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Abstract Harnessing of the immune system by the devel-
opment of ‘therapeutic’ vaccines, for the battle against can-
cer has been the focus of tremendous research efforts over
the past two decades. As an illustration of the impressive
amounts of data gathered over the past years, numerous
antigens expressed on the surface of cancer cells, have been
characterized. To this end, recent years research has
focussed on characterization of antigens that play an impor-
tant role for the growth and survival of cancer cells. Anti-
apoptotic molecules like survivin that enhance the survival
of cancer cells and facilitate their escape from cytotoxic
therapies represent prime vaccination candidates. The char-
acterization of a high number of tumor antigens allow the
concurrent or serial immunological targeting of different
proteins associated with such cancer traits. Moreover, while
vaccination in itself is a promising new approach to fight
cancer, the combination with additional therapy could cre-
ate a number of synergistic effects. Herein we discuss the
possibilities and prospects of vaccination when combined
with other treatments. In this regard, cell death upon drug
exposure may be immunogenic or non-immunogenic
depending on the specific chemotherapeutics. Also, chemo-
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therapy represents one of several options available for
clearance of CD4* Foxp3* regulatory T cells. Moreover,
therapies based on monoclonal antibodies may have syner-
gistic potential in combination with vaccination, both when
used for targeting of tumor cells and endothelial cells. The
efficacy of therapeutic vaccination against cancer will over
the next few years be studied in settings taking advantage
of strategies in which vaccination is combined with other
treatment modalities. These combinations should be based
on current knowledge not only regarding the biology of the
cancer cell per se, but also considering how treatment may
influence the malignant cell population as well as the
immune system.
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Combination - Cancer - Chemotherapy

Introduction

The use of cancer vaccines to induce a therapeutic host
anti-tumour immune response has huge potential to com-
plement traditional cancer therapies in a non-overlapping
way. The prospects of cancer vaccines are to enable re-cali-
bration of the existing host-tumour interaction, tipping the
balance from tumour acceptance towards tumour control to
the benefit of the patient. Additionally, the highly specific
character of the host immune response minimizes the risk
for adverse effects associated with most other cancer thera-
pies currently applied. In general, a successful vaccination
requires two components: An antigen and an adjuvant. The
“antigen” represents the embodiment of the target that
should be cleared from the body. The second require-
ment—the adjuvant—is an amplifier of the response
induced by the antigen it self. Due to the phenomenon of
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“immune escape”, in which antigen-negative cancer cells
may avoid immune recognition, strategies have been devel-
oped that conceptually focus on minimizing the risk of
immune escape, by specifically targeting proteins that are
important for the function, survival and growth of cancer
cells [1, 59, 65, 74]. Thus, it is well characterized that
molecular events—genetic and epi-genetic changes—Ilead
to the general cancer traits; the capacity to uncontrolled
growth (abnormal cell cycle regulation), resistance to death
(apoptosis resistance), the potential to migrate and grow at
distant sites (metastasis), the capacity to induce new blood
vessels (attract endothelial cells) [31]. Also mechanisms
involved in suppression of the immune system by cancer
cells, e.g., secretion of immune-suppressive mediators) are
at play during tumor progression [56], and, in addition,
drug resistance is a highly relevant phenomenon that is
responsible for the failure of chemotherapy to provide cura-
tive outcomes in the treatment of disseminated cancers
[11]. The proteins or protein patterns responsible for these
characteristics of cancer cells represent ideal target struc-
tures for therapeutic intervention, including immunological
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Fig. 1 Conventional chemotherapy effectively kills cancer cells there-
by prolonging the life of many cancer patients. However, the develop-
ment of drug resistance is considered to be the major cause for the
failure of chemotherapy in many types of cancer. Tumor cells become
resistant to chemotherapy in many ways, one of which is through in-
creased expression of regulators of apoptosis proteins. In a combina-
tional therapeutic setting, conventional therapy would kill the majority
of the cancer cells, leaving only resistant cells that express high levels
of these proteins. However, such high-expressers would be particularly
vulnerable to killing by vaccination induced T cells. The synergy of
these measures would, consequently, give a more effective treatment
than either regime alone. Likewise, the resistance of tumor cells to im-
mune cell-mediated apoptosis may contribute to the failure of tumor
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targeting. Importantly, these traits—molecular mechanisms
aside—are essential characteristics of all life-threatening
cancers, and therapies based on targeting of these character-
istics molecularly are therefore broadly applicable to most
if not all cancers. Several proteins responsible for or associ-
ated with these cancer traits have been characterized, exem-
plified by cell division (telomerase [74], Cypl1B1 [41],
survivin [4, 7, 64, 73]), resistance to apoptosis (survivin,
ML-IAP, Bcl-2, Bcl-X(L), and Mcl-1 [1, 34]), metastatic
potential (Heparanase [71]), angiogenesis (survivin, Bcl-2,
VEGFR [50]), and drug resistance [43, 44, 82]. Impor-
tantly, these proteins are targets for spontaneous immune
responses in cancer patients, and peptides derived from the
proteins are expressed on the surface of cancer cells in the
context of HLA molecules, and thus represent broadly
applicable vaccination targets in therapeutic vaccinations
against cancer. Moreover, although vaccination against
these proteins or groups of proteins is in itself a promising
new approach to fight cancer, the combination with addi-
tional therapy could create a number of synergistic effects

