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Abstract

Complex interrelations exist between the master central clock, located in the
suprachiasmatic nuclei of the hypothalamus, and several peripheral clocks, such as
those found in different immune cells of the body. Moreover, external factors that
are called ‘timekeepers’, such as light/dark and sleep/wake cycles, interact with internal
clocks by synchronizing their different oscillation phases. Chronobiology is the science
that studies biologic rhythms exhibiting recurrent cyclic behavior. Circadian rhythms have
a duration of approximately 24 h and can be assessed through chronobiologic analysis of
time series of melatonin, cortisol, and temperature. Critically ill patients experience severe
circadian deregulation due to not only the lack of effective timekeepers in the intensive
care unit (ICU) environment but also systemic inflammation. The latter has been
found in both animal and human studies to disrupt circadian rhythmicity of all
measured biomarkers. The aims of this article are to describe circadian physiology
during acute stress and to discuss the effects of ICU milieu upon circadian rhythms,
in order to emphasize the value of considering circadian-immune disturbance as a
potential tool for personalized treatment. Thus, besides neoplastic processes, critical
illness could be linked to what has been referred as ‘chronomics’: timing and
rhythm. In addition, different therapeutic perspectives will be presented in association
with environmental approaches that could restore circadian connection and hasten
physical recovery.
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Introduction

Circadian rhythms refer to self-sustained fluctuations with a period of approximately

(circa) 1 day (diem) in various physiological processes. Circadian rhythmicity is ob-

served for many hormones in circulation (i.e., corticosteroids) as well as for circulating

immune cells and cytokines [1,2]. Ten circadian clock genes have been identified in

human peripheral tissues so far, including Period (Per-1-3), Crypto-chrome (Cry-1 and

Cry-2), Clock, and Bmal1, which coordinate with the master clock located in the

suprachiasmatic nuclei (SCN) of the anterior hypothalamus [3].

In mammals, the circadian system is composed of many individual, tissue-specific

clocks with their phase being controlled by the master circadian pacemaker of SCN
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[1]. SCN neurons control clock genes throughout the body by controlling two major

communication channels, the endocrine system and the autonomic nervous system

(ANS). The recent discovery of a novel third type of retinal photoreceptor, other than

rods and cones, provided evidence of a pathway mediating non-visual effects of light [4].

Subsequent signals are directed towards SCN neurons through the retinohypothalamic tract

and synchronize them to the day/light cycle. Furthermore, connections of SCN with other

hypothalamic structures allow the master clock to synchronize other clock genes in the

body [5,6]. Additionally, through sympathetic nerve projections, SCN output signals induce

the release of a major internal synchronizer, the pineal substance melatonin (Figure 1) [5,7].

Melatonin is synthesized by the pineal gland upon β adrenoreceptor stimulation of

pinealocytes, increased during sleepiness, and decreased during wakefulness, and it

conveys the information of nighttime to the organism. In healthy humans, melatonin

secretion starts between 9:00 p.m. and 11:00 p.m., reaching peak serum levels between

1:00 a.m. and 3:00 a.m. (>40 pg/mL) and then falling to low baseline values between

7:00 a.m. and 9:00 a.m (<7 pg/mL) [8,9]. It also plays the role of an endogenous
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Figure 1 Melatonin: the ‘master biological clock’. Non-visual effects of light are mediated through specific
retinal ganglion cells which subsequently activate SCN neurons. As a result, SCN inhibits the pineal production
of melatonin during daytime through a polysynaptic pathway including paraventricular nucleus (PVN), superior
cervical ganglia, and preganglionic sympathetic neurons of the lateral horn of the spinal cord. The pineal
melatonin is considered the master biological clock that synchronizes the circadian rhythms of different clock
genes throughout the body with different external ‘timekeepers’, such as light/dark cycles. Furthermore, the
SCN-PVN network is responsible for 24-h period fluctuations of both sympathetic and parasympathetic tone,
estimated with heart rate variability analysis, and for circadian oscillations of immunity and endocrine function.
During inflammation, circadian rhythms of different hormones are disrupted, whereas immune cells in the
periphery suppress melatonin's nocturnal surge through TNF-α and produce melatonin themselves. This
extrapineal melatonin acts on a paracrine manner and exhibits both pro- and anti-inflammatory properties,
depending on time phase and severity of stress. SCN, suprachiasmatic nucleus; PVN, paraventricular nucleus.
Figures are reproduced from the free website: ‘The brain from top to bottom’, according to its copyleft

