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This paper studies contractual graphs, where the formation of edges between nodes result
in dyadic exchanges. Each dyadic exchange is analyzed as a contractual agreement that is
implemented upon fulfilment of underlying conditions. As these dyadic exchanges
proliferate, the resulting population of these exchanges creates a contractual graph. A
contractual framework for graphs is especially useful in applications where AI-enabled
software is employed to create or automate smart contracts between nodes. While some
smart contracts may be easily created and executed, others may contain a higher level of
ambiguity which may prevent their efficient implementation. Ambiguity in contractual
elements is especially difficult to implement, since nodes have to efficiently sense the
ambiguity and allocate appropriate amounts of computational resources to the ambiguous
contractual task. This paper develops a two-node contractual model of graphs, with
varying levels of ambiguity in the contracts and examines its consequences for a market
where tasks of differing ambiguity are available to be completed by nodes. The central
theme of this paper is that as ambiguity increases, it is difficult for nodes to efficiently
commit to the contract since there is an uncertainty in the amount of resources that they
have to allocate for completion of the tasks specified in the contract. Thus, while linguistic
ambiguity or situational ambiguity might not be cognitively burdensome for humans, it
might become expensive for nodes involved in the smart contract. The paper also shows
that timing matters—the order in which nodes enter the contract is important as they
proceed to sense the ambiguity in a task and then allocate appropriate resources. We
propose a game-theoretic formulation to scrutinize how nodes that move first to complete
a task are differently impacted than those that move second. We discuss the applications
of such a contractual framework for graphs and obtain conditions under which two-node
contracts can achieve a successful coalition.
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INTRODUCTION

Connections between entities are conveniently represented using graphs. The building blocks of
graphs—nodes and edges—have long been used to represent various kinds of networks. The nodes
represent entities involved in a transaction, and the edge represents the transaction itself. The
interaction between nodes, as denoted by edges, thus represent dyadic exchanges between the nodes.
As these dyadic exchanges between nodes in the network increase, it creates a population of these
exchanges resulting in a graph. However, any given transaction denoted by a dyadic exchange may
not occur until underlying conditions for the implementation of that transaction have been satisfied.
In this context, the transaction (represented by a dyadic exchange or an edge in a graph) is not
definitive, but is rather an outcome of a set of processes that have to be completed a priori. This paper
studies such graphs of such contractual dyadic exchanges and their applications, where the edges

Edited by:
Jiliang Tang,

Michigan State University,
United States

Reviewed by:
Georgios Kollias,

IBM, United States
Jay Lee,

Erasmus University Rotterdam,
Netherlands

*Correspondence:
Renita M. Murimi

rmurimi@udallas.edu

Specialty section:
This article was submitted to

Data Mining and Management,
a section of the journal

Frontiers in Big Data

Received: 06 September 2020
Accepted: 27 January 2021
Published: 04 March 2021

Citation:
Murimi RM (2021) A Framework for

Contractual Graphs.
Front. Big Data 4:603282.

doi: 10.3389/fdata.2021.603282

Frontiers in Big Data | www.frontiersin.org March 2021 | Volume 4 | Article 6032821

ORIGINAL RESEARCH
published: 04 March 2021

doi: 10.3389/fdata.2021.603282

http://crossmark.crossref.org/dialog/?doi=10.3389/fdata.2021.603282&domain=pdf&date_stamp=2021-03-04
https://www.frontiersin.org/articles/10.3389/fdata.2021.603282/full
http://creativecommons.org/licenses/by/4.0/
mailto:rmurimi@udallas.edu
https://doi.org/10.3389/fdata.2021.603282
https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles
https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org/journals/big-data#editorial-board
https://doi.org/10.3389/fdata.2021.603282


between nodes are created only upon fulfilment of underlying
clauses. We call such graphs as contractual graphs, since the
formation of an edge is similar to the execution of a contract upon
fulfilment of underlying conditions.

Contractual graphs are best exemplified by the application of
smart contracts, where AI-enabled nodes are tasked with the
creation or execution of contracts (Chatterjee et al., 2019). For
example, upon transfer of funds from one account to another, the
sale of an item is executed or a document is released. In this case,
the nodes have to verify if the accounts have sufficient funds, if the
transfer has taken place and if the entity has actual control over
the item to be sold or the document to be released. Once these
have been verified and the operations have taken place, the
transaction is completed and can be represented as an edge in
the contractual graph (Bartoletti and Pompianu, 2017). For
example, the work in (Bigi et al., 2015) describes smart
contracts for use in applications such as barter, insurance,
escrow, derivatives and general business contracts.