(Fig. 1).
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immunosurveillance, the phenomena of tumor growth despite infiltra-
tion by tumor-specific lymphocytes, as well as the failure of tumor vac-
cines to induce clinical responses despite evidence for priming of
effector T cells. Thus, the combination of vaccination with a strategy
using synthetic peptides that compete with caspases for binding to
IAPs would be highly synergistic. To maximize the impact of immu-
notherapy, an exciting strategy would be to co-target biologically con-
nected proteins, for instance survivin, Bcl-2 or Bel-X(L) in a multi-
epitope setting. An alternative approach would be to combine adoptive
transfer of T cells with vaccination to facilitate expansion and mainte-
nance of T cells in vivo. Finally, vaccination against some proteins ad-
dresses both the tumor and the tumor stroma
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Multi-epitope strategies and additional immunotherapy

As outlined in Fig. 1, combination of vaccination with
additional therapy could create synergistic effects. How-
ever, some of the fundamental problems associated with
therapeutic vaccines still need attention. Thus, in many
cases induced biological responses does not correlate with
clinical responses, the reasons being largely unknown [55],
and probably multifactorial. With current vaccination strat-
egies the induced CTL frequencies are not impressive and
although combination with other therapies may help
increase these responses, we are still in need of a “gold
standard” for therapeutic vaccinations. Thus, research into
the generation and phenotype of DCs with optimal capacity
to induce full armoured CTLs needs further attention, as
does best suited route of administration. Also, the migra-
tory capacity of in vitro generated DCs represent an impor-
tant parameters [23], as does characterization and
examination of adjuvants for in vivo targeting of DCs.
Other aspects include homing of T cells to the tumor site
[62], entry into the tumor micro environment [61], and
maintenance of function systemically [2, 46, 48, 79], as
well as at the tumor site [42, 47]. Moreover, research into
the fundamental aspect of timing of vaccination in relation
to disease entity and stage requires further study. To this
end, it has been suggested that vaccination in the adjuvant
setting for prevention of relapse would be optimal but in
fact that notion needs verification. The above mentioned
short comings of therapeutic vaccinations at its current
stage obviously require detailed study of anti-tumor vacci-
nation induced immune resposes, both with regards to the
immune system and concerning tumor cell biology [70]. A
major step toward the generation of more solid data that can
be compared among laboratories, lie in the use of standard-
ized monitoring protocols [12, 36]. Moreover, the com-
bined use of immunological monitoring with profiling of
tumor biopsies [45], may aid the generation of data that set
the stage for development of strategies that increase the
efficacy of therapeutic vaccination per se.