policy (http://thebrain.mcgill.ca/flash/pop/popcopy/popcopy.html).
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synchronizer, which is able to stabilize circadian rhythms and maintain their mutual

phase relationships. Furthermore, its rhythm is involved in the regulation of the sleep/

wake cycle, sleep structure, and more generally in the temporal organization of immun-

ity [1,5]. The last is considered as an effective component of ‘predictive homeostasis’

since nearly all organisms have developed mechanisms for anticipating environmental

changes to optimize their survival [1,2]. In this respect, temporal organization of im-

mune response maximizes it at the time of the day that is needed most, since exposure

to microbial pathogens depends on intrinsic 24-h rhythms of the host (activity, feed-

ing). Moreover, immune modulation by the ANS, which also displays a diurnal rhyth-

micity, further supports the notion of immune regulation by light/dark cycle [1,6].

Melatonin is also considered an active anti-inflammatory molecule due to the inhibition

of tumor necrosis factor α (TNF-α) production [9,10]. In addition, melatonin has an

extrapineal source since different gastrointestinal cells synthesize melatonin, which has

a peripheral activity (e.g., protection against reperfusion injury in gut mucosa), through

its antioxidant properties [11].

Circadian rhythms are also synchronized and maintained by different phase relation-

ships to external factors. These rhythms persist with an identical period (light/dark, sleep/

wake) or are different throughout a day. These external factors are also called ‘time-

keepers’ and are considered as effective modulators for the circadian oscillator (e.g., light,

feeding, ambient temperature, and stress) [12].

Several studies have demonstrated that there is a circadian rhythmicity of different

components of the immune system [1,13-15]. Moreover, it has been suggested that cir-

cadian regulation of immunity is necessary for temporal coincidence of all its different

molecular steps [13-15]. Thus, circadian oscillations of lymphocyte proliferation, anti-

gen presentation, and cytokine gene expression appear coordinated via SCN output sig-

nals. Additionally, the number of most immune cells reaches maximal values during

the night and is lowered after arousal [1].

Circadian physiology and inflammation

Experimental data

Different pro-inflammatory cytokines, such as TNF-α and interleukin-6 (IL-6), may

cross the blood-brain barrier at leaky points (the circumventricular organs (CVO)) and

induce a ‘sickness behavior’, associated with decreased amplitude of circadian rhythmi-

city, such as loss of sleep/wake cycle [1,16].

Many studies have found that the susceptibility of mice to lipopolysaccharide (LPS) and

TNF-α-induced lethality varied significantly throughout the day, depending on the time of

administration [17-20]. Moreover, immune response upon LPS challenge, such as cyto-

kine production [21] or toll-like receptor 9 (TLR9) expression [22], has been shown to

display circadian rhythmicity, depending on time of LPS administration. Chronic inflam-

mation can also affect SCN output by reducing amplitude and average spiking frequency

of SCN neurons [23,24]. In addition, LPS exposure has been found to suppress mRNA ex-

pression levels of different clock genes, in both animal [25] and human studies [26,27].

However, melatonin and cortisol circadian rhythms were not affected by LPS (Table 1). It

has been suggested that centrally regulated hormones' circadian rhythmicity and periph-

eral clock gene expression are independently regulated during sepsis, reflecting an un-

coupling between central and peripheral oscillators during systemic inflammation [28].



