
elements of the olfactory pathway are highly conserved across
insect orders (Figure 1).

Odors are perceived by antennal olfactory receptor neurons
that project to glomeruli within the antennal lobe (AL).
Each glomerulus is a region of synaptic contact between
axons of olfactory receptor neurons expressing the same
olfactory receptors, local neurons (LN) connecting glomeruli,
and projection neurons (PN) which convey the odor signal to the
mushroom bodies (MB) and/or the lateral horn (LH). The AL is
the region of primary olfactory processing where enhancement
and sharpening of the odor signal occurs (Galizia and Rössler,
2010; Wilson, 2013; Galizia, 2014). Processing involving LN
within the AL sharpens and optimizes the gain of the odor
signal (Galizia, 2014). Some of the LN form a network of
inhibitory connections between glomeruli such that glomeruli
with overlapping response profiles seem to be reciprocally
inhibitory of each other (Linster et al., 2005; Galizia, 2014). This
appears to be a cross-inhibitory structure, perhaps analogous
to the lateral inhibition within retinal processing (Goldstein,
2007). Lateral inhibition in the retina enhances perception
of edges (Goldstein, 2007), and similarly the cross-inhibitory
network within the AL may sharpen perception of complex odor
mixtures increasing the across-glomerular differences in activity
and partially decorrelating AL responses to similar odormixtures
(Linster et al., 2005; Galizia, 2014).

The processed odor signal is coded as a specific
spatiotemporal pattern of activity across the PN population
(Joerges et al., 1997; Galizia and Menzel, 2001; Menzel and
Giurfa, 2001). PNs transfer the processed odor signal from
the AL to other brain regions, as parallel channels of olfactory
information to both the LH and the MB (Kirschner et al., 2006;
Brill et al., 2013; Galizia, 2014; Figure 1). In both flies and bees
a subset of PNs synapse with multiple glomeruli, and most of
these project to the LH and other regions within the lateral
protocerebrum (LP). These multiglomerular PN are GABAergic
and inhibitory (Kirschner et al., 2006; Liang et al., 2013; Parnas
et al., 2013; Galizia, 2014). In both flies and bees a further subset
of PNs, the uniglomerular PN, each receive input from a single
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glomerulus only and most of these project to both the LH and
the MB calyx (Fernandez et al., 2009; Denker et al., 2010; Galizia,
2014; in honey bees via two separate tracts; Kirschner et al.,
2006; Brill et al., 2013). The uniglomerular PN are excitatory
(Fernandez et al., 2009; Denker et al., 2010; Galizia, 2014).

The uniglomerular PNs project to the calyx (input region)
of the MB. The odor-evoked signal is there coded as a pattern
of activity across the interneurons of the MB: the Kenyon cells
(KC). A very small proportion of KC react to any given odor,
and different odors are represented by distinct patterns of KC
activation (Perez-Orive et al., 2002; Szyszka et al., 2005; Ito et al.,
2008; Turner et al., 2008). Processing within the mushroom body
(MB) enhances odor identification and classification (Galizia,
2014). The output regions of the KC form the lobes of the
MB (Figure 1): there KC connect with extrinsic neurons (EN)
that link the MB to the LH, one of the premotor regions
of the LP (Rybak and Menzel, 1993). Odor evoked patterns
of activity in the EN and LH are believed to shape and
select the specific behavioral response to the odor (Strube-Bloss
et al., 2012b; Galizia, 2014), as we discuss in ‘‘Mechanisms of
Decision-Making in the Insect Olfactory Learning Pathway’’
Section.

Modeling Information Processing in the Insect
Brain
This simple architecture for sensory processing has been an
inspiration for modelers, whose theoretical considerations of
how information might be efficiently processed within the insect

FIGURE 1 | Basic anatomy of the honey bee brain showing the major
pathways involved in odor classification and olfactory learning.
Olfactory receptor neurons send information to the brain via the antennal nerve
(AN). These neurons form synapses within the glomeruli of the antennal lobes
(ALs) onto local interneurons (not shown) and projection neurons (PN). There
are two types of PN: one class projects to both the input region (calyces) of the
mushroom bodies (MB) and the lateral horn (LH) and is excitatory. The second
class projects to the LH only and is inhibitory. Extrinsic neurons (EN) project
from the output of the MB (lobes) to the LH and are inhibitory. Recurrent
feedback neurons of the protocerebral-calycal tract (PCT) run from the MB
lobes and are inhibitory of both the EN and the MB. During olfactory learning
of sugar reward the neuron VUMmx1 neuron (brown) is activated by sugar and
releases the neuromodulator octopamine into the LH, AL, and MB, which is
believed to contribute to learning-related adjustments in the strength of
synaptic connections that enhance appetitive responses to the odor. VUMmx1
is bilaterally symmetrical, but in this figure only the right side is shown.

system have helped frame hypotheses for new neurobiological
investigations.

Schmuker et al. (2014) recently created a spiking neural
network model inspired by the insect olfactory system (Figure 2)
and tested the capacity of the model to correctly classify
multivariate data (in this case a four dimensional data set
describing features of the petals of different species of iris
flowers). Their model structure has three processing layers
inspired by an abstraction of the insect olfactory pathway
(Figure 2): an input layer (olfactory receptor neurons in the
antennae) a decorrelation layer that increases the dissimilarity
between similar signals (imagining the glomeruli of the AL and
the LN connections between them) and an association layer
in which supervised learning occurs (imagining the role of the
MB; Schmuker et al., 2014). Their simple model proves to be
highly effective in correctly classifying stimuli following a short
training period of supervised learning. It is able to output a
decision in less than 100 ms of simulated time demonstrating
a performance speed that matches that of insects (Schmuker
et al., 2014). This high level of performance is achieved by
key inhibitory connections within the neural network. Lateral
inhibition between neurons of the decorrelation layer enhances
differences between similar inputs. It transforms the overlapping
receptive fields of virtual receptors neurons into local and specific
representations of the input space. Similar processing occurs
between the glomeruli of the insect AL (Galizia, 2014). Cross
inhibition between neuron populations of the association layer
(Figure 2) enables the network to rapidly reach a decision by
a soft winner-takes-all behavior since the most active choice
inhibits any alternative choices.