However, not all contracts can be clearly automated. For
example, if the contract is executed only upon satisfactory
completion of a project, the contract will have to clearly define
the threshold for “satisfactory” performance (Schneider, 2019).
Any deviation from predetermined values for a task that varies in
complexity will require a new smart contract to be created.
Examples such as these abound in various domains, where the
fuzziness of the contractual language can be parsed by humans,
but poses tremendous difficulties while being converted into
software. For the aforementioned example of what constitutes
satisfactory performance, AI-enabled software could help by
parsing through large datasets of similar projects that have
been labeled as “satisfactory,” “good” or “excellent” and assign
the appropriate label. Still, the ambiguity cannot always be
resolved using code. Ambiguity, while helping humans achieve
leeway in contractual relations, is not a welcome condition in
software (Giancaspro, 2017; Clack, 2018). Ordinary qualifiers
such as “few,” “some,” or “smart” cannot be programmed
effectively without assigning values to these qualifiers. As AI
increasingly makes its way into various facets of our lives, it is
important to understand that ambiguity in the code can lead to
life-altering consequences. For example, when facial recognition
software identifies an individual with some probability, the
inherent ambiguity in the goal of the task can create adverse
outcomes with far-reaching impact (Lohr, 2018). While humans
can navigate ambiguity based on situational cues (Eichberger
et al., 2009), it is difficult to do so in software (Zou and Zou,
2017). Contractual relationships effected by AI, therefore, have to
be cognizant of ambiguity as a key element of the human-
machine and machine-machine relationships and a driver of
resulting outcomes (Al-Najjar and Weinstein, 2009).

In this paper, we study how ambiguity impacts contractual
graphs that are represented by dyadic exchanges. Specifically, we
use a game-theoretic approach to study how tasks of varying
ambiguity are perceived and completed by nodes. To do this, we
assume a marketplace with ambiguous tasks (Figure 1). We
model the contractual graph as a two-player game, where
edges are formed only when two nodes cooperate to complete
a task. We show that timing matters, i.e., there are specific

advantages to the first mover and the second mover in
cooperating to complete the task. Here, two contracts are
formed: P3P1 commit to task T2 and P1P2 commit to task T1.
The direction of the arrow determines the first mover. Here P3 is
the first mover for task T2. P1 is the second mover for task T2 and
is the first mover for task T1. Similarly, P2 is the second mover for
task T1. In contract P3P1, P3 is the first mover and P1 is the second
mover and are denoted accordingly in the notation.

Next, using the Shapley value, we quantify the value that the
first mover and the second mover bring to a coalition. These
results are then used to create contractual graphs, whose edges
reflect the outcomes of ambiguity and timing in task execution.
Further, we provide a representation of such contractual graphs
that can be used in learning important information about the
community of nodes and the nature of the contracts that are
formed in the marketplace.

The rest of this paper is organized as follows. Section Related
Work in Contract Theory and Coalition Value presents an overview
of related work in contract theory and the application of the Shapley
value in diverse settings. Section Model for Contractual Graphs
presents our model for contractual graphs, and Section
Derivation of the Shapley Value for 2-Player Contracts derives the
Shapley value for 2-player coalitions in contractual graphs. Section
Results presents our findings of simulations. A kernel representation
of contractual graphs is presented in Section Kernel Representation
for Contractual Graphs. Finally, Sections Future Work and
Conclusion present directions for future work and conclude the
paper, respectively.

RELATED WORK IN CONTRACT THEORY
AND COALITION VALUE

The use of game theory to study the mechanism of contract
formation has been studied in (Katz, 1990). Here, the author

FIGURE 1 | A marketplace with two ambiguous tasks T1 and T2, each
with their levels of ambiguity (ma) and resource consumption (ra). Three
players P1, P2 and P3 assess the tasks to develop their individual perceptions
of the ambiguity of a task (mp) and the allocate resources accordingly
(rp).
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explored contract formation by addressing two questions. First,
what are the actions or intentions that are required for a
contractual obligation? Second, how do these actions or
intentions affect the content of the contract itself? At the heart
of this analysis, lies the issue of ambiguity in determining the set
of actions or intentions that signal the formation and content of a
contract. While legal rules provide a robust framework for
determining the outcomes of contracts, the author emphasized
the role of social norms and ethical precepts in the outcomes. To
this end, the author identified different types of costs involved in
contract formation and contract execution and proposes a game-
theoretic economic analysis of the steps involved in contract offer,
acceptance and rejection.

Another case for the incompleteness of contracts from an
economics viewpoint has been made in (Tirole, 1999). Here, the
author explains that most contracts are in fact, incomplete. Citing
an example of mission and vision statements at higher levels of
administration in various domains, the author explains how
vague statements such as “increase security” or “provide
robust frameworks” are often used to issue directives. The
vagueness is inevitable especially since the costs of specifying
every contingency and breach can be prohibitively expensive,
even if such specifications can be explicitly specified. Such
incomplete contract models are characterized by three types of
costs: unforeseen contingencies, costs of writing contracts and
costs of enforcing contracts. This theme has been continued in
(Sklaroff, 2017), where the specific case of inflexibility in smart
contracts was studied. The author presented the three features of
smart contracts—automation, decentralization and
anonymity—that require the formation of fully specified terms
for entities to verify the terms of the contract without ambiguity.
The author argued that contractual language offers two important
attributes—linguistic ambiguity and enforcement discretion that
provide powerful efficiencies in the contracting process. This is
because smart contracts create transaction costs that are often
inflexible. Smart contracts require future stages and terms to be
clearly defined beforehand, which is difficult in volatile or
unknown environments. Further, generic smart contracts lead
to unpredictable and expensive litigation, and create challenging
outcomes in cases of breach. Further work in the challenges of
smart contracts and the law has been studied in (Verstraete, 2018)
where the author presents challenges concerning enforcement
and governance in smart contracts, which explicitly eschew
central entities in transactions and their outcomes. Another
example of developing contracts with predetermined outcomes
is in (Asgaonkar and Krishnamachari, 2019) where the authors
describe double-sided payment functions in smart contracts to
ensure trustworthy transactions.