Table 1 Immune-circadian connection: experimental studies

Author Study design Major outcome

Haldberg et al. [17] Susceptibility of mice to Escherichia
coli endotoxin-induced lethality

Lethality varied significantly throughout
the day, depending on the time when mice
were challenged

Hrushesky et al. [18] Effect of time of TNF-α
administration on lethal toxicity
in mice

Nine-fold variation of lethality being
greatest during night and particularly
before awakening

Keller et al. [21] Splenocytes from mice, isolated at
various times of the day, were
challenged with LPS

Circadian rhythmicity of TNF-α and IL-6
secretion was found. More than 8% of
the peritoneal macrophage transcriptome
oscillates in a circadian function
autonomically and depends on time
of LPS challenge

Silver et al. [22] Toll-like receptor 9 (TLR9) expressed
in peritoneal macrophages were
estimated for circadian rhythmicity
in a mouse model of sepsis

Vaccination with TLR9 ligand as adjuvant
at the time of enhanced TLR9
responsiveness induced an improved
adaptive immune response many
weeks later. Moreover, disease severity
was dependent on the timing of sepsis
induction, coinciding with daily changes
in TLR9 expression

Kwak et al. [24] Study of the long-term effects of
INF-γ on SCN neurons by treating
dispersed rat SCN neurons with
INF-γ for a 4-week period

Firing of SCN neurons and rhythmic
expression of clock gene Per1 exhibited
a lower average spiking frequency with
reduced amplitude and an irregular
firing pattern, in relation with controls

Okada et al. [25] LPS effects on mRNA expression
of clock genes in rats

mRNA expression levels of different
clock genes, such as Per 1 and Per 2,
both in the liver and SCN neurons on
day 1, were suppressed with an
expression nadir between 10 and
14 h post-challenge. Subsequently,
recovery was noted on day 2, whereas
controls exhibited a robust circadian profile

Boivin et al. [26] Estimation of clock gene oscillations
in human blood mononuclear cells
derived from three human volunteers

Presence of circadian oscillations of
Per 1and Per 2 genes

Haimovich et al. [27] Assessment of clock gene alterations
upon LPS administration in peripheral
human blood leucocytes, after
challenging them with in vivo
endotoxin or saline, either at
09:00 a.m or 09:00 p.m.

LPS induced a profound suppression
of all clock gene expression by 80% to
90%, between 13 and 17 h post-perfusion,
whereas IL-6 and TNF-α returned to
baseline within 6 h. However, melatonin
and cortisol circadian rhythms were not
affected by LPS challenge

Pontes et al. [32] Colostrum samples for measuring
tumor necrosis factor α (TNF-α) and
melatonin content were collected
from 18 normal delivered mothers in
the morning, and diurnal and nocturnal
melatonin levels in colostrum from
healthy puerperae and mothers with
mastitis were compared

Suppression of nocturnal melatonin rise
in mothers with mastitis was highly
correlated with increased tumor necrosis
factor α secretion.

On the other hand, stimulated, but not
quiescent, immune-competent cells
secreted in the colostrum produced
melatonin in vitro. In addition, this
production ceased after bacteria killing

Cruz-Machado et al. [33] Effects of LPS on melatonin production
in rat pineal cultures

Shutdown of melatonin production
through TNF-α induction of NF-kB in
pineal microglial cells

Papaioannou et al. Intensive Care Medicine Experimental 2014, 2:18 Page 4 of 14
http://www.icm-experimental.com/content/2/1/18
The immune-pineal axis A continuous communication between the pineal gland and

the immune response has been suggested to exist, defining the ‘immune-pineal axis’

[29]. Thus, pineal melatonin nocturnal secretion enhances Th1/Th2 ratio within low

‘chronobiotic’ levels (nM-pM range) and inhibits at the same time both rolling and
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adherence of leucocytes to the endothelial layer, decreasing unnecessary inflammatory

response [29-31]. Furthermore, extrapineal melatonin produced by local immune-

competent cells acts in a paracrine manner as anti-inflammatory mediator in higher

concentrations (mM range) [32-34]. Thus, it seems that in the early phase of inflamma-

tion, the body does not receive circadian information through the hormonal arm.