Schmuker et al. (2014) model explored the efficiency of
a simple spiking neural network model as a classifier of
multivariate data. Their model structure was inspired by the
insect olfactory pathway, but did not intend to explain the
function of the insect brain. Bazhenov et al. (2013) however
developed a simple mathematical model of how successful odor
classification, learning and decision-making might occur within
an idealized insect olfactory learning pathway, or any similar
neural network (Figure 3). They modeled the pathway simply
as two serial connection matrices: the first representing the PN
connecting the AL and the MB and the second representing
the EN connecting the MB and LH. They considered the
experimental case of proboscis extension response conditioning,
which is a widely used associative conditioning paradigm
for honey bees and Drosophila in which restrained insects
associate odor with appetitive or aversive gustatory stimuli and
learn to extend or withhold their proboscis (Kuwabara, 1957;
Bitterman et al., 1983; Giurfa and Sandoz, 2012). Their model
(Bazhenov et al., 2013) considers these two possible behavioral
responses only, and imagines EN to be activational of either
proboscis extension or retraction. These two populations of
EN are modeled as cross-inhibitory such that neurons of the
extension and retraction populations inhibit each other, and
neurons within a functional population are mutually inhibitory
as well (Figure 3). With this system EN receiving a lot of
excitatory input would fire, and also silence other EN. If active
EN belonged mostly to the extension population the insect
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FIGURE 2 | A model spiking neural network for the classification of
multivariate data developed by Schmuker et al. (2014). Inhibitory
elements in the model (dotted red) are critical for effective system operation.
Sensory input from virtual receptor neurons (RN) project to PN that in turn
activate local inhibitory neurons (LN) which effect lateral inhibition of PN with
similar input properties. This sharpens the sensory input and partially
decorrelates the PN responses to similar inputs. This network structure was
inspired by processing known to occur in the glomeruli of the insect AL
(Galizia, 2014; Schmuker et al., 2014). The output of the decorrelation layer
projects to association neurons (ANs) which are grouped in as many
populations as there are classes in the dataset. Each population in the
association layer corresponds to a choice. Each AN population projects onto
associated populations of inhibitory neurons. The strong cross inhibition
between AN populations induces a soft winner-take-all behavior in the
association layer resulting in a stable unitary choice. Excitatory connections in
black, inhibitory connections in dotted red. Plastic connection strengths
(adapted by a Hebbian process) shown by dashed lines. Adapted from
Schmuker et al. (2014) with permission.

would extend the proboscis, otherwise the proboscis remains
withheld.

In the model (Bazhenov et al., 2013) connections between
KC and EN are assumed to be plastic and modified by three
processes. Appetitive reward strengthens connections between
active KC and extension group EN while weakening connections
with the retraction group EN via the action of neuromodulators
on KC output synapses. No reward or an aversive stimulus
does the opposite: weakening connections between active KC
and extension group EN while strengthening connections with
the retraction group EN. Operating on a slower timescale,
in the absence of any appetitive reward connection strengths
between KC and the extension group EN decay over time, while
connection strengths between KC and the retraction group EN
increase by a simple Hebbian process.

Bazhenov et al.’s (2013) proposes a simple and elegant
mechanism for the decision process. During training with
a specific odor paired with an appetitive reward connection
strength between the KC responding to the odor and extension
group EN strengthen, while connections to retraction group
EN weaken. Once a threshold activation of extension group
EN is reached the retraction group EN are shut down by
cross inhibition and the insect extends its proboscis in response

FIGURE 3 | Abstract model of information processing in the insect
olfactory pathway developed by Bazhenov et al. (2013). PN from the AL
convey odor information to the calyx of the MB. MB neurons connect with EN
that organize different forms of motor response (here proboscis extension and
retraction). Excitatory connections in black, inhibitory connections in dotted
red, plastic connection strengths shown by dashed lines. The different classes
of EN are connected via cross inhibition to resolve a unitary outcome. Adapted
from Bazhenov et al. (2013) with permission.

to the learned rewarded odor. This simple model captures
many of the known features of insect PER learning: rapid
decision, rapid learning and a non-linear step change in
behavioral response to a learned odor that is relatively stable
thereafter.

The models proposed by Bazhenov et al. (2013) and
Schmuker et al. (2014), however, imagine a very simple
action selection problem. In both their models there was
only one appropriate action for each presented stimulus,
and the model learned to make the appropriate selection
in response to different stimuli. For a behaving animal the
problem of action selection is far more complex. There are
multiple possible responses to any given set of stimuli, and
the most appropriate response (in terms of furthering the
animal’s survival or reproduction) may vary according to the
time of day, the animal’s condition or physiological state,
or the broader environmental state (such as the season).
Understanding the neurobiology of action selection is a
complex challenge. Below we consider how the problem of
effective action selection has been approached by computational
neuroscientists.

Models of Decision-Making and Action
Selection

In computational models describing perceptual decision-making
in vertebrates, various proposals have been made as to
how evidence-accumulating pathways should be connected
(Figure 4). The simplest and oldest accumulator model is now
referred to as the ‘‘race model’’, in which evidence accumulating
pathways are completely independent and unconnected, and
‘‘race’’ to reach a variable decision threshold in order to
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FIGURE 4 | Schematics of accumulator models. (A) race (Vickers, 1970),
(B) feed-forward inhibition (Ditterich et al., 2003), (C) leaky competing
accumulators (LCAs; Usher and McClelland, 2001) and (D) pooled inhibition
(Wang, 2002). Neuron populations A and B are decision populations
integrating evidence over time, IA and IB are the respective sensory
populations. Either population A or population B must reach an activity
threshold in order for a decision to be made. In the pooled inhibition model,
there is a shared pool of inhibitory interneurons. Arrows denote excitatory
connections, small circles and dotted red lines denote inhibitory connections.
Adapted from Bogacz et al. (2006) and Marshall et al. (2012).