The aspect of cognitive burden has been addressed in (Tirole,
2015) where the author studies scenarios where having additional
information is costly and therefore, players choose scenarios with less
information. The paper describes such scenarios as cognitive traps,
where the additional cognitive burden imposed by choosing options
with higher information is the less desirable option for players. Thus, a
player is hurt by choosing the cognitively burdensome option that
requires the player to process larger amount of information. The paper
further considers cognition-intensive contracting, where the parties to

a contract attempt to understand the likely implications of the
contract.

The value that players bring to a coalition can be measured in
several ways, one of which is the Shapley value. In (Chalkiadakis
et al., 2012), the authors present an overview of the applications of
the Shapley value in cooperative game theory for AI and
computer science. The Shapley value has been used extensively
in feature selection in machine learning. Originally derived as a
game-theoretic mechanism to characterize the value of each
player in a coalition, the derivation of the Shapley value is
contingent upon the fulfilment of the following conditions:
symmetry (a player’s contribution and not the label assigned
to the player is the factor that determines the player’s Shapley
value), linearity (utility functions are linear), and carrier (dummy
players are assigned a value of zero, and similarly players who
make a contribution receive a value that divides the worth of the
coalition among players.

The versatility of the Shapley value to diverse applications has
led to development in multiple interpretations of the Shapley
value. In Sundararajan and Najmi (2019), the authors study
several Shapley values for application to a dataset with ten
features, and show that the Shapley value with Conditional
Expectations was the most sensitive for their application. In
Cohen et al., (2005), the authors propose a Contribution-
Selection Algorithm (CSA) that ranks each feature according
to its contribution value. This algorithm is able to iteratively select
n top features with highest contribution values, and is able to
remove features with lowest contribution values. Another way in
which the Shapley value has been studied is in Bilbao et al., (2008)
for the case of bicooperative games. In addition to applications in
game-theoretic coalitions, the Shapley value has been used in
determining centrality, i.e., the set of most influential nodes in a
network (Michalak et al., 2013). Here, the authors describe the
application of Shapley value in determining the group of nodes
that have the largest influence on the network. Additional work
on the role of the Shapley value in social networks is in
Narayanam et al., (2014) with applications to community
detection and information spread. Other interpretations of the
Shapley value include the computation of a bounded rationality
Shapley value that ensures that the share of each agent reflects its
contribution to the difficulty of computing the coalition values.

While the Shapley value offers a mechanism for determining
the value of every player to a coalition, egalitarianism still remains
another solution for determining the value of a player. In
egalitarian solutions, the worth of each player is determined
by equal division. This has led to research that combines the
equal division of egalitarian solution vs. the marginalism offered
by Shapley value solutions. Work in van den Brink et al., (2013)
offers such a concept in the form of egalitarian Shapley values in
both cooperative and non-cooperative scenarios.

Coordination games, which refer to the game-theoretic construct
of rewarding players when they agree on a common strategy has
been extensively studied. A thorough review of the first-mover
position in marketing literature is in Kerin et al., (1992). In this
paper, the authors described four categories of factors (economic,
preemption, technological and behavioral) that contribute to the cost
and differentiation advantages of the first-mover position. Examples
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include partnerships, alliance, or choice of a product. In Jackson and
Watts (2002), the authors studied a coordination game in a social
network where individuals periodically have the opportunity to add
or sever a link.

Literature on coordination in games is extensive
(Weidenholzer, 2010), and follows two broad categories. Tacit
coordination, in which players communicate only by playing the
game, differs from explicit coordination, in which players can
send signals that are not directly related to the game (and which
may not be costly). The role of communication in facilitation
coordination has been studied in Ellingsen and Östling (2010),
where the authors showed that communication has the potential
to both hamper or hinder coordination efforts.

Work in Apt et al., (2017) studies the specific case of
coordination games on finite undirected graphs, which is
formulated as a problem where a player has to pick a color
from a set of colors. The payoff of the player is the number of
other players who pick the same color. Coordination games, here,
thus refer to the scenario where it is beneficial for players to align
their choices with others in the graph. Another study of a
coordination game on a graph is in Rahn and Schäfer (2015),
where the authors study the problem of a player having individual
preference and may benefit in varying degrees by cooperating
with neighbors. Efficient equilibria conditions for extreme cases
are considered which allow for deviations, where on the one hand,
all players choose the same strategy and on the other hand, each
player chooses a unique strategy.

Another study that investigates a population of agents that can
dynamically form and sever links according to varying payoffs is in
Tomassini and Pestelacci (2010). The resulting co-evolution of
strategies results in the formation of connected components in the
network. An example of a coordination problem is the Stag Hunt
problem, where a hunter must choose to hunt a stag with a group or
hunt rabbits by himself (Bryant, 1994). A pure coordination game is
described in Van Huyck et al., (1990), where the authors consider a
tacit coordination game where strategic uncertainty contributed to
inefficient outcomes. A different type of coordination game has been
studied in Cason et al., (2012), where group of players are competing
against each other. The effectiveness of a group is only as good as that
of its weakest player. Thus, this work studies if communication within
a group can help or hinder efficiency. Further investigation of strategic
uncertainty is in Crawford (1995), in which players repeatedly play
coordination games resulting in payoffs that depended on the player’s
choices and the summative choices of the other players. A specific
group of coordination games is the anti-coordination game
(Bramoullé et al., 2004), in which players choose a strategy which
is unlike those of her partner. They showed that as the cost of link
formation increases, the equilibrium network becomes sparse.