Markus et al. [35] have postulated that systemic inflammation activates the nuclear

factor kappa B (NF-kB) pathway through LPS/TLR4 signaling at the level of pinealo-

cytes and suppresses central melatonin nocturnal secretion, enhancing migration of im-

mune cells at the site of injury. At the same time, different inflammatory mediators

upregulate melatonin production in peripheral macrophages. This extrapineal tissue

melatonin has been described as ‘immune buffer’ since it seems to play a dual role [36].

During acute stress, it acts as immunostimulant, improving bacterial phagocytosis, and

subsequently, it enhances recovery phase by inducing production of anti-inflammatory

cytokines. However, during an exacerbated inflammatory response, melatonin acts

mainly as an anti-inflammatory molecule.

Corticosteroids may also affect melatonin pineal production [37,38]. Thus, by inhibit-

ing the NF-kB pathway in the pineal gland, they can restore its nocturnal rise [37] and

enhance its production in a bell-shaped manner [38]. However, they can also decrease

the activity of N-acetyltransferase (NAT) which is a key enzyme in the biosynthetic

pathway of melatonin and hence inhibit its pineal production [39]. Finally, increased

cortisol response to stress has been correlated with decreased amplitude of its own cir-

cadian rhythm [40].

In summary, different experimental studies confirm the existence of circadian oscilla-

tions of the immune response, which can be significantly suppressed by LPS. In

addition, mortality seems to depend on time of LPS administration (Table 1).

Circadian rhythm profiles and critical illness

Circadian output assessment Periods and modeling variability of different biological

time series that reflect circadian output, such as melatonin and cortisol, are assessed

via cosinor analysis [41]. Briefly, this technique fits a cosine function of a fixed antici-

pated period to the data and approximates the following equation to experimental data,

using the least squares method for minimization:

Y t ¼ M þ A� cos 2π=TAU� t þΦð Þ ð1Þ

where, M is the midline estimating statistic of rhythm (MESOR), the mean level of os-

cillation; A is the amplitude, the extent of oscillation from the MESOR or half of the

total oscillation; π is 3.14159; TAU is the chosen period; t is a temporal fraction of the

cycle, an instant of the whole revolution; and Φ (phi) is the acrophase, lag from a de-

fined reference time point (e.g., local midnight when the fitted period is 24 h) of the

crest time in the cosine curve fitted to the data (Figure 2).

Except for serum melatonin, its urine metabolite 6-sulfatoxymelatonin (6-SMT) [10]

and core body temperature (CBT) [42] are accepted biomarkers of circadian rhythm in

critically ill patients.

Circadian disruption in critically ill patients Circadian rhythms are disrupted by

illness and intensive care unit (ICU) environment, associated with patient care



Figure 2 Chronobiologic analysis of a time series through cosinor analysis. Schematic illustration of
basic metrics derived from cosinor analysis: This method is applicable to the individual biological time series
anticipated to be rhythmic with a given period. The procedure fits a cosine function (blue) to the data (red)
by least squares. Midline estimating statistic of rhythm (MESOR) is the mean level of oscillation that is the
average value of the rhythmic function (e.g., cosine curve) fitted to the data. Amplitude is the difference
between the maximum and the MESOR. Acrophase is the time of occurrence of the maximum value.
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interactions and unregulated light/dark patterns. Different clinical studies have demon-

strated that a significant proportion of critically ill patients display long-term sleep disturb-

ance and metabolism, suggesting a contribution of biological rhythm alterations [43,44].

In this respect, many authors have investigated circadian biomarkers in different

groups of patients during their ICU stay, in order to assess a potential circadian dys-

function during critical illness (Table 2) [45-51]. Such misalignment occurs when there

is an alteration between cycle frequency and phase in two or more rhythms [5,12]. Its

clinical significance has been established in different settings, since it has been shown

to induce a prediabetic condition in healthy humans [52] and symptoms associated

with heart failure in animal models of cardiovascular disease [53]. Furthermore, misa-

ligning the cortisol rhythm has been shown to induce profound cardiovascular and

renal disease sequel, which was subsequently reversed by light exposure therapy in

hamsters [54].