precipitate a decision (Vickers, 1970). Subsequent proposals
couple the evidence-accumulating pathways in various ways,
such as cross inhibition with decay (known as the leaky
competing accumulator (LCA) model), feed-forward inhibition,
and pooled inhibition (Figure 4). The effect of these couplings
is to implement a winner-take-all mechanism, by ensuring
that as integrated evidence in one pathway (corresponding to
activation in an integrator population) increases, it suppresses
the activity of other pathways. While these dynamics and
their benefits are intuitive, further support for the importance
of coupling evidence pathways has been presented by formal
analyses of the statistical tests the proposed models can
implement. Bogacz and colleagues (Bogacz et al., 2006;
Bogacz, 2007) analyzed linear versions of the LCA model,
the feed-forward inhibition model, and the pooled-inhibition
model, and showed that all three can, under appropriate
parameterizations, be approximately reduced to the same
one-dimensional model of decision-making, the drift-diffusion
model (DDM). This is particularly important because the
DDM, arising in the psychological literature (Ratcliff, 1978,
1981, 1988, 2002) has been the most successful in explaining
reaction time and accuracy data in diverse psychophysical
experiments, and because the DDM corresponds with the
sequential probability ratio test (SPRT) as evidence accumulation
moves from discrete to continuous. The SPRT is a sequential
statistical test that optimally compromises between expected

accuracy of a decision, and the expected number of samples
required to reach it. The DDM integrates the difference in
available evidence, and thus without coupling of evidence
pathways no model can implement or approximate it. For
this reason the race model is provably sub-optimal, since
evidence accumulating pathways are completely uncoupled.
The analyses mentioned above assume that the appropriate
performance criterion for decision-makers is accuracy based;
i.e., decision-makers should seek to optimally compromise
between expected speed of decision and accuracy of decisions,
with these the only two factors influencing when a decision
is reached. In more ecological decision scenarios, in which
the expected value of decisions should be optimized rather
than expected decision accuracy (Pirrone et al., 2014), value-
sensitive decision-making mechanisms also make use of
cross-inhibitory connections (Seeley et al., 2012; Pais et al.,
2013).

Models of Learning
As described above implementation of decision-making models
requires particular wiring of brain areas representing stimuli and
action selection. The analyses described in the previous section
are valid for ‘‘proficient-phase’’ decision-making, in which the
value of stimuli have been learned or evolutionarily hard-wired,
but these models cannot account for how the value of simuli
can be learned or modified by experience. Clearly this is a key
aspect of decision making for most animals, and various models
have been proposed for how learning might be achieved by
brains.

When it comes to mechanisms for learning the value
of stimuli, brain self-organization models suggest that the
interaction of Hebbian learning rules (where the synapse of co-
active neurons is strengthened) which link stimuli to actions, and
winner-take-all-like (or lateral connectivity) architectures that
impose the selection of a unique action, are required. Though
mainly inspired by the mammalian brain, a correlation rule of
the form

weight change ∼ f(pre) f(post) (1)

where f(pre) and f(post) are functions of presynaptic and
postsynaptic activities (usually firing frequencies) could be
expected to be quite a general solution in animal brains, because
of its simplicity and fundamental properties. Such a two-factor
rule is the basis of classical models of unsupervised (Oja, 1982;
Kohonen, 1989) and developmental learning (von der Malsburg,
1973; Bienenstock et al., 1982) that describe how connection
strengths in a circuit might change as a consequence of their
current interactions.

This simple two-factor formulation is insufficient for the
formation of stimuli-action relations when a feedback signal is
presented (either rewarding e.g., food or aversive) in learning
goal-oriented behavior. It is the current belief that rewarding
situations are represented in the brain by changes in the
concentration of neuromodulators that are available to and
shared by large neural populations. In some vertebrate brain
areas, dopamine has been identified as a candidate signaling
unexpectedly rewarding situations (Schultz, 1997, 2001, 2007). It
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is then a reasonable step to extend the Hebbian rule by adding a
third factor representing the reward available to the system:

weight change ∼ f(R) f(pre) f(post) (2)

where f(R) is a quantity that depends on the neuromodulator
concentration related to the level of reward that the selected
action brought to the system. The consequence of this
formulation is that the expected weight change will only be made
conditional on the presence of the appropriate neuromodulator,
resulting in learning behavior only of specific rewarding (or
punishing) events. It is also possible to extend this form of
synaptic modification to capture precise spike-timing activity
rather than firing frequencies (Vasilaki et al., 2009; Gurney et al.,
2015). Models of the form described above have also been used
to explain how learning of reward and punishment might occur
within the insect MB where the neuromodulators octopamine
and dopamine are involved in the reinforcement of reward and
punishment learning respectively (Schwaerzel et al., 2003; Vergoz
et al., 2007; Bazhenov et al., 2013). For architectures involving
rules of this form and lateral connectivity that lead to unique
action selection, see for instance (Richmond et al., 2011).

Biological Mechanisms of Choice and
Decision-Making in Vertebrates and
Invertebrates

The models discussed above provide a theoretical perspective
on how choice and decisions might be efficiently achieved by
neural networks, and how animals might learn new behavioral
responses to stimuli. The models emphasize that inhibitory
elements are key to the successful operation of the system.
In this section we review what is known of decision-making
processes and action selection in the vertebrate basal ganglia
and the insect olfactory learning pathway. While these two
examples are derived from different phyla, it is not clear if they
represent completely independent evolutions of decision-making
systems. Strausfeld and Hirth (2013) have argued the possibility
of a deep homology between the vertebrate basal ganglia and
protocerebral structures of the insect brain. Even if this is
correct it remains the case that insect and vertebrate lineages
have been evolving independently for an estimated billion years,
during which time both groups have independently evolved
more complex sensory and motor systems and new forms of
behavior. Any commonalities inmechanisms of decision-making
found in both insects and vertebrates might therefore represent
general operating principles for decision-making in evolved
neural networks.

