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CRISPR/Cas systems are popular genome editing tools that belong to a class of programmable nucleases
and have enabled tremendous progress in the field of regenerative medicine. We here outline the struc-
tural and molecular frameworks of the well-characterized type II CRISPR system and several computa-
tional tools intended to facilitate experimental designs. The use of CRISPR tools to generate disease
models has advanced research into the molecular aspects of disease conditions, including unraveling
the molecular basis of immune rejection. Advances in regenerative medicine have been hindered by
major histocompatibility complex-human leukocyte antigen (HLA) genes, which pose a major barrier
to cell- or tissue-based transplantation. Based on progress in CRISPR, including in recent clinical trials,
we hypothesize that the generation of universal donor immune-engineered stem cells is now a realistic
approach to tackling a multitude of disease conditions.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Currently trending genome-editing tools support the study of
gene functions and disease modeling by altering genes with pro-
grammable nucleases to mimic uncharacterized genotypes. The
ability to genetically manipulate biological systems holds enor-
mous potential across biotechnology, basic science, and medicine.
The CRISPR/Cas9 system belongs to a class of programmable nucle-
ases and permits precise alteration of eukaryotic genomes. These
nucleases act by inducing targeted double-stranded DNA breaks
(DSBs) on chromosomes, followed by activation of the homology-
directed repair (HDR) pathway. The HDR pathway requires exoge-
nous DNA with short sequences homologous to the acceptor sites
to act as templates for repairing the underlying sequence-specific
DSBs. Activation of the endogenous HDR pathway can precisely
alter the genome at predefined sequences [1,2]. However, despite
its enormous potential, use of HDR-gene editing approaches is lim-
ited by the predominance of the non-homologous end joining
(NHEJ) pathway in repair of DSBs. The NHEJ pathway has been
used to study gene functions via disruption of expression due to
formation of indels (insertions or deletions). However, CRISPR sys-
tems have been reported to utilize this pathway to restore the
functions of genes disrupted by disease mutations. For example,
Table 1
Summary of HDR-enhancing small molecules.

Small Molecule Target Mechanism

SCR7 Inhibition of
NHEJ

Inhibition of ligase IV

i53 Inhibition of
NHEJ

Inhibition of 53BP1, an important
regulator of the DSB repair pathwa

STL127705 Inhibition of
NHEJ

Inhibitor of the DNA repair protein
80

KU0060648 Inhibition of
NHEJ

Inhibition of DNA-protein kinase c
subunits

NU7026 Inhibition of
NHEJ

Inhibition of DNA-protein kinase c
subunits

NU7441 Inhibition of
NHEJ

Inhibition of DNA-protein kinase c
subunits

VE-822 Inhibition of
NHEJ

Inhibition of ataxia telangiectasia m
and Rad3-related kinase (ATR)