Only a few investigators have evaluated circadian alterations during sepsis (Table 2)

[55-59]. Mudlinger et al. [55] assessed in ICU circadian disruption in 17 septic patients

versus 7 non-septic and 21 controls. Urinary 6-SMT, measured at 4-h intervals over a

24-h period, exhibited significant loss of circadian rhythmicity with no daytime decline

in septic versus non-septic patients and controls, respectively.

Recently, Li et al. [59] studied for 24 h 11 septic and 11 non-septic ICU patients and

measured during the first day of admission plasma levels of melatonin, TNF-α, and IL-

6 and messenger RNA levels of circadian genes Cry-1 and Per-2. The authors found al-

tered circadian rhythm of melatonin secretion, decreased expression of both Cry-1 and

Per-2, and high levels of TNF-α and IL-6 in septic patients. They also showed that the

suppression of peripheral circadian genes was independent of the melatonin rhythm.

In conclusion, Li et al. [59] confirmed that during acute phase of sepsis in humans,

there is an uncoupling of the central master clock and peripheral tissue-specific clock

genes, associated with pro-inflammatory cytokine production. Moreover, acrophase



Table 2 Circadian disruption in critically ill patients: clinical studies

Author Study design Major outcome

Tweedie et al. [45] Retrospective study for characterizing core
body temperature (CBT) 24-h profiles of
15 ICU patients

80% of all patient days had a significant
circadian rhythm with erratic acrophases
and normal amplitudes

Nuttall et al. [46] Retrospective study assessing clinical
significance of circadian rhythms in
patients with (≤17) and without (n = 120)
ICU psychosis, by comparing for 24 h
the time of both temperature and urine
output nadir

Both groups had altered circadian rhythms,
and although all ‘patient days’ had a
significant rhythm, 83% of those days had
abnormal cosinor-derived parameters

Olofsson et al. [47] Study of melatonin levels in both blood
and urine in 8 critically ill patients under
sedation and mechanical ventilation

The circadian rhythm of melatonin release
was abolished in all but 1 patient, whereas
no correlation was found between
melatonin levels and level of sedation

Frisk et al. [48] Study of 6-SMT and urine cortisol in
16 patients, treated in the ICU of two
regional hospitals

Hyposecretion of 6-SMT during mechanical
ventilation, increase upon adrenergic
stimulation, overall high cortisol excretion
and, finally, a disturbed diurnal rhythm of
both these hormones in 75% of all patients

Paul and Lemmer [49] Measurement of CBT every hour and
plasma cortisol and melatonin levels every
2 h for 24 h, in 13 sedated ICU patients
following surgery or respiratory failure
and 11 patients with brain injury

The 24-h circadian profiles of all measured
variables were significantly disturbed, with
no physiological day-night rhythm in
both groups of patients in relation with
healthy controls, whereas circadian
rhythm alterations were more pronounced
in patients with brain injuries

Pina et al. [50] Prospective analysis of hourly CBT and
4-h interval urine cortisol, melatonin, and
6-SMT profiles in 8 burn patients and
14 controls for 24 h in three sessions,
occurring between ICU days 1 to 3,
day 10, and days 20 to 30

Circadian rhythms of all measured
variables were abolished in all patients in
relation with controls. Burn ICU patients
displayed significantly higher MESORS of
CBT, urine melatonin, 6-SMT, and cortisol
compared with the control group, during
the three sessions of measurements. 24-h
circadian profiles were restored within a
30-day period

Gazendam et al. [51] Investigation of circadian rhythm
disruption in a general ICU population,
assessed using CBT profiles over a 48-h
period in 21 patients

Acrophase shift in all cases. Acute
Physiology and Chronic Health Evaluation
(APACHE) III score was predictive of
circadian misplacement

Mudlinger et al. [55] Circadian alterations in 17 septic patients
versus 7 non-septic subjects and 21
controls, in the ICU

Urinary 6-SMT exhibited circadian rhythmicity
in only 1 of 17 septic patients versus 6 of
7 in non-septic patients and 18 of 23 in
normal controls. MESORS appeared
slightly increased, phase amplitudes were
markedly lower, and acrophase occurred
later in septic patients. On the contrary,
in both non-septic patients and controls,
6-SMT exhibited a circadian rhythm