MODEL FOR CONTRACTUAL GRAPHS

We now introduce the model to study how ambiguity affects
contract modeling by nodes/players in a marketplace. Assume
two players P1 and P2, who both seek a high reputation and are
equally abled. The first mover assesses the ambiguity in the
contract. Assume that once a player enters a contract, she will

complete the task. That is, the model does not study instances
where nodes back off after entering the contract.
Consequently, the first mover in the contract always
commits. We assume a two-player coalition for task
completion. Thus, although the first mover has modeled the
task in the form of a contract, she requires the help of another
player to complete the task. This other player, whom we label
as the second mover, has the option to accept/reject offer of
coalition with the first mover. For this paper, we study only the
case where second mover accepts.

Figure 2 shows the steps in the process leading to a contract in
a marketplace with one ambiguous task T and three players
P1, P2, and P3. The ambiguity and resource consumption of T are
given by (ma, ra) in order.

Step 1: Players P1, P2, and P3 assess the ambiguity of task T .
Each player develops her individual perception of the ambiguity
of task T as mpi, and accordingly allocates resources rpi for task
completion, where i ∈ {1, 2, 3}.

Step 2: P1 decides to create a contract and thereby commits to
task T . Since we assume two-player coalitions, P1 needs another
player to commit to the contract to complete T . Information
about this contract is made available to the marketplace as a hard
information signal similar to the work in Rajan et al., (2010).

Step 3: The remaining players in the marketplace (P2 and P3)
receive the signal. Of these two players, P3 decides to collaborate
with P1.

Step 4: The contract is finalized with P1 as the first mover and
P3 as the second mover in the contract.

We assume that players are rational, intelligent and have
common knowledge. A player assesses a task’s ambiguity and
determines its payoff as the difference between its perception of
the work it might be required to do for the task and the actual
work that is required for the task. Thus, the initial payoff
awareness (IPA) for a node is given by:

Initial payoff awareness (IPA) � Perceivedwork − Actual work (1)

We define the amount of work to be performed as a product of
the ambiguity and the resource commitment. Let the perceived

FIGURE 2 | Steps leading to a contract. Assume that a task T appears in
the marketplace, with its ambiguity and resource consumption requirements
denoted by ma and ra respectively.
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ambiguity for the first mover node be mpf . The first mover
accordingly allocates rpf resources for the task. Let the actual
ambiguity of the task be ma, and the resources required for the
task be ra. Thus, the initial payoff awareness for a first-mover
node is given by:

IPAf � mpf rpf −mara (2)

Similarly, let the perceived ambiguity for the second mover
node bemps. The secondmover accordingly allocates rps resources
for the task. Thus, the initial payoff awareness for a second mover
node is given by:

IPAs � mpsrps −mara (3)

We are interested in the difference between the perception of
ambiguity and the actual ambiguity. We denote the difference in the
perception and actual ambiguity for the first mover asmpf −ma � λ.
Similarly, we denote the difference in the perception of ambiguity
and the actual ambiguity for the second mover as mps −ma � μ.
Further, we assume that the difference in perception of resource
consumption for both players is the same,
i.e., rpf − ra � δ � rps − ra. Without loss of generality, as we show
in the next section of our paper, the constant δ is transformed into a
player-specific values δ1 and δ2 for the two players. This
transformation drives the derivation of player-specific payoff
calculations, and ultimately the derivation of the Shapley value-
based representation of the contractual graphs.

We now develop a matrix for the initial payoff awareness for
the first mover (Table 1) and second mover (Table 2) based on
the difference in ambiguity and resource consumption perception
and reality. The table contains four options corresponding to the
possible difference in perceptions of ambiguity (high/low), the
actual levels of ambiguity (high/low), and the difference in
perceptions and actual values of resource commitment
(high/low).

In Tables 1, 2, we assume that each of the four cases are
equally probable. This assumption can be revised to dynamically
reveal different market conditions, where certain scenarios could
be more probable than others. However, for simplicity, this model
uses the equiprobable condition for each of these scenarios. Thus,
the initial payoff awareness calculations can be obtained from
Eqs. 1, 2 and Tables 1, 2 as follows. For the first mover,

IPAf � mpf rpf −mara

Since we assume that a node allocates resources in accordance
with the ambiguity, it accordingly allocates higher resources for the
task. Similarly, if the node senses lower ambiguity, it allocates fewer

resources for the task. This correspondence between the perception
of ambiguity and the related resource allocation by a node is shown
in Tables 1, 2. For both the first mover and the second mover, if the
node senses a high ambiguity, it assigns more resources to the task.
For example, inTable 1 for the first mover, the first row denotes that
the node senses a high ambiguity, resulting in high difference
between the perceived and actual ambiguity denoted by λ.
Consequently, it allocates higher amount of resources to the task,
denoted by δ. The last row inTable 1 for the firstmover corresponds
to the case where the node senses a low ambiguity, and accordingly
allocates fewer resources to the task (δ). Thus, since the difference in
real ambiguity and the perceived ambiguity (λ) impacts the
difference in actual and perceived resource consumption, Tables
1, 2 shows cases where both λ and δ are either greater than zero,
equal to zero or less than zero, but does not feature opposite cases
such as (λ< 0 and δ > 0 ), or (λ> 0 and δ < 0 ). A similar
assumption is used for the second mover in Table 2.