Mechanisms of Action Selection in the
Vertebrate Basal Ganglia
The vertebrate solution to the problem of action selection is
believed to be critically dependent on the basal ganglia (Figure 5),
a set of subcortical nuclei which have a long evolutionary lineage,
and which are highly conserved (Stephenson-Jones et al., 2012).

The basal ganglia receive inputs from all over the brain
including wide areas of the cortex (excluding primary sensory

FIGURE 5 | Vertebrate basal ganglia circuitry. (A) Simplified schematic of
major connections between the basal ganglia. Excitatory connections in black,
inhibitory connections in dotted red. Focussed projections solid lines, diffuse
projections dashed lines. Cortical input reaches both the striatum and the
subthalamic nucleus (STN). The striatum is divided into two populations of PN,
expressing the D1 or D2 type dopamine receptors respectively. Neurons in the
D1 population send their principal projections to the substantia nigra pars
reticulata (SNr). In primates, these striatal projections also go to globus
pallidus (GP) internal segment, and in rats, to the entopeduncular nucleus (not
shown here for clarity) with SNr subsuming the generic role of “output nuclei”.
Neurons in the D2 striatal population send their principal projections to the GP
in rats, and the external segment of the GP in primates. Both SNr and GP
receive input from the STN; the GP (or GP external segment) reciprocates that
projection. Both GP and SNr contain local intra-nucleus connectivity. Constant
inhibitory output from SNr reaches widespread targets in the thalamus and
brainstem. (B) Further abstraction of the basal ganglia connections to show
an architecture capable of theoretically performing a MSPRT analysis.
Connection styles as in (A) Adapted from Bogacz (2007) and Bogacz and
Gurney (2007) with permission.

areas) and many subcortical nuclei (McHaffie et al., 2005).
According to the action selection hypothesis, these inputs
comprise ‘‘action requests’’ whose overall activity represents
the urgency or ‘‘salience’’ of the action (Redgrave et al., 1999;
Gurney et al., 2001). The action requests are then processed
through ‘‘action channels’’ running through basal ganglia, which
are subject to competitive processing, thereby causing selection
of those channels with the highest salience. The effect of the
competition must then be made manifest at the originating
structures making the action requests. The mechanism for
effecting this is selective release of inhibition (Chevalier and
Deniau, 1990). That is, the basal ganglia output nuclei normally
supply tonic (continuous) inhibition to their targets, and release
this inhibition on representations of the selected actions therein.
Thus, the result of internal competition in basal ganglia is a
decrease in the activity of the selected channels at the level of the
output nuclei (and possibly an increase in activity in non-selected
channels).

Basal ganglia have a plethora of neuronal mechanisms to
support the competitive processing described above. At the
systems level (across the entire basal ganglia), there are the
possible components of a feedforward, off-center on-surround
network meaning activity in the focal action channel is inhibited
and activity in alternative channels enhanced (Mink and Thach,
1993; Gurney et al., 2001). The striatum supplies a channel-wise,
focused (off-center) projection to the output nuclei, while the
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subthalamic nucleus (STN) supplies a diffuse projection (on-
surround); see Figure 5. Channels with large salience will depress
activity in their basal ganglia outputs, while simultaneously
forcing outputs on competing channels high. Note the polarity
of this network is opposite to that which might be used in many
selection circuits such as those described in the insect brain,
because as described above the ‘‘winning’’ channel must have its
output depressed, not enhanced.

A computational model of basal ganglia which invoked this
off-center, on surround circuit was described in Gurney et al.
(2001). As well as showing basic selection properties using
this circuit, the model also suggested a role for the globus
pallidus (GP) and, in particular, its inhibitory connections to
STN (Figure 5). Thus, the GP is in a recurrent loop with the
STN and, the more excitation the GP receives from STN, the
stronger its effect back at STN. This results in an ‘‘automatic
gain control’’ reminiscent of such systems in engineering
signal processing. As such, it keeps the overall level of diffuse
excitation from STN at the output nuclei, at the correct level
for competitive selection, independent of the number of action
channels taking part. Another (complementary) interpretation
of this feedback circuit from GP to STN is suggested by the
mapping of the basal ganglia onto the statistical decision making
algorithm—the multihypothesis sequential probability ratio test
(MSPRT; Bogacz and Gurney, 2007; Lepora and Gurney, 2012).
There, in a Bayesian scheme, the STN and GP combine to
produce exactly the required combination of likelihoods for the
calculation of the log posterior probabilities for deciding a course
of action. One heuristic interpretation of this computation is that
it combines a simple ‘‘race’’ model (disinhibition via striatum to
output nuclei) with ‘‘conflict resolution’’ (in STN and GP).

Turning to the wider anatomical scheme, basal ganglia receive
input from cortical and subcortical areas developing nascent
action representations (McHaffie et al., 2005). Focusing on the
cortical influence, the cortical representations are in recurrent
excitatory circuits with thalamus to which basal ganglia project.
Thus, by selectively releasing inhibition at the thalamus, basal
ganglia allow activity in the cortico-thalamic loops to increase,
thereby allowing the associated action channel to be expressed.

It has been shown how this circuit can work (Humphries
and Gurney, 2002) and how it can manifest behavior using
embodiment in a small mobile robot (Prescott et al., 2006). One
of the key features for the success of the latter model was the
way in which the salience for an action was built from non-linear
combinations of sensory input. Such pre-processing of sensory
information could be a feature of the olfactory guidance of
behavior in insects where olfactory glomeruli in the AL perform
complex transforms of their input before sending projections to
LP (Galizia, 2014).

The basal ganglia support, not only the feedforward
architecture for competition described above, but several other
possible competitive mechanisms. GP and the output nuclei
both contain intrinsic inhibitory collaterals, which could be the
basis of competition (Deniau et al., 1982; Park et al., 1982).
A model incorporating these connections (Gurney et al., 2004)
showed that they could indeed improve the selection capability
but, interestingly, only when found together—collaterals in

the output nuclei alone hindered selection. Thus, the general
application of lateral or cross inhibition is, counter-intuitively
not always an aid to selection.