Perras et al. [56] Measurement of single nocturnal
melatonin concentration (NMC) in 302
patients during their first night in ICU

Analysis of the whole study population did
not reveal any correlation between single
melatonin measurement and APACHE II
score, but in 14 patients with severe sepsis,
an inverse correlation was found

Bagci et al. [57] Nocturnal plasma melatonin and 6-SMT
urine concentrations were measured in
23 septic and 13 non-septic pediatric ICU
patients

The NMC during septic shock was
increased in relation with no shock states.
There was no difference for nocturnal and
total 6-SMT excretion between septic
patients with and without septic shock
and non-septic patients. Nocturnal and
total 6-SMT excretion was significantly
lower in septic patients with than in septic
patient without liver dysfunction. Sedation
and mechanical ventilation did not affect
melatonin excretion
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Table 2 Circadian disruption in critically ill patients: clinical studies (Continued)

Gehlbach et al. [58] Assessment of sleep/wake regulation and
circadian rhythmicity for 24 h, through
1-h interval urine measurements of 6-SMT,
in 22 mechanically ventilated patients
with different diagnoses of ICU admission

The 24-h temporal profile of 6-SMT
exhibited a phase delay. There was no
difference between patients with and
without sepsis and no correlation
between APACHE II score and 6-SMT
amplitude

Li et al. [59] 11 septic and 11 non-septic patients in
ICU. Peripheral blood was drawn at 4-h
intervals during the first day of admission

The melatonin secretion acrophase
occurred earlier in septic patients
compared with non-septic patients.
Melatonin MESORS tended to be higher in
the septic group. Both Cry-1 and Per-2
expression were decreased, while TNF-α
and IL-6 expression were increased in
septic patients, reaching a peak at 6:00 p.
m, which was consistent with the altered
rhythm of melatonin secretion. Suppression
of peripheral circadian genes was
independent of the melatonin rhythm

Plasma levels of melatonin, TNF-α, IL-6,
and messenger RNA levels of circadian
genes Cry-1 and Per-2 were analyzed
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shift exhibited an advance rather than a delay in septic patients, contrary to what was

found in the study of Mudlinger that included patients with at least 1 week stay in the

ICU [55]. We suppose that at the early stages of sepsis, the inverse relation between

melatonin and pro-inflammatory cytokines that was clearly shown in different animal

models is more evident [35]. However, during the late stages, medications, such as cate-

cholamines and varying levels of sedation [48,60], could also alter circadian rhythms,

since both morphine [60] and benzodiazepines [48] have been shown to induce NAT ac-

tivity and enhance in a dose-dependent manner daytime production of melatonin [10]. In

addition, mechanical ventilation [48] and ICU milieu [61-63] may further disrupt circa-

dian variations, limiting accurate assessment of immune-circadian connectivity.

ICU environment and circadian output disruption ICU milieu can be considered as

a particular stress trigger for the internal circadian clock. Exposure to persistent envir-

onmental light has been recognized as a serious concern in the ICU [61-63]. However,

different authors have found that light failed to influence circadian rhythms in healthy

subjects [64] and in septic critically ill patients under controlled ventilation [65,66],

suggesting that sepsis per se could decrease sensitivity to light exposure.

Drugs are potential confounders of immune-circadian connectivity in critically ill pa-

tients. In this respect, both opioids [50] and benzodiazepines [67] may alter melatonin pro-

duction. Additionally, increased sympathetic tone and use of vasopressors during septic

shock could theoretically enhance melatonin excretion. However, sympathetic reuptake of

norepinephrine [68] and poor responsiveness of human pineal gland to circulating cate-

cholamines [69] protect against the inappropriate increase in pineal melatonin production.