The first term in the equation below corresponds to the first
row for the first mover in Tables 1, 2, where mpf � ma + λ and
rpf � ra + δ. Thus, the first row indicates that the perceived
ambiguity is greater than the actual ambiguity, which is
denoted by λ> 0 and δ > 0 and corresponds to the conditions
where mpf >ma and rpf > ra respectively. Moving down the table,
the second and third rows denote the case where mpf � ma and
rpf � ra, thus denoting that λ � 0 and δ � 0 respectively. These
two rows indicate that the perceived and actual ambiguity are
equal. Finally, the last row for the first mover in Tables 1, 2
corresponds to the case where perceived ambiguity is less than the
actual ambiguity. Thus, λ< 0 and δ < 0 and corresponds to the
conditions where mpf <ma and rpf < ra respectively.

IPAf � 1
4
[(ma + λ)(ra + δ) −mara] + 1

4
(0) + 1

4
(0)

+ 1
4
[(ma − λ)(ra − δ) −mara]

IPAf � δλ

2
(4)

Similarly, IPA calculations for the second mover are given by
Eqs. 1, 3 and Table 2 as

IPAs � δμ

2
(5)

Next, we assume that nodes are motivated by reputation,
which in turn is a proportional to the number of tasks
completed. Reputational incentives or motivations have been
extensively studied in game-theoretic modeling for
applications such as cooperation in wireless networks

TABLE 1 | Specific conditions enumerating constraints on the initial payoff
awareness (IPA) matrix for first mover.

Perceived Actual μ δ

High Low >0 >0
High High � 0 � 0
Low Low � 0 � 0
Low High <0 <0

TABLE 2 | Specific conditions enumerating constraints on the initial payoff
awareness (IPA) matrix for second mover.

Perceived Actual λ δ

High Low >0 >0
High High � 0 � 0
Low Low � 0 � 0
Low High <0 <0
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(Jaramillo and Srikant, 2010) and human computation systems
(Ghosh, 2013). Assume that reputation is function of work ω for
each contract which in turn is a function of the IPA. Thus, the
higher the perception of an increased payoff, the higher is the
probability that the task will be modeled as a contract and a two-
player coalition will be formed to complete the task. Letω1 and ω2

be the work performed by first mover and second mover
respectively.

ω � ω1 + ω2 (6)

Assume q1 and q2 are number of coalitions that the first and
second mover are a part of respectively. Thus, q � q1 + q2 is the
total number of coalitions. We assume an inverse resource
function, where number of coalitions is inversely proportional
to the work required for all coalitions. A detailed treatment of
inverse resource functions in (Agaltsov et al., 2018). Thus, for
some constant N , we have

q � N − ω, (7)

We now have the framework to obtain the collective payoff
from a coalition. The collective payoff function (pi) is modeled by
assuming that the more one player expends resources and works
harder, the less valuable it is to the other player. Thus, the
collective payoff function represents the utility (profits) of
both players through the terms p1 (player 1) and p2 (player 2).
To accomplish this, we use the Cournot duopoly model, a variant
of which was first introduced by Cournot in 1838 (Tadelis, 2012).
The Cournot duopoly model describes two identical players,
players 1 and 2, producing some good. In our case, this good
is the outcome of the work performed as a consequence of
engaging in the contract. Assume that there are fixed costs of
engaging in the work, and that the variable cost to each player i of
performing the work is given by the cost function, ci � aω2

i for
i ∈ {1, 2}. Demand for the work is given by q � N − ω, where
ω � ω1 + ω2. Thus, for two players (player 1 and player 2)
producing work ω1 and ω2 respectively, the payoff function pi
is given by:

pi � qωi − aω2
i (8)

Here, i ∈ {1, 2} for players 1 and 2 and a denotes variable
costs. Thus, substituting Eq. 8 in Eqs. 6, 7, we get

pi � { (N − ω1 − ω2)ω1 − aω2
1 ω1 + ω2 <N

−αω2
i ω1 + ω2 ≥N

(9)

We are implicitly assuming that total work ω cannot fall below
zero, so that if both players together work to produce more than
N , the work will be zero and a player’s payoff will be her costs.

For best response, we set

dpi
dω1

� 0 (10)

We get

ω1 � N − ω2

2(1 + a) (11)

Since work ω is a function of initial payoff awareness, from Eq.
4, we have

ω1 � f(δλ
2
) (12)

ω2 � f(δμ
2
) (13)

Without loss of generality, we assume constants δ1 and δ2 such
that the above equations are expressed as

ω1 � δ1λ

2
(14)

ω2 � δ2μ

2
(15)

For simplicity, the constants δ1 and δ2 are assumed to be linear
functions of the constant δ which is the difference in perception
of resource consumption for both players.

Substituting in Eq. 11, we get an equation for the relationship
between the payoff factors at best response and obtain the
ambiguity ratio (AR) of the first and second movers, λ/μ, as
follows.

Ambiguity Ratio � λ

μ
� 2N − μδ2
2μδ1(1 + a) (16)

Thus, λ∝ − μ. This shows that the higher the difference in
perception and actual values of ambiguity (λ) for the first mover,
the lower is the difference in perception and actual values of
ambiguity for the second mover (μ).