Many anti-cancer vaccination strategies are already
focused on combination with other immunotherapeutic
strategies, e.g., the addition of cytokines or immune modu-
lating agents. Hence, numerous investigators have com-
bined vaccines with, e.g., GM-CSF, IL-2, IL-12 or
immunomodulatory antibodies such as those against
CTLA-4, PD-1, or CD137 [19, 21, 83]. Many agents have
not been extensively tested in humans, in particular not in
combination with other immune modulators or treatments,
e.g., vaccination, in part due to the fact that many agents are
not available to the scientific community (please see http://
www.web.ncifcrf.gov/research/brb./workshops.asp).

So far most peptide based vaccination trials have tar-
geted only a single antigen. One concern has been that

despite multiple targeting there would be a risk that only a
single or a few dominant antigens would elicit reactivity.
However, data now suggest that concurrent targeting of
multiple antigens is possible, and that the induced
responses against individual targets are not influenced neg-
atively due to responses against other antigens [38, 69].
Thus, several clinical trials are ongoing in which multiple
peptides from different proteins are targeted (http://
www.clinicaltrial.gov). An exciting strategy would be to
co-target biologically connected proteins, e.g., regulators of
apoptosis proteins, in a multi-epitope setting. In this regard,
as mentioned above a number of different regulators of
apoptosis proteins have been described as tumor antigens in
a large number of different cancers [3, 5, 6, 8]. A combina-
tion of these are likely to increase the magnitude and flexi-
bility of the vaccine-induced anti-tumor response and may
prevent tumor escape that otherwise would occur through
selective loss of single target antigens. Since co-expression
of Bcl-2 family proteins is a regular event [68], simulta-
neous targeting of these proteins may represent a more
effective strategy than targeting either molecule alone.
Interestingly, the co-expression of survivin and Bcl-2 is
strongly associated with poor prognosis in breast cancer
[72]. Targeting of both the Bcl-2 protein family and survi-
vin would therefore be particularly attractive since they
execute their anti-apoptotic function though different mech-
anisms [35]. Although regulators of apoptosis proteins are
up regulated in almost all cancers there may be significant
quantitative differences concerning the amount of each pro-
tein in individual patients suffering from the same disease.
Previously, we have generated Bcl-2, Survivin and Bcl-
X(L) specific cytotoxic T cell clones and examined the kill-
ing of a panel of cancer cell lines. Although all cancer cell
lines were recognized and lysed by the T-cell clones the
most effective lysis varied greatly among the cell lines
(Table 1). Thus, some target cells were killed most
efficiently by Bcl-2 specific T cells, some by Survivin spe-
cific T cells and some by Bcl-X(L) specific T cells.
Although this notion needs to be substantiated in large-
scale studies in which the clinical and prognostic signifi-
cance of the different CTL responses is scrutinized, it could
point to a scenario in which the targeting of more than one
of the targets would be beneficial in a clinical setting.
Concurrent targeting of several proteins with peptides
restricted by several HLA molecules would also be
expected to lower the risk of immune escape by selection of
cancer cells that do not express the one or several of the tar-
geted proteins, however, escape by HLA loss remain a pos-
sibility. Several different mechanisms have been described
that influence the class I presentation machinery [67], lead-
ing to down regulation or loss of HLA class I on the cell
surface [9, 53]. However, allele losses seem far more fre-
quent that complete Class I loss, again underscoring the
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Table 1 Efficacy of tumor cell killing by CTL

Target cell line/clone  Bcl-(X)L 73 150  Bcl-2505 517 Survivingg ;o4

CAMALI High Medium Low
MDA-MB-231 Low Medium High
FM3 Medium Low Medium
FMS55P ND High Low
FM72 ND Medium Medium
FM81 ND High High

Low <30% lysis, Medium 30-60% lysis, High >60% lysis
ND not done

potential of concurrent targeting of several or all relevant
HLA restriction elements in the patient. Whether such a
strategy will lead to more frequent complete loss of HLA
expression remains to be seen.