Another significant stressor of circadian rhythms in sedated patients is the sleep/wake

cycle disruption. Different studies have confirmed that the majority of these patients

experience either sleep deprivation and/or sleep fragmentation [43,44,58,70]. It has

been suggested that the dispersion of episodic ‘sleep-like states’ could be responsible for

the reduced amplitude and acrophase delay of urine 6-SMT that was also noticed in

healthy subjects [58,71]. Nevertheless, it seems that sleep per se remains a weak time-

keeper in humans without a concomitant change in the light/dark cycle [72]. Finally,

delirium has been implicated as a pathologic state modifying melatonin excretion in
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elderly conscious medical patients [10,73]. At the same time, melatonin circadian de-

regulation has been associated with neurotransmitter alterations and subsequent delir-

ium in septic patients [74,75]. However, it remains unclear if it is the quantity or the

rhythm profile of melatonin that is related to delirium occurrence [10].

Potential therapeutic implications

Duboule [76] and Halberg [77] introduced the term ‘chronomics’, time and rhythm, for

describing circadian regulation of animal development and chronotherapy in different

disease states. Evidence from observational studies is growing that circadian disruption

contributes to the development of cancer [76,78]. So, it has been suggested that mela-

tonin could be beneficial in cancer treatment when administered at chronobiologically

determined optimum times of the day [79].

Administration of melatonin has been found in both animals [79,80] and one human

study in neonates [81] to reduce hyperinflammatory response during sepsis. In addition,

it has been shown that melatonin exhibits an in vitro antimicrobial activity against

multi-drug resistant Gram-negative and Gram-positive bacteria due to free iron binding

[82] and furthermore can protect kidney grafts from ischemia-reperfusion injury [83].

Moreover, prolonged nighttime melatonin administration lowers blood pressure in

hypertensive subjects [84], since SCN neurotransmitter content and transmission are

suppressed during hypertension [85]. Finally, in two randomized placebo-controlled

trials, melatonin [86] and a synthetic analog [87] were found to decrease incidence of

delirium in elderly medical patients, but did not affect its duration or severity. How-

ever, intention-to-treat analysis was not possible in the first trial because of lost to

follow-up patients.

Nevertheless, many aspects remain unresolved. Thus, prior knowledge of the circa-

dian profile of the patient is needed in order to design a personalized melatonin dose

and duration of treatment, as well as chronobiologically determined optimum time of

administration, since a circadian rhythmicity has been found for both pharmacokinetics

and pharmacodynamics of different drugs, such as antibiotics [88]. Furthermore, mela-

tonin excretion can be altered by liver and renal injury or by circadian modulation of

hepatic function and glomerular filtration rate [10,89]. In this respect, different time-

keepers, such as light or medications, have been used in cancer or psychiatric disorders,

on the right time and order and at a specific phase of the circadian cycle [78,90]. Simi-

larly, different ‘rhythm therapies’ could be scheduled for ICU patients, following the

kairos principle (right time of the day) instead of chronos (time in general) [76,78].

Moreover, introduction of additional timekeepers and excitation of the biological sys-

tem with ultradian short-period rhythms, such as light or art therapy, have been found

to enhance long-period fluctuations of melatonin by excitation, coupling, and reson-

ance [91]. As a result, a restored circadian rhythmicity has been noticed in patients

with sleep disorders and subjects with jet lag [91]. Such effects may also enlarge the cir-

cadian cycle of heart rate variability (HRV), which is connected with sleep quality and

ANS dysfunction [78,92].

It has been postulated that entrained and synchronized circadian rhythms better pre-

pare the physiology of an individual to anticipate normal cycles of energy demand in

order to optimize adaptive regulation [93]. This ‘self-adaptation’ behavior is trans-

formed into a ‘self-defense’ response during stress [31], explaining results from different
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studies. Thus, pro-inflammatory cytokines shut down melatonin's nocturnal surge in

the acute phase, whereas exacerbated or chronic inflammation upregulates pineal pro-

duction through anti-inflammatory mediators, such as corticosteroids [36,38]. However,

there is a lot of heterogeneity in different studies due to interspecies differences or time

and severity of inflammatory insult, prompting a standardization of experimental pro-

tocols for translating results in the ICU setting.