Substituting this value of λ in the equation for collective payoff,
we observe the performance of the collective payoff at best
response as follows

pcolli � (2N − μδ2)2
16(1 + a) (17)

DERIVATIONOF THESHAPLEY VALUE FOR
2-PLAYER CONTRACTS

In this section, we analyze the two-player coalition to examine the
contribution of each player to the coalition. To do this, we use the
results from Eqs. 4, 5 from the above section. These results show
the work of the first mover (P1) and second mover (P2), which is
proportional to their IPA. Further assume that when the two
players work together in a coalition, the players each can reduce
their work load. These reductions are denoted as τ1 and τ2 for the
first mover and secondmover respectively. Thus, the contribution
matrix of the individual players and the coalition are summarized
in Table 3.

The Shapley value offers a way to quantify the contribution of
each player to the coalition. In machine-learning applications, the
Shapley value has been widely used to determine the value of a
particular set of features to the overall representation of the
dataset. For example, in seeking to determine a predictor for
longevity, which feature contributes most to longevity from a
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pool of features including education, genetics, diet, and others.
The seminal paper by Shapley (Shapley, 1953) describes how to
determine the value of the expected marginal contribution of a
coalition by considering all possible orders in which coalitions
can be formed between players and assigning each player her
marginal contribution.

Applying this technique to the two-player coalition, we get the
marginal contribution matrix (Table 4). Specifically, the Shapley
value emphasizes the role of timing. If the coalition is formed with
P1 first and then P2 as shown in the first row, the marginal
contributions of P1 and P2 are given as follows:

Averaging the columns, we get P1’s contribution to the
coalition as shown in Table 4.

P1’s contribution to the coalition:

δλ − (τ1 + τ2)
2

(18)

Similarly, from Table 4, we get P2’s contribution to the
coalition as

δμ − (τ1 + τ2)
2

. (19)

Dividing Eq. 18 by Eq. 19, we obtain the marginal
contribution ratio (MCR) of players P1 with respect to P2 as
follows.

Marginal contribution ratio � MCR � δλ − (τ1 + τ2)
δμ − (τ1 + τ2) (20)

RESULTS

Figure 3 shows the relationship between the ambiguity ratio (AR)
and the difference in perceived and actual ambiguity levels for the
second mover (μ) at best response. From sub-Figures 3, we see
the inverse relationship between AR and μ. Further, as the
variable costs (a) increase, AR decreases signifying an
inversely proportional relationship between the AR and a.
Additionally, AR is dependent on the difference in perceived
and actual resource commitments of the first mover (δ1) and the
second mover (δ2). From Figure 3, we see that as the ratio δ2/δ1

increases from 0.5 to 4, it signifies either an increase in the
ambiguity perception difference of player 2 (μ) or a decrease in
the ambiguity perception difference of player 1 (λ). This increase
in the value of the ratio δ2/δ1 implies that since λ is inversely
proportional to μ, the ambiguity ratio (AR) is inversely
proportional to the ratio given by δ2/δ1.

The findings in Figure 3 follow from Eq. 16, which show AR
and the variable costs a are inversely proportional. This
relationship is due to the additive inverse relationship between
the work performed by player 1 (ω1) and the costs (a), as seen in
Eq. 11. Since ω1 is directly proportional to the difference in
ambiguity perception in player 1 (λ), an increase in ω1 signals an
increase in the AR as well. This confirms that an increase in the
costs a is related to lower amount of work performed by player
1 (ω1). Since work performed is a function of the AR, as a
increases, the AR decreases.

Next, we present the findings of the Shapley values of players
involved in the coalition in terms of the marginal contribution
ratio (MCR). The MCR findings depicted in Figure 4 are derived
from Eq. 20. From Figure 4, we see that as μ increases, MCR
decreases. The MCR is directly proportional to the AR, and
affirms the inversely proportional relationship between the
ambiguities experienced by the two players (λ, μ) that was
shown in Figure 3. This continues in the form of decreased
contribution by each player to the coalition resulting in a decrease
in the MCR. As τ2/τ1 increases, MCR increases. The variables τ1
and τ2 denote the benefits to the first mover P1 and second mover
P2 respectively in the form of reduction in work loads due to the
formation of a coalition. We see that an increase in τ2/τ1 denotes
an increase in the benefits to each player from the coalition and so
each player brings higher value to the coalition which is
manifested in the form of an increase in the MCR. As δ1
increases, MCR decreases. An increase in the resource
commitment decreases the MCR for the players since it
denotes tasks of increasing complexity. These findings
strengthen timing in contractual relationships. The order in
which nodes commit to the contract matters. The first-mover
and second-mover advantages vary, and the ambiguity of the
contract impacts the marginal contributions of each node in the
coalition.

KERNEL REPRESENTATION FOR
CONTRACTUAL GRAPHS

In this section, we propose a simple kernel for contractual graphs
that depict marketplaces of two-player coalitions formed to
complete ambiguous tasks. Specifically, we address the
question of how we can determine if two marketplaces of
ambiguous tasks are similar. The implications of this question
are several that range from evaluating marketplaces with similar
resources, players and tasks. Several metrics can be used to study
the effectiveness of a marketplace, such as number of coalitions,
average size of coalitions and average task completion rate. An
analysis of kernels of successful marketplaces can yield insights
about the factors that significantly impact the efficiency of a
marketplace of ambiguous tasks.