Impressive responses have been achieved in lymphode-
pleted melanoma patients, by adoptive transfer of in vitro
expanded tumor infiltrating lymphocytes (TIL) and high
dose IL-2. Transferred T cells expanded in the patients, and
clinical response correlate with longevity of the T cells,
suggesting that the proliferative capacity of the T cells is
crucial for clinical relevance [10, 22]. The widespread use
of this approach is troublesome since in most cancers TIL is
not readily expandable. Several strategies are currently
being explored to circumvent this problem, one being to
transfect PBMC with tumor specific T cell receptors prior
to transfer to the patient [49, 66]. Another approach is to
use vaccination for induction of antigen specific T cells,
followed by harvest of cells for in vitro expansion and
transfer back to the patient upon lymphodepletion [15, 57].
Future trials employing this strategy for targeting tumor
antigens will provide important information with regards to
the relevance in cancer therapy.

Combination with conventional therapy

The combination of immunotherapy with chemotherapy
has opened new avenues in cancer treatment, and prelimi-
nary data suggests a synergistic effect of anti-cancer vac-
cines and chemotherapy [26]. Only few years ago the
concept of combining chemotherapy—one of the side
effects of which is suppression of immune function—with
active immune therapy, was unheard of. However, data
now point in exactly that direction, and since cytotoxic che-
motherapy is widely used to treat most malignancies, inte-
grating tumor vaccines with standard chemotherapeutic
drugs is highly attractive.

Chemotherapeutic agents can induce a series of cellular
responses that impact on tumor cell proliferation and sur-
vival. Perhaps the best studied of these cellular responses is
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apoptosis, a physiological cell death program that controls
normal cell numbers during development and disease. It is
evident that diverse drugs can kill tumor cells by activation
of common apoptotic pathways. Essentially all cytotoxic
anticancer drugs, e.g., microtubule binding drugs, DNA-
damaging agents, and nucleosides, currently in clinical use,
induce apoptosis of malignant cells (Fig. 1).

Drug resistance is the major problem that limits the
effectiveness of chemotherapies used in the treatment of
cancer. A frustrating property of such acquired resistance is
that the tumor not only are become resistant to the specific
drug in use, but may also acquire cross-resistance to other
drugs with different mechanisms of action [11, 32]. Drug
resistance, whether intrinsic or acquired, is believed to
cause treatment failure in more than 90% of patients with
metastatic cancer. Cancer-associated defects in apoptosis
play a vital role in resistance to chemotherapy and radio-
therapy [11]. An important reason for this impaired apopto-
sis is an over-expression of the anti-apoptotic regulators of
apoptosis proteins [30, 68, 78], e.g., the tumor antigen sur-
vivin, or over expression of ABC transporters [11]. Addi-
tionally, drug inactivation by the tumor antigen CYP1B1
may represent a mechanism of resistance, influencing the
clinical outcome of chemotherapy [58]. Consequently,
immunotherapy targeting these antigens in combination
with conventional chemotherapy appears to be particularly
appealing. In such a setting, conventional therapy would
kill the majority of the cancer cells, leaving only cells that
express high levels of antigens, which would be particularly
vulnerable to killing by vaccination induced T cells. Thus,
the synergy of these measures could potentially give a more
effective treatment than the added effect of either regime
alone, thereby strengthening the already described syner-
gistic effect of anti-cancer vaccines and chemotherapy.