AZD7762 Inhibition of
NHEJ

Inhibitor of checkpoint kinase CHE

M3814 Inhibition of
NHEJ

Inhibition of DNA-protein kinase c
subunits

RS-1 Direct increase
of HDR

Enhance binding of RAD51 with ss

Mimosin, thymidine,
hydroxy urea, lovastatin

Regulation of
cell cycle

G1/S blocker

Nocodazole Regulation of
cell cycle

G2/M blocker

XL413 Regulation of
cell cycle

G1/S blocker

Aphidicolin Regulation of
cell cycle

G1/S blocker

ABT263 Regulation of
cell survival

BCL inhibitor

ABT751 Regulation of
cell cycle

G2/M blocker

Valproic acid (VPA) Undetermined
pathway

Histone deacetylase inhibitor

Resveratrol Suppression of
NHEJ

Downregulation of LIG4, PRKDC, KU
and KU80

Brefeldin A Undetermined
pathway

Inhibition of intracellular transport
ER to golgi

L755507 Undermined
pathway

Agonist for b3-adrenergic receptor

**NHEJ – non-homologous end joining; HDR – homology-directed repair; ss – single stran
human pluripotent stem cells; ESCs – embryonic stem cell; KI – knock-in; ER – endopla
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CRISPR systems have been used to repair CYBB gene mutations
causing X-linked chronic granulomatous disease (XCGD) [3] and
FANCA mutations causing Fanconi anemia (FA) [4]. The HDR path-
way is restricted mainly to the G2-S phases of the cell cycle and
depends on availability of sister chromatids, whereas the NHEJ
pathway involves end-to-end ligation of DSBs and takes place
throughout the cell cycle [5,6]. Reversible cell synchronization in
the G2/M phase has been shown to improve donor integration effi-
ciency during gene editing [7]. Inhibition of the ligase IV-
dependent NHEJ DNA repair pathway by small molecule inhibitors
like SCR7 has demonstrated an increase in homologous recombina-
tion (HR) in mammalian cell lines and mouse models [8–10].
Therefore, control of delivery time of the CRISPR/Cas9 system along
with inhibition of the NHEJ repair mechanism can greatly improve
genome editing efficiency. Various small molecules that can
enhance HDR efficiency are listed in Table 1.

In this review, we outline the structural and molecular frame-
works of the well-characterized type II CRISPR system and several
computational tools intended to facilitate experimental design. The
gene-editing approaches have been expanded to progenitor cells,
including induced pluripotent stem cells, and in vivo in a wide
array of higher mammals developed as disease models, which we
discuss in this review.
Effect on HDR Reference

Decrease NHEJ repair and increase HDR in several cell
lines and mice and rats with ds and ss donors

[9–14]

y
Increased HDR by 5–6 fold with ss and ds donors [15]

Ku70/ 2.8 to 7.2-fold and 2.3 to 4-fold increase in genome editing
with Cas9n and Cpf1, respectively

[16,17]

atalytic Increased HDR in HEK293T cells with reduced NHEJ
frequency

[18]

atalytic Reduced NHEJ frequency with increased KI efficiency in
hiPSCs using Cas9 or Cpf1

[19]

atalytic Increased HDR in HEK293T and hiPSCs by 13.4 fold in
zebrafish embryos

[18,20,21]

utated 5.9-fold increased HDR in hiPSCs with ss and ds donors
after DSB induced by Cpf1

[22]

K1 2.7-fold increased HDR in hiPSCs with ss and ds donors
after DSB induced by Cpf1

[22]

atalytic Increased KI in hiPSC and K562 cells using Cas9 or Cpf1 [23]

DNA Increased HDR in HEK293T cells, HeLa cells, and rabbit
and bovine embryos

[24–27]

Increased HDR in neonatal fibroblasts [6]

Increased HDR in HEK293T and hPSC using ss or ds donors [6,20]

Increased HDR in HSPCs, K562 cells, and T cells with ss or
ds donors

[28]

Increased HDR in HEK293T and neonatal fibroblasts using
ss donor

[6]

70% increase in HDR in hiPSC [29]

Increased HDR in hPSCs with ds donor [7]

Increased HDR in hESCs with ds donor [30]

70, Increased HDR in porcine fetal fibroblast using ds donor [14]

from Increased HDR in mouse ESCs using ds donor [31]

Increased HDR in mouse ESCs using ds donor [14,31]

ded; ds – double stranded; hiPSCs – human-induced pluripotent stem cells; hPSCs –
smic reticulum.
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2. Programmable nucleases

DSB-inducing programmable nucleases facilitate precise editing
at endogenous genomic loci to enable methodical interrogation of
genes and gene variations in a broad range of species [32]. Pro-
grammable nucleases include the first truly targetable zinc-finger
nucleases (ZFNs), transcription activator-like effector nucleases
(TALENs), and the popular RNA-guided engineered nucleases
(RGENs), the most famous of which is the bacterial and archaean
clustered regularly interspaced short palindromic repeat (CRISPR)
and CRISPR-associated system (Cas) [1,33–36]. Though these
nucleases have unique characteristics, they share a common mode
of action: cleaving chromosomal DNA at specific sites to trigger
endogenous DNA repair mechanisms and produce targeted gen-
ome modifications. In this section, we review the development of
and advances in the popular CRISPR/Cas endonucleases.
2.1. CRISPR system: A new generation of programmable nucleases

CRISPR/Cas systems have emerged as an efficient, potentially
facile alternative to ZFNs and TALENs for inducing DSB-mediated
gene alterations [37]. The CRISPR system is a part of the bacterial
and archaean acquired immune system that identifies and destroys
foreign DNA via RNA-guided DNA cleavage [38]. These systems
have been classified into three types (I-III) across various bacterial
and archaeal hosts. CRISPR systems comprise Cas genes; non-
coding RNAs; and distinctive, repetitive elements (direct repeats)
interspersed with short variable sequences called protospacers that
together constitute the CRISPR RNA (crRNA) [38,39]. Each proto-
spacer is associated with a protospacer adjacent motif (PAM) that
is responsible for sequence identification and varies depending
on CRISPR system [40,41]. CRISPR/Cas systems assemble mature
crRNA with Cas proteins to form crRNA-effector complexes that
interrogate target DNA and destroy matching sequences in foreign
genomic material [42]. By manipulating the guide RNA (gRNA)
component of the crRNA, a CRISPR/Cas system can be directed to
target virtually any DNA sequence, and it has been shown to be
applicable to human cells [43,44].