TABLE 3 | Contribution matrix of coalition.

Player(s) Contribution

P1
δλ
2

P2
δμ
2

P1 ,P2 (δλ
2 − τ1) + (δμ

2 − τ2)

TABLE 4 | Marginal contribution matrix.

Order of players Marginal contribution P1 Marginal contribution P2

P1P2
δλ
2

δμ
2 − (τ1 + τ2)

P2P1
δλ
2 − (τ1 + τ2) δμ

2
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Since our model assumes two-player coalitions, we use the
Shapley value of a two-player coalition developed in the
previous section to build the kernel. Assume there are n
players in a marketplace, which results in potential
n!/(n − 2)! coalitions of two-players. A player can be a part
of multiple coalitions. Each coalition represents an edge on
the contractual graph, and the weight of the edge is denoted by
the Shapley value of the coalition. As derived in the above
section, the Shapley value is dependent on the order in which
the players form the coalition.

Consider two contractual graphs in Figure 5. The Shapley
value of each coalition is marked on the edge. Two graphs are
considered similar if the sums of Shapley values of coalitions
are equal.

We now present the conditions under which two contractual
graphs are considered similar. Let graph G1 ≡ (V1, E1), where V1

is the finite set of vertices in graph G1. Let E1 be the set of edges in
graph G1, such that E14{{u, v}4V1|u≠ v}. An edge (u, v)
denotes a coalition in which u is the first mover and v is the
second mover in the coalition. Assume that there are N tasks of

varying ambiguity in a marketplace. Consider another
contractual graph G2, such that G2 ≡ (V2, E2). Similar to
G1, E2 and V2 are the set of vertices and edges in G2

respectively. Let the number of edges in graphs G1 and G2 be
denoted by n1 and n2 respectively.

Two graphs G1 and G2 are similar if and only if they satisfy the
following three properties.

1. Edge cardinality equivalence: The number of edges in graphG1

is equal to the number of edges in graph G2, i.e., n1 � n2 � n.
2. First mover equivalence: The sum of the Shapley values of the

first movers in graph G1 is equal to the sum of the Shapley
values of the first movers in graph G2. Thus,

∑n
i�1

ui−G1 � ∑n
i�1

ui−G2 (21)

where, ui−G1 and ui−G2 are the Shapley values of first movers in
graphs G1 and G2 respectively.

FIGURE 4 | Shapley value findings. The variation of the marginal contribution ratio of the two players is explored as a function of the difference in perceived and
actual ambiguity levels for the second mover (μ), variable costs (a), and the difference in perceived and actual resource commitments of the first mover (δ1).

FIGURE 3 | Relationship between the ambiguity ratio (AR) as a function of μ, for N � 100 and δ1 � 5. As the variable costs (denoted by a) increase, the ambiguity
ratio decreases. Further, as the difference between actual and perceived resource commitment levels of the second mover increase, the value of λ decreases.
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3. Second mover equivalence: The sum of the Shapley values of
the second movers in graph G1 is equal to the sum of the
Shapley values of the second movers in graph G2. Thus,

∑n
i�1

vi−G1 � ∑n
i�1

vi−G2 (22)

where, vi−G1 and vi−G2 are the Shapley values of second movers in
graphs G1 and G2 respectively.

These properties can be generalized to k contractual graphs to
establish an upper bound on the Shapley values of all coalitions.

Generalized Expression for Similarity of
Contractual Graphs
The upper bound of the sum of the Shapley values of the
coalitions in k contractual graphs is shown below, where the
right-hand side of the expression denotes the upper bound as
given by

y ≤ ∑k
s�1
⎛⎝∑n

i�1
(ui−Gs + vi−Gs)⎞⎠ (23)

The upper bound in Eq. 23 states that for a given contractual
graph, the sum of the Shapley values of the first-movers and the
second movers for all coalitions in that graph represents the term
(ui−Gs + vi−Gs), where i denotes the number of coalitions in a graph s.
Taking the summation of this over s � 1, 2, . . . , k graphs, we obtain
the upper bound on the Shapley value of coalitions in k graphs
denoted by ∑k

s�1(∑n
i�1(ui−Gs + vi−Gs)). The upper bound signifies

that any modification to the structure of a contractual graph, either
by adding players to a coalition, or deleting players will alter the
structure of the contractual graph. Consequently, this will result in a
new contractual coalition with different Shapley values. Thus, the
upper bound is sensitive to the contractual graph structure, and
offers a metric with which to gauge coalition formation in
contractual graphs. A metric defined by this upper bound may
serve several applications such as in limiting the number of coalitions
in transactional environments, regulating abnormal disparities
between first-movers and second-movers, investigating the
viability of underperforming marketplaces, and in studying the
factors that contribute thriving marketplaces.

FUTURE WORK

This paper presented an introduction to the theory of contractual
graphs, by modeling contracts are commitments between two
players to complete an ambiguous task. The theory of contractual
graphs can be extended in several ways, some of which are
summarized below.