As given above, chemotherapy resistant tumor cells may
be targeted specifically by vaccination against specific tar-
get structure. However, even death it self of the tumor cell
may play an important role in explaining how chemother-
apy may improve subsequent or even concurrent immune
therapy. To this end, it was recently shown that Anthracy-
clin-treated tumor cells are particularly effective in eliciting
an anti-cancer immune responses, since Antracyclins
induce the rapid preapoptotic translocation of calreticulin to
the cell surface. The surface exposure of calreticulin
endows cancer cells with an “eat me signal” to dendritic
cells, in turn leading to immunogenic uptake of tumor anti-
gens and activation of a tumor specific T cell response [52].
These data may prove highly significant for future trials
combining immune therapy with chemotherapy, and cer-
tainly highlights that there is more to death than dying; that
the exact mechanism by which death occurs plays an
important role in directing subsequently elicited immuno-
logical reactions. Obviously, such data only become impor-
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tant once we consider the notion of combination, since—as
we know all too well from the use of these drugs for
decades—even the most immunologically relevant ways of
dying does not by itself induce curative immunity. How-
ever, considering the delicate balance between inflamma-
tion and immunity [18], combination of “tailor-selected”
chemotherapy and immune modulation, e.g., vaccination
may aid tipping the balance. Clinical trials are ongoing that
combine vaccination and chemotherapy to accomplish this,
however, due to the complexity of these interactions one
should expect a bumpy road to improvements of current
strategies. As an example of the complexity and plasticity
of the mechanisms that governs the exact immunological
response, high-mobility group box-1 protein (HMGB-1)—
an intra-cellular protein involved in inflammation as well as
tumorigenesis, is withheld in the cell or liberated to the
environment depending on the type of death, and also
seems to play opposite roles depending on the presence or
absence of other cytokines in the micro-environment [40].

As indicated above novel insight into the immune sys-
tem has revealed yet another layer of the breathtaking com-
plexity of the system. The idea of suppressor or veto-cells
as suppressors of, e.g., anti-tumor responses is certainly not
new, and even 25 years ago improved outcome of immune
therapy when combined with chemotherapy was suggested
to be due to eradication of such suppressor cells [51]. In
lack of sufficient evidence for the presence of such cells the
concept was abandoned [60]. Recently the concept of sup-
pressor cells—or regulatory T cells (Treg)—has gained
new life. Based on solid data the existence and relevance of
CD4+, CD25+, Foxp3+ positive T cells that are able to sup-
press cellular immune responses has been firmly validated
[80].

Mounting evidence suggests a role of Treg in inhibiting
anti-tumor responses, and obviously points to a scenario in
which selective clearing or inhibition of Treg could aug-
ment the efficacy of vaccination [16]. Regarding the biol-
ogy of Treg data from murine models have demonstrated
the presence of thumus derived Treg (leaves the thymus as
Treg; “natural Treg”), and adaptive Treg. These findings
have been extrapolated to humans; however, evidence is
scarce for the presence of natural Tregs in humans. More-
over, the human life span in combination with the onset of
thymic envolution quite early in life, argues against a piv-
otal role of such cells 20—40 years after termination of thy-
mic output [14]. This holds some implications in the
therapy of cancer, in terms of strategies to manipulate these
cells, e.g., by selective clearing by chemotherapy. First, it
highlights that human Tregs are probably not a special sub-
set of self-specific T cells that are restricted to regulate
auto-immunity, and thus, that Tregs should be viewed as
“counter-response” T cells that only emerge upon long last-
ing immune responses. Hence, long lasting CTL responses

will inevitably lead to a “drag along” Treg response. The
implications in the clinic are that clearance of Treg will not
elicit long lasting effects since new Tregs will emerge, and,
thus, auto-immunity that may develop will vanish as well.
In addition clearance of Tregs is likely to be required at an
interval that in part depends on the magnitude of the anti-
tumor response. In support of the above notion it has been
shown that (some) CD4 T cells differentiate from naive
through memory to a final FoxP3 state [75]. Also, it has
been shown that low dose cyclophosphamide—which has
selective cytotoxic effects on Tregs—are capable of clear-
ing Treg, but the effect is short lived [29]. Other drugs may
have identical or similar effects, however, for each drug the
dosing and schedule needs careful examination to allow for
clearing or inhibition of Treg while still maintaining CTL
responses. Whether a similar strategy could be used for
manipulating other immune cells with suppressive capacity
is not yet known [24, 28, 63].