The best characterized CRISPR systems are the type II systems,
which include the Cas9 nucleases, gRNA encoding the crRNA array,
and trans-activating crRNA (tracrRNA). TracrRNA is required to
process the crRNA assembly into discrete units containing the
20 bp guide sequences required for Cas9 specificity and partial
direct repeats [36,45]. Streptococcus pyogenes-derived CRISPR/Cas
(spCas/SpyCas9) targets DNA that contains 50-NGG-30 as its PAM.
On the other hand, CRISPR/Cas derived from S. thermophilus targets
50-NNAGAA-30 for CRISPR1 (st1Cas9) and 50-NGGNG-30 (st3Cas9)
for CRISPR3; Staphylococcus aureus (SaCas9) targets 50-NNGRT-30;
Acidaminococcus sp. (Cas12a) and Lachnospiraceae bacterium
(Cpf1) recognize 50-TTTN-30, and Neisseria meningitidis recognizes
50-NNNNGATT-30 [47–53].
2.1.1. Molecular structure of the CRISPR/Cas9 system
The popularity of the CRISPR/spCas9 system has been attributed

to its simplicity in designing single guide RNAs (sgRNAs) via syn-
thetic fusion of tracrRNA and crRNA, which can be modified to
cleave virtually any sequence preceding the 50-NGG-30 PAM
sequence [50,51]. These RNA-guided nuclease functions can be
performed in mammalian cells via heterologous expression of the
requisite human codon-optimized RNA components and optimized
Cas9 [54]. Analyses of the Cas9 crystal structure have revealed two
lobes, a recognition (REC) lobe and a nuclease (NUC) lobe, with
adjacent active sites. The surface area between the two structural
lobes was reported to be 1034 Å [55]. A schematic representation
of the CRISPR/Cas9 system is shown in Fig. 1A.
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The REC lobe consists of a long bridge helix (residues 60–93),
REC1 domain (residues 94–179 and 308–718), and REC2 domain
(residues 180–307). The REC1 protein consists of 25 a helices
(a2-a5 and a12-a32) and two b sheets (b6, b10 and b7-b9) and
adopts an elongated a-helical structure, whereas REC2 adopts a
six-helix bundle (a6-a11) structure. On the other hand, the NUC
lobe contains a structural core that forms the RuvC domain (resi-
dues 1–59, 718–769, and 909–1098), HNH domain (residues
775–908), and the PAM-interacting (PI) domain (residues 1099–
1368) (Fig. 1B) [56]. The RuvC domain consists of three RuvCmotifs
(RuvC I-III) made up of six mixed b sheets flanked by a helices; it
has a positive charge due to its interface with the PI domain, and
it interacts with the sgRNA tail. A structural comparison analysis
identified four catalytic residues (aspartic acid 10 (Asp10), glu-
tamic acid 762 (Glu762), histidine 983 (His983), and Asp986) in
the Cas9 RuvC domain that are structurally similar to an RNase H
fold found in members of the retroviral integrase superfamily, sug-
gesting a two-metal-ion catalytic cleavage mechanism for non-
target DNA cleavage [55,56]. Asp10 is reported to be critical for
non-complementary DNA cleavage, and Cas9 cleavage activity
depends on Mg2+ ions [56–58]. The HNH domain has only a few
contact points with the rest of the protein, lies between the RuvC
II and III motifs, and comprises four a helices that surround dual-
stranded antiparallel b sheets [56]. The HNH nuclease active site
is made up of three catalytic residues (eg-Asp40, His41, and
Asn62) and is said to cleave DNA via a single metal mechanism
[59]. The crystal structure of Streptococcus pyogenes CRISPR/Cas9
endonuclease in complex with sgRNA is shown in Fig. 1C. The
REC and NUC lobes are connected by two link segments, one of
which forms an arginine-rich bridge. Because sgRNA and its target
DNA heteroduplex are negatively charged, they interact in the pos-
itively charged groove between the REC and NUC lobes. Whereas
the REC-recognition lobe is essential for binding sgRNA and DNA,
the NUC-nuclease lobe contains the HNH and RuvC nucleases that
cleave the complementary and non-complimentary strands of the
target DNA, respectively. Alignment of the bound complementary
DNA and the RuvC domain active site suggests that the PI domain
recognizes PAM sequences in non-complementary DNA (Fig. 1A
and 1C) [56].