The motif of lateral inhibition is also supported within
the striatum. Here there is a complex GABAergic microcircuit
(Bolam and Bennett, 1995), which could support competitive
processing by inhibition between populations of striatal PN
supporting different action channels (Alexander and Wickens,
1993; Fukai and Tanaka, 1997). The inhibition between these so-
called medium spiny neurons (MSNs) is generally not ‘‘mutual’’;
a neuron MSN1 may inhibit MSN2 but this does not imply
MSN2 inhibits MSN1 (Tepper et al., 2004). Nevertheless there
is a possibility of selection processing using such connectivity
(Tomkins et al., 2014). There is also a possible indirect inhibitory
interaction between channels supported by (excitatory) cortical
projections to inhibitory striatal interneurons, which, in turn,
innervate MSNs (Tepper et al., 2004). GABAergic connectivity
is also observed within the output nuclei (Deniau et al., 1982)
that could support competitive processes. Notice that, within
the striatum, ‘‘winning’’ channels need to have their activity
enhanced not suppressed, while within the output nuclei the
opposite prevails (as noted above). Nevertheless, inhibition can
support both outcomes as it provides a general signal contrast
enhancement—its effects are transparent to the meaning of the
signals themselves.

The striatum also provides mechanisms for selection at the
neuronal level. MSNs require substantial coherent input to fire
(Wilson and Kawaguchi, 1996). This could act to filter low
salience inputs, which may be considered as noise rather than
genuine action requests. In addition the transient dynamics of
MSNs under changes in input can act to enhance selection, and
these transients are a property of the neurons rather than the
circuits in which they are embedded (Tomkins et al., 2014).

The emphasis on local inhibitory collaterals as a mechanism
for selection is a hallmark of the models of basal ganglia by Frank
and co-workers (Frank et al., 2004, 2007; Frank, 2005). These
models contain collaterals in cortex, as well as the main nuclei
of the basal ganglia and it is this combination of multiple loci
of cross inhibition, which facilitates selection. The more recent
models also emphasize the role of STN as suppressing action
‘‘by effectively raising decision thresholds in the face of conflict’’
(Frank et al., 2007), a notion consistent with that in the heuristic
description of MSPRT.

Mechanisms of Decision-Making in the Insect
Olfactory Learning Pathway
In ‘‘The Insect Brain’’ Section we introduced the insect olfactory
learning pathway, here we propose how decision-making and
action selection might occur within this pathway. Figure 1
illustrates the key brain regions and connecting neural tracts
involved in the insect olfactory learning pathway using the honey
bee as an example. Table 1 summarizes the functions of themajor
neural populations and how activity in these populations changes
during olfactory learning.

As discussed above, both theory and the example of
the mammalian basal ganglia emphasize that decision-making
mechanisms rely on a convergence of evidence accumulation
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TABLE 1 | Summary of the major regions of neuropil and tracts involved in the insect olfactory learning pathway, and how they change activity during
associative conditioning with reward and punishment.

Neural population Inputs Outputs Proposed function Activity changes with reward
conditioning

Activity changes
when conditioning
with no reward
or punishment

Uniglomerular
projection neurons
(PN)

Each neuron receives
input from a single
glomerulus within the
antennal lobe (AL)

MB calyx and
lateral horn (LH)

Excitatory. Conveys
information relevant to odor
identity to input regions of the
MB and to the LH

In honey bees discriminant
conditioning with one rewarded
and one unrewarded odor may
shift the representation of both
odors in the PN population
in such a way to improve the
separation and discrimination
between the two odors
(Fernandez et al., 2009; Denker
et al., 2010). But see Parnas
et al. (2013) which presents no
evidence for any shift in coding
in PN population with aversive
stimulation in Drosophila.

Multiglomerular PN Multiple glomeruli
within the AL

Ventrolateral
protocerebral neurons
(Liang et al., 2013) in LH

Inhibitory. GABAergic. Respond
to summed activity across
glomeruli. Provide gain control
to olfactory signal to LH to
sharpen odor discrimination
(Parnas et al., 2013). Contribute
to selection of behavioral
response by selective inhibition
of different classes of odor
signal e.g., food vs. sex
pheromone: parallel inhibition
(Liang et al., 2013).

Presently unknown Presently unknown

Kenyon cells (KC) Olfactory input from PN
within the Calyx of the
MB

EN and protocerebral
tract (PCT) neurons
within lobes of the MB

Excitatory. Olfactory information
sparse-coded within KC
population to enhance odor
classification

Consolidate and strengthen
KC responses to learned odor,
recruit additional KC responses
(Faber and Menzel, 2001;
Szyszka et al., 2008)

Weaken KC responses
to learned odor
(Szyszka et al., 2008)

Extrinsic neurons (EN) Lobes of the MB LH and other regions of
the LP

Presumed inhibitory.
Contributes to selection of
behavioral response by differing
levels of inhibition of premotor
regions.

Identified EN PE1 decreases
activity (Okada et al., 2007). A
small proportion of other EN
also reduce activity, a smaller
proportion increase activity
(Okada et al., 2007)

Identified EN PE1
did not change firing
with the absence of a
sucrose reward (Okada
et al., 2007)

Mushroom body
(MB) feedback
neurons

PN within calyces of MB
(Ganeshina and Menzel,
2001) and KC within
lobes of MB (Rybak and
Menzel, 1993)

KC and PNs within
calyx of MB (Ganeshina
and Menzel, 2001) and
EN within lobes of MB
(Okada et al., 2007)

Inhibitory, GABAergic. Provides
tonic inhibitory input to KC, and
a degree of inhibition of EN

At the level of individual neurons
reduced activity has been
recorded (Grünewald, 1999b;
Okada et al., 2007), but as a
population average increased
activity to CS+ observed
(Haehnel and Menzel, 2010)