Research into the biology of Tregs is moving forward at
high pace. In the next few years we will see new data on the
origin, differentiation, function and specificity of these
cells, and in parallel data from administration of chemo-
therapy or antibodies for clearance or inhibition of these
cells in the clinic will emerge. Undoubtedly, these data will
heavily influence the way we conduct future therapeutic
vaccination against cancer, hopefully integrating immune
therapy of cancer with conventional treatment strategies to
the benefit of the patients.

Combination with treatment regiments targeting
apoptosis

Cytotoxic T lymphocytes are known to initiate target cell
death via two pathways: CD95 ligand and perforin/gran-
zyme (granule-mediated killing). Granzyme B is a major
effector molecule of granule-mediated killing that rapidly
induces cell death after entering the cytoplasm of the target
cell [17]. It has been described that differential expression
of apoptosis-related genes might underlie tumor-specific
differences in susceptibility to an efferent arm of the
immune response, i.e., immunologic cytotoxicity [37].
Hence, the intrinsic resistance of tumor cells to immuno-
logic cytotoxicity might pose a significant limitation to the
efficacy of cancer immunotherapy. The resistance of tumor
cells to immune cell-mediated apoptosis may contribute to
the failure of tumor immunosurveillance, the phenomenon
of tumor growth despite infiltration by tumor-specific lym-
phocytes, as well as the failure of tumor vaccines to induce
clinical responses despite evidence for priming of effector T
cells.

In view of this, it is very interesting that strategies aimed
at inhibiting the expression or function of anti-apoptotic
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proteins has gained considerable attention [76, 77]. In this
regard, it has been described that targeting of the inhibitor
of apoptosis protein XIAP by Smac agonists or XIAP-
siRNA enhanced the susceptibility of cancer cells for CTL—
mediated cytotoxicity [37]. Likewise, combining survivin
vaccination with a strategy using synthetic peptides that
compete with caspases for binding to IAPs could lead to a
situation in which the surface presentation of survivin pep-
tides/THLA complexes would remain unchanged but the
cancer cells would be more susceptible for killing by survi-
vin specific T cells.

Monoclonoal antibodies and inhibition of angiogenesis

Monoclonal antibodies in the treatment of cancer have
emerged—after decades in the dark—as very effective
drugs. Several mechanisms are involved depending on the
antibody as well as the target antigen. Among the immuno-
logical mechanisms, antibody dependent cell cytotoxicity
and complement-associated mechanisms are at play. Proba-
bly the relevance of adaptive immunity depends on the bio-
logical mechanisms induced by the antibody. As already
discussed in relation to chemotherapy, the type of death may
play arole, however, FC part of the antibody may also direct
the target protein to processing and presentation to T cells.

Angiogenesis, the development of new blood vessels by
sprouting of the existing vasculature, occurs in cancer but
in only a limited range of healthy adult tissues such as the
ovary and endometrium during the menstrual cycle or as
part of the process of wound healing. Anti-angiogenic ther-
apy utilizes the fact that all tumors beyond a minimal size
depend on neo-angiogenesis [33]. Since anti-angiogenic
therapy targets the tumor vasculature and prevents tumor
growth beyond a certain size, whereas tumor immunother-
apy targets the tumor cells, combination of anti-angiogenic
therapy and tumor immunotherapy could be highly syner-
gistic. Vascular endothelial growth factor (VEGF) repre-
sents one of the most specific and critical regulators of
angiogenesis by regulating endothelial proliferation, per-
meability, and survival. The FDA approval in 2004 of Bev-
acizumab (Avastin) for the treatment of metastatic colon
cancer certainly underscores the relevance of targeting
angiogenesis, and several monoclonal Ab are now
approved as anti-angiogenic therapeutics yet for few indi-
cations, but numerous phase II and III trials are ongoing
[25]. Considering potential benefits of combining Avastin
with vaccination, circulating VEGF seem to be correlated
to immune suppression [27, 39], suggesting that vaccina-
tion subsequent to or concurrently with Bevacizumab may
improve the efficacy of vaccination.