Cas9 has also been reported to be mutable at either HNH
(H840A) or RuvC (D10A) and transforms it into a nickase capable
of single-strand nicks. However, mutating both nuclease domains
yields dead Cas9 (dCas9) that retains its RNA-guided DNA binding
ability but has no cleavage activity [60].

2.1.2. Mechanism of action of CRISPR/Cas9
Cas9 is a powerful, highly specific, and efficient genome editing

tool that has been studied extensively. Structural and mechanistic
studies have provided a fundamental understanding of the mecha-
nism that regulates the CRISPR/Cas9 system, along with a frame-
work for structure-based rational design to improve its efficiency
and minimize its off-target results.

Formation of the Cas9-sgRNA complex is important for the tran-
sition from inactive to active conformation of Cas9 upon PAM
recognition [36,50]. Accurate sgRNA-target DNA complementarity
is necessary for Cas9-mediated targeting and cleavage of DNA,
though imperfect base pairing at non-seed regions is tolerated
within target binding specificity [61]. Cas9 forms a Cas9-sgRNA
binary complex by recognizing the PAM-proximal guide region
and repeat: anti-repeat sgRNA duplex. This Cas9-sgRNA complex
searches DNA sites for complementary target sequences and
requires complementary base pairing between the 20-bp spacer
sequence and the protospacer in the target DNA and the presence
of a PAM sequence adjacent to the target site to form the final
Cas9-sgRNA-target DNA ternary complex [62]. Interaction between
the Cas9 complex and the target DNA occurs through a three-



Fig. 1. Structure of Streptococcus pyogenes Cas9-sgRNA complex. A. Schematic representation of the CRISPR/Cas9 system. B. Domain organization of the spCas system. The
bilobed architecture of Cas9 consists of a recognition (REC) domain and a nuclease (NUC) lobe. C. Crystal structure of spCRISPR/Cas9 endonuclease in complex with sgRNA and
double-stranded target DNA primed for specific DNA cleavage (PDB id: 5F9R). The REC domain consists of three regions, a long a helix called bridge helix (BH) and the REC1
and REC2 domains, while the NUC domain consists of RuvC, HNH, and PAM-interacting (PI) domains. The REC1 and REC2 domains interact with repeat-anti-repeat duplex and
are essential for recognition of sgRNA and target DNA. The PI domain recognizes a PAM sequence on a non-complementary DNA strand. The RuvC domain is assembled into
three split motifs containing an RNase H fold and interfaces with the PI domain to form a positively charged surface that interacts with the 30 tail of sgRNA. The HNH and RuvC
nuclease domains are essential for cleavage specificity of complementary and non-complementary strands of the target DNA, respectively [56].
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dimensional collision that allows rapid dissociation of Cas9 from
DNA that does not contain the right PAM sequences. This dwell
time depends on gRNA complementarity with the adjacent DNA
when the correct PAM is present [63–65].

The PI domain recognizes PAM sequences on non-
complementary DNA to form the 20-bp guide-target DNA
heteroduplex formation recognized by Cas9 in a sequence-
independent manner and triggers local DNA melting at PAM-
adjacent nucleation sites prior to formation of the ternary complex.
Next, RNA strand invasion forms an RNA-DNA hybrid and displaces
a DNA R-loop strand from the PAM-proximal end to the PAM-distal
end [65,66]. The REC1 (Asn497, Trp659, Arg661, and Gln695), RuvC
(Gln926), and PI (Glu1108) domains interact with the phosphate
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backbone groups of the target DNA (nucleotides 10, 90-110, 130,
and 200). The REC1 (Leu169, Tyr450, Met495, Met694, and
His698) and RuvC (Ala728) domains interact via Van der Waals
interactions with the C20 atoms of the target DNA at nucleotides
50, 70, 80, 110, 190, and 200. Assembly of the ternary complex follows
cleavage of the complementary strand by the HNH domain and
cleavage of the non-complementary strand by the RuvC domain
in the sgRNA-target heteroduplex complex [56,61,67]. Each
domain cleaves a strand of the DNA three base pairs from the
NGG PAM, producing a blunt-ended DSB [65].