As a population
average, decreased
activity to unrewarded
odor observed (Haehnel
and Menzel, 2010)

pathways on a single locus within which the degree of conflict
between different outcomes can be determined and resolved.
For insects LP may represent such a locus. The LP is premotor,
and organizational of different possible motor responses. The
LH is a subset of the LP that receives processed olfactory input
(Galizia, 2014; Ito et al., 2014) and outputs via ventrolateral
protocerebral neurons to other regions of the LP (Liang et al.,
2013; Parnas et al., 2013). The LP also receives processed

visual information via the central complex and MB (Pfeiffer
and Homberg, 2014). The LP is therefore a premotor region
of convergence of processed sensory information. Regarding
olfactory inputs to the LP, these are concentrated to the LH,
which receives two direct channels of olfactory information. An
excitatory input preserves the cross-glomerular pattern of activity
and therefore preserves information on odor identity, and an
inhibitory input conveys summed activity across glomeruli. The
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LH also receives an indirect channel of olfactory information via
the MB, which we discuss later. A model emerging from recent
studies withDrosophila proposes that the function of the LH is to
transform information on odor identity into the degree to which
the odor input is activational of different specific behavioral
responses. This is achieved by converting information on odor
identity into a measure of valence (here defined as the degree
to which a stimulus will elicit a positive or negative behavioral
response; Parnas et al., 2013; Fişek and Wilson, 2014; Galizia,
2014) and by channeling information on different fundamental
classes of odors (e.g., food odors or sex pheromones) to different
specific premotor circuits in other regions of the LP, including
the ventrolateral protocerebral area (Liang et al., 2013; Parnas
et al., 2013; Galizia, 2014).

Evidence gathered so far suggests that odors that are either
chemically similar or that activate a similar behavioral response
activate a similar region of the LH (Parnas et al., 2013; Fişek and
Wilson, 2014) and that the LH is spatially organized by valence
such that odors of similar valence cause similar spatial patterns
of activity in the LH. This is organized by the arrangement of
the excitatory uniglomerular PN inputs to the LH (Parnas et al.,
2013). The inhibitory multiglomerular PN inputs provide a form
of gain control to the olfactory signal and enhance dissimilarities
of similar odors to refine odor resolution (Parnas et al., 2013).
The inhibitory multiglomerular PN input is also channel-specific
(Liang et al., 2013). In flies the multiglomerular PN synapse with
ventrolateral protocerebral neurons within the LH, which are
then activational of other regions of the LP (Liang et al., 2013).
Multiglomerular PN are activated by food odors and exert a
general inhibition of the responses of downstream ventrolateral
protocerebral neurons to at least two food odors, but not to
two different sex pheromones (Liang et al., 2013). This has been
described as parallel inhibition (Figure 6), in which excitatory
and inhibitory PN receive parallel input and send parallel output
to the LH (Liang et al., 2013). Functionally this could selectively
route different classes of odor information to different circuits
within the LP. Liang et al. (2013) speculate that this mechanism of
parallel inhibition gates food odor input to activate LH neurons
relevant to foraging responses, and sex pheromone input to
activate LH neurons relevant to courtship and mating responses,
and therefore contributes to a mechanism of action selection.

The valence of an odor and the degree to which it activates
the LH is further influenced by an indirect olfactory input to
the LH via the MB, and it is via this pathway that valence of
an odor can be influenced by learning. Uniglomerular excitatory
PN project to the calyces of the MB (as well as directly to
the LH) where they synapse with the KC interneurons that
form the MB (Figure 2). KC output via the lobes of the MB,
and synapse with EN that project to the LH (Figure 1). Odors
are sparse-coded within the numerous KC, and the MB has
a capacity for fine-scale odor discrimination and classification
(Bazhenov et al., 2013; Galizia, 2014). Odor coding within
the MB is also plastic and influenced by learning, as a result
of the actions of neuromodulators octopamine and dopamine
(released in response to reward and punishment) modulating the
connection strengths of the output of the KC (Schwaerzel et al.,
2003; Burke et al., 2012; Perry and Barron, 2013; Søvik et al.,

FIGURE 6 | Parallel organization of excitatory and inhibitory signals in
the PN population modified from Liang et al. (2013) with permission.
Excitatory connections in black, inhibitory connections in dotted red.
Uniglomerular PN each receive input from a single glomerulus and output
excitatory signals in parallel to the LH. The multiglomerular PN sum inputs
from multiple glomeruli and appear to inhibit downstream LH neurons in a
channel-specific manner. LH neuron responses to food odors are inhibited
whereas responses to sex pheromones are not.

2015). Training of odors associated with sugar reward changes
and enhances the KC population reacting to the odor (Szyszka
et al., 2008) and also changes and generally decreases activity
in the EN population (Okada et al., 2007) as a consequence of
neuromodulators triggered by the rewarding stimulus adjusting
synaptic connection weights within the MB (Burke et al., 2012;
Perry and Barron, 2013; Søvik et al., 2015). Odor processing
via the MB pathway therefore provides a mechanism for
experience-dependent adjustment of the valence of an odor
stimulus.

The gain of the odor signal within the MB is regulated
by recurrent GABAergic inhibitory MB feedback neurons that
receive input from PN in the calyces of the MB and from KC
in the lobes of the MB, and that output via both the calyces
and lobes to PN, KC and EN populations (Rybak and Menzel,
1993; Grünewald, 1999a; Ganeshina and Menzel, 2001; Okada
et al., 2007; Liu and Davis, 2009; Haehnel and Menzel, 2010; Hu
et al., 2010; Palmer and Harvey, 2014). In both bees and flies
the feedback neurons are a small population: in bees they are
the approximately 50 neurons of the protocerebral tract (PCT;
Mobbs, 1982; Bicker et al., 1985; Grünewald, 1999a), in flies they
are the anterior paired lateral neurons (Liu and Davis, 2009).
These neurons provide inhibitory feedback to the MB and PN
and are important for maintaining sparse coding, and therefore
fine-scale odor resolution, within the MB (Perez-Orive et al.,
2002; Lei et al., 2013; Palmer and Harvey, 2014), and contribute
to learning-related plasticity in the PN, MB and EN populations
(Denker et al., 2010; Haehnel and Menzel, 2010; Raccuglia and
Mueller, 2014).