It has been demonstrated that active immunotherapy tar-
geting endothelial products like vascular endothelial
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growth factor receptor (VEGFR)-2 protein could inhibit
tumor progression [84]. Likewise, it was recently described
that tumor growth could be inhibited in mice after vaccina-
tion with peptides derived from (VEGFR)-1. This was
associated with significant suppression of tumor-induced
angiogenesis without showing apparent adverse effects
[84]. In addition, survivin, Bcl-2 or Mcl-1 are expressed at
high levels in endothelial cells during tumor-angiogenesis
[20]. Thus, the targeting of survivin, Bcl-2 or Mcl-1 in a
vaccination setting might not only strike the tumor cells,
but in addition targets the tumor stroma, due to the fact that
these proteins are highly expressed in endothelial cells dur-
ing tumor-angiogenesis. Hence, the eradication of lung
tumor metastases in mice by vaccination induced, survivin-
specific T cells was achieved by joint suppression of angio-
genesis in the tumor neovasculature and induction of tumor
cell apoptosis [81, 84]. Importantly, the suppression of
angiogenesis induced by the vaccine did not impair wound
healing or fertility of treated mice. Inhibition of angiogene-
sis by active immunotherapy offers two attractive features:
(1) vaccination against survivin implies the concurrent tar-
geting of angiogenesis and cancer cells and (2) due to the
genetically stable nature and limited proliferative capacity
of endothelial cells compared to cancer cells, the risk of
HLA-loss, antigen-loss, or antigen processing—loss is
exceedingly low, if relevant at all. A primary concern of
immunizing against angiogenesis-associated products is
interference with normal angiogenesis, especially if the
effect is sustained. So far no vaccination-associated toxicity
was observed when late stage melanoma patients were vac-
cinated with survivin in a compassionate use setting despite
the fact that strong CTL responses were introduced in all
patients [54]. Nevertheless, it is clear that even extensive
phase I/II trials are not really suited for analyses of poten-
tial side effect presenting several years after termination of
the trial, and clearly these issues demands further attention.

With the fast through-put technologies developed over
the past decade [13, 45], our insight into the molecular
events that lead to malignant phenotype have reached
another level of understanding. Obviously, characteriza-
tion of new markers or patterns set the stage for the spe-
cific targeting of cancer cells by the development of new
therapies, which in turn can be combined with strategies
that take advantage of the targeting capacity of the
immune system. The crucial point is to focus on structures
that combines current knowledge not only in the field of
cancer biology per se, but also includes the interplay
between current conventional treatment strategies and how
this influences the malignant cell population and the
immune system. Without any doubt, although a large num-
ber of antigens have been characterized to date it appears
that we have nonetheless only revealed the tip of the ice-
berg. However, future efforts should focus on antigens or
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groups of antigens that conceptually incorporate biological
and clinical knowledge.

Conclusions

In conclusion, the synergistic effects of conventional and
immunological therapies necessitate re-thinking of the clin-
ical strategies not only with respect to the chosen chemo-
therapeutics, but also considering design of the selected
immunotherapy. In this respect, targeting of proteins or pat-
terns that are important for survival and growth of cancer
cells seems to be promising as a universal anti-tumor vac-
cine, which synergistically boosts the effects of conven-
tional cytotoxic therapies.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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