Post cleavage, Cas9 remains bound to the target DNA until it is
displaced by other cellular processes for recycling [65,68]. Cas9
nickase produces single-strand breaks by targeting only a single



Table 2
Available tools to design sgRNA and to evaluate on-target efficiency/off-target effect.

Tool name Description On-target
prediction

Off-target
prediction

Source Reference

AttnToCrispr To determine CRISPR Cas9 and Cas12a specificity and efficiency Yes Yes https://github.com/
qiaoliuhub/AttnToCrispr

[79]

Breaking-Cas To design sgRNA for SpCas9, SaCas9, and Cpf1 and to evaluate probable
off target sites

Yes Yes https://bioinfogp.cnb.csic.es/ [80]

CHOPCHOP Selection of the optimal CRISPR/cas9 sequence gene; identifying sgRNA
targeting Cas9 and its variants and Cpf1.

Yes Yes https://chopchop.cbu.uib.no [81–83]

CRISPR-RGEN
Tools

Potential off-target sites in input sequence or given genome No Yes http://www.rgenome.net/ [84–86]

CRISPOR To identify sgRNA sequence in input, rank them according to efficiency
score, and predict off-target and on-target activity

Yes Yes http://crispor.tefor.net/ [87,88]

CCTop Identifying sgRNA targeting Cas9 and its variants and Cpf1. Yes Yes https://crispr.cos.uni-
heidelberg.de/

[89]

CRISPR-ERA To design sgRNAs for genome editing, repression, and activation Yes No http://crispr-era.stanford.edu/ [90]
CRISPRdirect To design sgRNAs No Yes https://crispr.dbcls.jp/ [91]
CRISPRscan To design sgRNAs for Cas9 and Cpf1 Yes Yes https://www.crisprscan.org/ [92]
CRISPETa Flexible and scalable paired sgRNA design based on an empirical scoring

model
Yes Yes http://crispeta.crg.eu/ [93]

CRISPRseek To design sgRNAs for target sequences identified in wide variety of
genome-wide analyses

Yes Yes http://bioconductor.org/ [94]

CRISPR-GE Experimental design and mutation analysis for genome editing in the
Cpf1/CRISPR/Cas9 system

Yes Yes http://skl.scau.edu.cn/ [95]

Cas-OFFFinder To identify potential off-target sites in a given genome or user-defined
sequences

No Yes http://www.rgenome.net/cas-
offinder/

[86]

CLD To predict a large fraction of functional sgRNAs Yes Yes https://github.com/
boutroslab/cld

[96]

CFD Off-target evaluation No Yes https://portals.broadinstitute.
org/gpp/public/software/index

[97]

CRISTA To design sgRNAs for targeting sequences identified in a wide variety of
genome-wide analyses

Yes Yes http://crista.tau.ac.il/ [98]

CRISPR-OFF Off-target evaluation No Yes https://rth.dk/resources/
crispr/

[99]

CRISPR optimal
target finder

Off-target evaluation No Yes http://targetfinder.flycrispr.
neuro.brown.edu/

[100]

COSMID To identify potential off-target sites with the specified number of
mismatched bases and insertions or deletions compared with the guide
strand

Yes Yes https://crispr.bme.gatech.edu/ [101]

CRISPR.mit To design sgRNAs and evaluate off-target effects Yes Yes https://zlab.bio/guide-design-
resources

[60]

CROP-IT To design sgRNAs and evaluate off-target effects Yes Yes http://cheetah.bioch.virginia.
edu/AdliLab/CROP-IT/
homepage.html

[102]

CRISPR
MultiTargeter

To identify unique isoform-specific sgRNA sites and common sgRNA sites Yes Yes http://www.multicrispr.net/ [103]

CASPER To accommodate use of the CRISPR/Cas system for genome editing,
multitargeting analysis, and multispecies population analysis.