Kenyon cells are excitatory of EN (Okada et al., 2007), but
the EN are inhibitory of the LH and downstream LP premotor
circuits (Rybak and Menzel, 1998; Okada et al., 2007). Activity
in one identified and well studied EN PE1 (identifiable from
its specific firing properties) is negatively correlated with the
probability of a behavioral response (Okada et al., 2007), but
the responses of the EN population as a whole are plastic
and influenced by experience so that for odors learned to be
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predictive of reward the amount of activity in the EN population
on average reduces and therefore the degree of inhibition of the
LH imposed via the MB circuit is selectively relaxed (Rybak and
Menzel, 1998; Okada et al., 2007; Haehnel and Menzel, 2010;
Galizia, 2014).

To summarize; a general model of the insect olfactory
learning pathway is that odor information is processed in
parallel via a direct AL—LH connection and an indirect AL—LH
connection running via the MB. Odor identity is coded as
specific temporo-spatial activity first within the glomeruli of
the ALs and then within the uniglomerular PN population.
Odor discrimination and classification is enhanced by sparse
coding across the more numerous KC population. Excitatory
and inhibitory channels converge at the LH where their
combined inputs act on premotor neurons projecting to other
regions of the LP. Parallel inhibitory inputs carried by the
multiglomerular PN to the LH contribute to action selection
by gating channels of olfactory information to different classes
of behavioral output. The excitatory input direct to the LH
from the uniglomerular PN provides a signal of valence of the
odor. This valence signal is modulated by learning processes
acting via the MB channel, which is usually globally inhibitory
of the LH unless the animal has learned an odor has a high
valence in which case MB inhibition of the LH is selectively
relaxed.

The process of decision-making in the insect olfactory
learning pathway is illustrated by how the system changes as
an animal learns a specific odor is rewarding and changes its
behavior to effect an appetitive response to the odor (Table 1).
With training the pattern of activation of both glomeruli and
uniglomerular PN shifts to increase the distinction between
the rewarded odor and similar odors (Faber et al., 1999; Abel
et al., 2001; Galizia and Menzel, 2001; Fernandez et al., 2009;
Denker et al., 2010; Smith et al., 2012). Reward conditioning
sharpens and enhances KC responses to the odor to enhance
odor classification (Szyszka et al., 2008), and as a consequence
the population of EN reacting to the odor also changes and on
average reduces activity (Okada et al., 2007). This selectively
releases neurons within the LH from inhibition via the MB
channel and enables activation of a behavioral response (Okada
et al., 2007). GABAergic inhibitory signals from the MB feedback
neurons are also changed, and this contributes to these plastic
changes in theMB, PN and EN populations (Liu and Davis, 2009;
Palmer and Harvey, 2014; Raccuglia and Mueller, 2014), and
sharpens the signal at these three points in the pathway (Perez-
Orive et al., 2002).

The inhibitory elements are clearly key to effective operation
of the insect olfactory learning pathway. Inhibitory MB feedback
neurons exhibit a general inhibitory tone across the network to
optimize gain of the olfactory signal. The inhibitory regulation
of the LH by the multiglomerular PN has been described
as parallel inhibition to channel specific classes of olfactory
information to specific premotor pathways within the LP. The
action of the EN on neurons within the LH is inhibitory, with
selective relaxation of the degree of inhibition for rewarded odor.
Excitatory and inhibitory inputs converge at the LH. The net
result of the inhibitory and excitatory odor inputs to the LH

for a rewarded odor is a sharpening and increase of the specific
odor-evoked excitatory input to the LH via the uniglomerular
PN, a channeling of that information toward specific motor
responses by the multiglomerular PN and an odor-specific
relaxation of inhibition of the LH by the MB input via the EN
population.

System Similarities Between the Mechanisms of
Action Selection Within the Vertebrate Basal
Ganglia and the Insect Brain
Far more is known about the mechanisms of action selection
in the vertebrate brain than is known for the insect brain, but
knowledge of the mechanisms in the vertebrate basal ganglia
can help frame hypotheses for further investigation of the insect
brain. At a high level of abstraction there are some similarities
of system organization between the two brains, although the
specifics of the systems are very different. In both brains the
mechanism of action selection involves a convergence and
coupling of multiple evidence accumulating pathways involving
both excitatory and inhibitory signaling.

As discussed in the ‘‘Mechanisms of Action Selection in
the Vertebrate Basal Ganglia’’ section the action of the basal
ganglia can be summarized as combining inputs to release from
inhibition the output of the selected behavioral channel and
enhance inhibition of other similar but non-selected channels
providing a form of off-center : on-surround mechanism for
the selection of a specific channel. The polarity of this network
is counterintuitive since the BG is globally inhibitory of motor
pathways and hence a channel is selected by a selective reduction
in inhibition. One mechanism for achieving this is by combining
a focussed inhibitory projection from the striatum (off-center)
and a diffuse excitatory projection from the STN (on-surround).

We propose the mechanism of action selection in insects
can be considered in a similar way (albeit with an opposite
polarity) by combining inputs in the LP to provide an on-center:
off-surround mechanism for action selection. The LP combines
a focussed excitatory projection from the uniglomerular PN
(on-center) with a diffuse inhibitory projection from the
multiglomerular PN (off-surround) and a selective relaxation of
inhibition from the MB pathway (effectively also on-center : off-
surround). The LP is almost certainly a point for convergence
of processed visual information from the visual lobes, MB and
central complex also, and rather like the BG may be a common
path for convergence of processed information as part of action
selection and decision-making.

Bogacz and Gurney have argued that the basal ganglia
achieves decisions by the implementation of the MSPRT
statistical test (Bogacz, 2007; Bogacz and Gurney, 2007). This
is a generalization of the SPRT able to consider multiple
hypotheses such that the decision process can be described as
competition between multiple alternatives with the evidence for
each alternative being computed at each moment to yield a
probability for each alternative being correct. A decision is made
when the probability for any alternative exceeds a threshold.
The thresholds are not fixed, but are functions of the degree of
conflict between alternatives such that themore conflict themore
stringent the probability threshold becomes (Bogacz, 2007).
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The MSPRT approximates an optimal solution to the
decision-making problem; Bogacz and Gurney (2007) argue the
basal ganglia is capable of these calculations, by combining
evidence for each alternative provided by the striatum with
the degree of conflict between alternatives computed by the
subthalamic nuclei and GP (Bogacz, 2007; Bogacz and Gurney,
2007). This has proved a very useful hypothesis for critiquing
basal ganglia function. Can the insect LP be interpreted in
a similar way? It would be interesting to consider if the
insect olfactory pathway might also be capable of theoretically
resolving a MSPRT test, or an equivalent test for optimizing
the reward/decision time tradeoff for decisions in which reward
obtained is more important than realized decision accuracy
(Pirrone et al., 2014).