Role of Incentives
While ambiguity of tasks can represent hurdles in task
completion, incentives might be able to alleviate some of the
costs involved in accepting tasks with high ambiguity.
Additionally, incentives might be able to nudge the formation
of coalitions thereby encouraging second movers to collaborate
frequently with first movers on task completion. The role of
incentives in economic literature has been widely studied
(Bénabou and Tirole, 2006; DeMarzo and Saninkov, 2016). In
(Bénabou and Tirole, 2006), where the authors explore the basis
of incentives in psychology. Specifically, the role of incentives in
intrinsic, extrinsic and reputational motivations have been
considered in the development of game-theoretic models to
gain insights into individual contributions and interactions.
Graph theoretic representation learning can be enriched with
the incorporation of additional sociological constructs such as
identity (Akerlof and Kranton, 2000) to explain outcomes of
interactions between nodes.

Negotiations Over Time
Our model for studying the performance of two-player coalitions
in solving ambiguous tasks uses a single-stage contract. That is,
the first mover assesses the ambiguity and creates a contract that
the second mover accepts. In practice, however, contract
formation goes through multiple stages of bargaining and
negotiations over the terms of the contract. Additionally,
problems related to imperfect information such as moral
hazards and adverse selection can significantly impact the
outcome of the contract formation, interpretation and execution.

Spectrum of Perceived Ambiguity
In our model, we chose a binary system for modeling ambiguity
(high/low). While easier to model binary choices, in practice,
ambiguity lies along a spectrum. Understanding the impact of
ambiguity for a range of values between 0 and 1 can help further
illustrate its impact on the formation of a contract.

Backing off From Contracts with Penalties/
Prorated Benefits
While ourmodel assumes that players commit to the contract and
stay committed until task completion, it would be worth
investigating how players would behave if they had the option
to exit the contract. Similar to real-world situations where
premature contract termination results in penalties or prorated
rewards, modeling a marketplace of ambiguous tasks with players
who have the option of exiting the contract would provide
insights into real-world situations. Examples of such situations
include students who sign up for classes and withdraw, renters

FIGURE 5 | Contractual graphs G1 (left, in blue) and G2 (right, in
green) are depicted. Each directional edge represents a contract in a 2-player
coalition to complete an ambiguous task. The Shapley value of a coalition is
the weight of each edge. For example, the edge with weight (a4 ,a1)
represents the coalition A4A1.
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who terminate the lease before its due date and employees who
leave prior to the end of their probationary period. In all of these
cases, embedded penalties/prorated rewards exist in the
contractual terms and it would be worth investigating those
through the lens of ambiguity. The players who have exited
the contract are now freelancers of some sort, and how they
impact the dynamics of the marketplace would be an interesting
direction for future research.

Coalitions of Multiple Players
While our model chose two-player coalitions as dyadic
exchanges, extending this model to n-player coalitions would
be beneficial. Our model also does not account for non-dyadic
exchanges involving a single player, i.e., n � 1. These scenarios are
indicative of transactions that represent self-loops in graphs
(n � 1), or longer chains (n> 2). Understanding how such
coalitions of n, where n≠ 2 players react to ambiguous tasks
and each other’s perceptions of ambiguity will have a significant
impact on the performance of the coalition.

CONCLUSION

Contractual graphs arise in multiple situations. The agents
involved in contractual graphs form connections among
themselves upon the fulfilment of underlying conditions.
For example, sending a packet from one node to another
only when the packet is received with minimal distortion
can be viewed as contract between two nodes only to
transmit high-fidelity data. Another example of a
contractual graph could be the formation of a connection in
a social network, where two individuals form a “friend”
connection only if they are separated by n friends. In this
case, the contract is fulfilled only if there exist fewer than n
degrees of separation. Contractual graphs can be used to study
a variety of graphs where the formation of edges is dependent
upon the completion of specific conditions. However, the
conditions underlying the formation of an edge are not
always specific enough to be readily automated in software.
This motivates the need for a study into how ambiguity impacts
contract formation. Thus, we studied ambiguous marketplaces,
defined as marketplaces containing tasks of varying ambiguity
that players could seek to complete in two-player coalitions.

Our findings showed how the perception of ambiguity in the
contract impacts the resources allocated by a player to the task, thus
displaying ambiguity aversion. Nodes model the contract by
observing the parameters of the contract and allocating resources
for completing the tasks specified in the contract. Using a game-
theoretic formulation, we developed a model that assigns payoffs to
players for the tasks completed. We distinguished between how the
order in which players proceed to enter the two-player coalition
affects the value that each player brings to the coalition. This metric
was quantified using the Shapley value, that showed how the
ambiguity of the task, costs of performing the task and resource
allocation all played a part in determining the performance of the
coalition. The Shapley value of a two-player coalition was then used
to assign a tuple of edge weights. The set of all edge weights then
formed a graph kernel for the contractual graph. We derived the
conditions under which two contractual graphs are similar using
edge cardinality, first-mover and second-mover equivalence. Finally,
we proposed an upper limit on the sum of Shapley values of
coalitions in k contractual graphs.

Contractual graphs offer several avenues for exploration due
to their importance to network science. For example, we have
assumed two-player coalitions where players complete the task,
once they enter into the contract. In practice, however, coalition
sizes may vary and players may have the option to leave the
coalition even after they have entered into a contract. Similarly,
new players may join the coalition even after the task has begun
execution. Contractual graphs can be studied broadly, as well as
in several niche environments. A better understanding of the
behavior of contractual graphs can lead to the development of
effective representative kernels, which in turn would facilitate
learning about graphs.
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