Yes Yes https://github.com/TrinhLab/
CASPER

[104]

CRISPy-web To design sgRNAs for a user-provided microbial genome (non-model
organisms)

Yes Yes https://crispy.
secondarymetabolites.org/

[105]

CRISPR-PLANT To evaluate off-target sites for seven genomes of model and crop plants Yes Yes https://www.genome.arizona.
edu/crispr2/

[106,107]

DeepCRISPR To design sgRNAs with on-target and off-target site prediction with deep
learning

Yes Yes http://www.deepcrispr.net/ [108]

E-CRISP To design sgRNAs Yes Yes http://www.e-crisp.org/E-
CRISP/

[109]

EuPaGDT To design gRNAs for eukaryotic pathogens Yes Yes http://grna.ctegd.uga.edu [110]
Elevation Cloud-based machine learning platform for off-target and on-target

prediction
Yes Yes https://crispr.ml/ [111]

FlashFry To design sgRNAs and predict on-target and off-target sites with
unconstrained number of mismatches

Yes Yes http://mckennalab.org/
FlashFry/

[112]

GuideScan To design high-density sets of sgRNAs for single and paired sgRNA
genome-wide screens and correctly determine off-target sites

Yes Yes http://www.guidescan.com/ [113]

GT-Scan To identify unique genome targets https://gt-scan.csiro.au/ [114]
PROTOSPACER Offline software for flexible design of Cas9 sgRNAs with a graphical user

interface with a file-based database and third-party sequence mapping
tools to maximize flexibility and information retrieval when designing
sgRNAs

Yes Yes http://www.protospacer.com/ [115]

SgRNA designer To design sgRNAs for SaCas9 and SpCas9 Yes Yes https://portals.broadinstitute.
org/gpp/public/analysis-tools/
sgrna-design

[97,116]

sgRNAcas9 Design of gRNAs for Cas9s from S. aureus and S. thermophilus 3 and Cpf1 Yes Yes http://www.
biootools.com/software.html

[117]

sgRNA Scorer 2.0 Design of gRNAs for Cas9s from S. aureus and S. thermophilus 3 and Cpf1 Yes No http://crispr.med.harvard.edu/
sgRNAScorerV2

[118]

WU-CRISPR To design high-density sets of sgRNAs for single and paired sgRNA
genome-wide screens and correctly determine off-target sites

Yes Yes http://crispr.wustl.edu [97]
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strand of the DNA duplex. Staggered-end DNA can be generated by
pairing sense and anti-sense targeting sgRNAs with Cas9 nickases.
DSBs generated by such double nicks can enhance the specificity of
genome editing [68]. DNA cleavage can be repaired by either the
NHEJ pathway or the HDR pathway.

2.1.3. Tools to design sgRNAs
sgRNA design is critical to CRISPR-based screening techniques.

Each sgRNA contains a target DNA complementary spacer
sequence that guides the Cas9 protein to the target sequences.
The cleavage efficiency and binding of the CRISPR system require
different complementarity status within the 20 bp region. sgRNA
design aims to identify specific target sites in the genome by sim-
ply scanning PAM sequences, such as the 50-NGG-30 of spCas9, but
that process faces several challenges. Currently, many tools have
been developed for sgRNA design, and they vary in design specifi-
cations, genomes, parameters, and so on [69,70]. Complementarity
between the 50-end 20-nt sgRNA sequence and the target DNA
should theoretically be sufficient for sgRNA-Cas9 complex forma-
tion and cleavage, but previous studies suggest that sgRNAs have
variable cleavage efficiencies. Researchers need to select the best
sgRNAs as input sequences by identifying potential off targets
and their relative cleavage rates, and that process can be facilitated
by the many computational tools summarized in Table 2. Highly
stable binding requires seven to nine matched bases proximal to
the PAM region; even a few mismatches in this region can hinder
cleavage. As few as four mismatches of up to eleven bps in length
in the PAM-proximal region have been shown to hinder cleavage
but not binding by allowing formation of stable complexes. This
suggests an extremely slow rejection that could sequester Cas9-
RNA [71,72]. The off-target effects of sgRNA have been widely
investigated using in vitro genome-wide assays that align spacer
sequences to the genome [60] with LAM-HTGTS [73], Digenome-
seq [74], SITE-Seq [75], CIRCLE-seq [76], DISCOVER-seq [77], dCas9
ChIP-seq [61], and GUIDE-seq [78]. Although the studies reached
different conclusions based on analysis method, they all agreed
on the importance of PAM, the 7–10-nucleotide seed sequence
proximal to PAM, and the concentrations of Cas9 and gRNA for effi-
cient cleavage. Tools designed to aid sgRNA designing by analyzing
their efficiencies are summarized in Table 2.