For the insect brain to be capable of this kind of calculation
it would need a capacity to integrate the evidence for making
each of all possible choices and separately calculate the sum
of the exponents of the evidences for all choices (Bogacz,
2007; Bogacz and Gurney, 2007). A decision can then be made
when the evidence for one choice in comparison to the total
amount of evidence for all choices exceeds a threshold (Bogacz,
2007; Bogacz and Gurney, 2007). In the insect brain various
sensory processing pathways could be theoretically capable of
integrating evidence for different possible choices. The insect
olfactory pathway involving the AL and MB and converging
on the LH, described in detail here, is certainly capable of
an evidence accumulation function for the olfactory sense.
The larger question is whether the insect brain is capable of
summing all evidence for all choices. In the vertebrate brain this
function is performed by the STN and the GP (Figure 5) as
a common path for cortical output. In the insect brain there
would need to be a point of convergence and integration of
information across all sensory systems. This locus may be the
LP. In honey bees the MB is multisensory and capable of fine-
scale classification of sensory information and learning of the
valence of that information (Menzel, 2001; Menzel and Giurfa,
2001; Galizia, 2014). MBs output to the LH, which also receives
inputs from the AL, visual lobes and the central complex,
which processes visual, mechanosensory and somatosensory
information relevant to space (Pfeiffer and Homberg, 2014;
Seelig and Jayaraman, 2015). Anatomical evidence would suggest
the LP as a candidate for total evidence summation, and
the premotor nature of the LP proposes a possible role for
action selection, but presently we know too little about how
information channels converge in the insect brain, in the LP
or any region, to speculate further on whether an MSPRT
type calculation, or equivalent, might be possible in the insect
brain.

When exploring this hypothesis it would be interesting
to examine the function of the neuromodulators involved in
signaling valence (reward and punishment) within the LP.
Dopamine in vertebrates, as well as playing a key role in learning,
also acts directly to modulate neural excitability in basal ganglia
(Onn et al., 2003; Frank, 2005). In this way, it may play a direct
role in promoting or impeding action selection. Octopamine
in honey bees is strongly linked to reward singaling, and also
modulates neural excitability (Weisel-Eichler and Libersat, 1996;

Menzel, 2001; Vehovszky et al., 2005). In honey bees during
learning of sugar reward octopamine is released at multiple
points in the olfactory pathway (MB, AL and LP; Hammer, 1993;
Hammer et al., 1993; Hammer andMenzel, 1995), andmodulates
function and odor coding in the AL and MB (Farooqui et al.,
2003), but the specific role in the LP is presently unknown (Søvik
et al., 2015). Nevertheless, neuromodulators are hypothesized to
contribute to mechanisms of ‘‘motivational switching’’ in the LP
(Galizia, 2014). Evidence of such a role for octopamine therein,
may help support the thesis that the LP acts to support decision
making as the basal ganglia do in vertebrates.

Conclusion

Effective action selection is a problem faced by even the
simplest of organisms (Bray et al., 2007; Bray, 2009) and it
is reasonable to assume that one of the key functions of the
simple brain of the earliest motile animals must have been to
solve the action selection problem. From this perspective it is
not surprising that in both vertebrates and invertebrates action
selection appears localized to evolutionarily older regions of the
brain (Mink and Thach, 1993; Redgrave et al., 1999; Strausfeld,
2012). Some authors have even proposed an ancient evolutionary
homology between these regions (Strausfeld and Hirth, 2013),
and it is possible that distant common ancestors could have
possessed action selection brain structures that evolved into
two distinct but related structures, one arthropod and one
vertebrate.

Here we have taken a different approach, asking what
design patterns have been detected in, and proposed for,
vertebrate and invertebrate brain regions involved in learning,
decision-making, and action selection. In particular, we have
identified the theoretical importance, and empirical prevalence,
of coupling of evidence-accumulating pathways, particularly
in decision-making and action selection. Theoretical and
computational studies have shown that such coupling, which
can be implemented using a variety of different mechanisms,
greatly improves the performance of decision-making systems.
Indeed, the results of a recent computational model inspired by
decision-making models of vertebrate brain regions have shown
that the removal of inhibitory coupling gives rise to inefficient
action selection (Marshall et al., 2015). We believe that modeling
approaches developed to explore the operation of vertebrate
brain regions such as the basal ganglia can be borrowed and
adapted to propose new hypotheses for how action selection
might be achieved in insects.

We have reviewed what is known about invertebrate decision-
making in light of the more complete experimental and
theoretical considerations of the vertebrate basal ganglia and
proposed some new hypotheses for the operation of decision and
action selection in insects. In this review we have emphasized
the role of the LP in action selection in insects, since this is a
premotor region within which there is convergence of sensory
processing pathways for the well-studied olfactory learning
pathway. The LP is to date a relatively poorly understood
region of the insect brain, partly because it is anatomically less
well defined than sensory processing regions or the MB, partly

Frontiers in Behavioral Neuroscience | www.frontiersin.org 11 August 2015 | Volume 9 | Article 216

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Barron et al. Insect decision-making and action selection

because it is less accessible than the sensory lobes and partly
because in the honey bee literature at least it has historically
been seen as not involved in the olfactory learning pathway
(Hammer and Menzel, 1998), which may be a misconception
(Søvik et al., 2015). We hope this review will inspire new
research into the function of this region, and the importance of
inhibitory signaling in the decision-making process in the insect
brain.
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