Since severity of disease varies across the day and night [20,94] and the temperature

curve might exhibit an inverted pattern (febris inversa) in different infections, such as

tuberculosis where fever is higher in the morning than in the evening, we suggest that

future studies should assess differences in terms of circadian profiles, between patients

suffering from an inflammatory episode that occurs at different time points of a 24-h

period. Moreover, and since light unresponsiveness of SCN has been found in septic

patients [65,66], we suppose that in this particular group, possible circadian misalign-

ment might reflect mainly individualized immune-circadian connections. In that case,

it would be interesting to study if different circadian biomarkers correlate significantly

with the Sequential Organ Failure Assessment (SOFA) score of severity of illness and

predict mortality better than SOFA. In addition, ICU environmental profiles could be

correlated with trajectories of circadian biomarkers, and different environmental ap-

proaches to patient care, such as ‘virtual darkness’ by shortening the day length, could

be designed and tested to promote more rapid attainment of circadian rhythms [95].

Finally, restoring circadian light/dark cycle might improve immune function through

enhanced melatonin production, in the context of reduced energy availability associated

with critical illness, as is currently observed in lower mammals during the winter [95].

Except for clinical researchers, basic scientists could also benefit from chronobiologi-

cal analytic tools in order to design experimental studies and assess treatment effects in

different septic models. It has been recognized that some of the reasons for negative re-

sults in different clinical trials in septic patients [96], despite encouraging results from

preclinical studies, are the use of animal models that do not adequately mimic human

sepsis [97]. Furthermore, misinterpretation of preclinical data or adoption of different

experimental protocols has been considered as a contributing factor for this discrep-

ancy [97]. In this respect, the use of ‘higher fidelity animal models’ has been suggested

in order to increase the clinical relevance of experimental research [98]. Nevertheless,

we would like to highlight the importance of assessing immune-circadian connectivity

as a further step for translating basic science results into successful randomized

controlled trials. Thus, different models should evaluate clock gene expression in

immune-competent cells upon LPS challenge at standardized time points and in

different environmental settings (i.e., light manipulation) [99], whereas clock gene

knockout animals could also be used for assessing circadian-immune disconnection.

Finally, new statistical methods, such as EUCLIS (EUCLOCK Information System,

an EU FP6 project) [100] could be tested for analyzing the genome, the proteome,

and the metabolome.

Conclusions
As was suggested by Haldberg et al. [77], ‘in biologic time series that are dense and suf-

ficient long the characteristics of rhythms and trends can be quantified as elements of

structures called chronoms’. ‘Microscopy-in-time’ chronobiology studies cycles in
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biological time series with mechanisms embedded in living matter, whereas ‘telescopy-

in-time’ chronomics assesses their alignment with environmental cues [101]. Thus,

chronobiologic surveillance could be implemented in the ICU, serving a better under-

standing of biologic complexity in critical illness and, subsequently, an individualized

optimization of treatment. In this respect, vascular variability anomalies (VVAs) esti-

mated with chronomics, such as heart rate and blood pressure variability, have been rec-

ognized as significant risk factors in patients with cardiovascular diseases [102]. Similarly,

reduced HRV has been repeatedly demonstrated in patients with sepsis and organ dys-

function [28]; however, chronobiologic analysis has not been performed so far.

In the context of negative results from different clinical studies in septic patients

[96], we suggest that individual rhythm analysis might add significant value to the car-

ing of critically ill. Thus, continuous monitoring of different biosignals, such as electro-

cardiogram (ECG), could detect diurnal variations in HRV and patterns of change

specific for each patient and each pathophysiological state, creating an individual profile

of ‘physiomarkers’ that could be used as both a diagnostic and therapeutic monitoring

tool in everyday clinical practice. In addition, circadian aspects of pharmacokinetics

and both liver and renal function could be considered in daily treatment, in order to in-

crease efficiency and/or reduce adverse effects of medical therapy on a personalized

basis. Finally, future clinical trials should assess circadian aspects of immunity and ther-

apeutics for evaluating treatment effects. In this respect, adoption of different modeling

techniques and design of in silico studies could be applied towards understanding in-

flammation and translate computational systems biology approaches in sepsis research

to clinical relevance [103].
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