To further improve DNA targeting efficiency by processing only
correct targets, systematic investigations into the binding kinetics
of Cas9-RNA need to be conducted. How dissociation kinetics vary
according to mismatches also needs to be established to determine
the rejection rates of mismatched/partially matched sequences
[71].

One target efficiency detection model was proposed by Doench
et al., who created a pool of sgRNAs and screened all possible target
sites across six endogenous mouse and three endogenous human
genes. They used antibody staining and flow cytometry to
quantitatively assess 1841 sgRNAs for ability to produce null target
gene alleles. Using those data, they generated a predictive model of
sgRNA activity to improve sgRNA design for gene screening and
editing. That model was made into an online tool that rates active
sgRNAs targeting any gene of interest with score between 0 and 1,
with higher values indicating higher efficiency [119]. Several tools
(CHOPCHOP, E-CRISP, WU-CRISPR, CRISPR library designer,
CRISPRpred, CRISPETa, and CRISPOR [81,83,88,93,96,109,
120,121]) use that model, which is driven by the hypothesis that
sgRNA knockout efficiency can be empirically scored considering
the effects of genome context factors. Another sgRNA design
method predicts sgRNA efficiencies considering features from a
training model. Available tools using that method include SSC,
CRISPRscan, sgRNA Designer, and Deep CRISPR [92,97,108,118,
122,123]. These comprehensive computational platforms unify
sgRNA on- and off-target predictive scores into one framework
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with deep learning and surpass performance of state-of-the-art in
silico tools.

The advances in CRISPR techniques and volume of genome-
editing data being accumulated are presenting new computational
challenges. The in silico design of sgRNAs has become a key issue
for successful gene-editing using CRISPR systems, and continuous
efforts are being made to refine it [124]. sgRNA efficiency is signif-
icantly influenced by the nucleotide composition of DNA proximal
to or downstream of PAM. Nucleotides upstream of PAM do not
significantly affect sgRNA efficiency. For efficient sgRNA design
associated with Cas9, human and mouse cell lines prefer guanines
at the �1 and �2 positions proximal to PAM. On the other hand,
thymidine at the + 4/-4 positions is disfavored close to PAM
[122,125,126]. Efficient in silico models that integrate heteroge-
neous genome editing data can be built to derive unbiased sgRNA
design rules and improve sgRNA design [119]. A recent develop-
ment in sgRNA design involves an in vivo library-on-library
method that can simultaneously assess sgRNA activity across
about 1400 genomic loci to unravel underlying epigenetic param-
eters and nucleotide sequences related to sgRNA knockout (KO).
Such research has found that sequence composition and locus
accessibility are important factors of sgRNA activity [118].

Given the number of features involved, data modeling most
commonly uses machine learning methods. The construction of
such models requires that many sgRNAs be tested experimentally
to build a robust dataset that can enable prediction of efficiency.
Therefore, researchers have typically adopted biological enrich-
ment schemes that monitor events affecting observable biological
phenotypes such as cell survival [127]. Other factors that influence
sgRNA activity can be discovered by incorporating additional data-
sets, modeling approaches, and activity readouts. All those features
have been shown to correlate with the on-target activity of Cas9-
sgRNA complexes, so they can help enable effective use of CRISPR
technology to probe gene functions and edit genomes.

2.2. Recent development in CRISPR/Cas system for improved genome
editing

Based on recent advances in crystal structure analysis of the
CRISPR/Cas system, many Cas variants have been developed for
improved editing efficiency and performance [128]. After success-
ful application of SpCas9 as a tool for genome editing in mam-
malian cells, other Cas9 proteins have been developed. For
example, SaCas9 (Staphylococcus aureus) [129], Nme2Cas9 (Neisse-
ria meningitides) [130], AsCpf1 (Acidaminococcus sp), LbCpf1 (Lach-
nospiraceae sp) [49,131], and recently identified AacCas12b
(Alicyclobacillus acidoterrestris) [132] have shown comparable or
higher genome editing efficiency to that of SpCas9 [128]. Further-
more, a recently reported type VI CRISPR-associated RNA targeting
Cas13a and Cas13b system can specifically cleave strands of RNA
[133–135].

Recent technological advances have enabled development of
nuclease-deficient, catalytically-inactive dead Cas9 (dCas9) or
paired nickase (Cas9N) [136] that can be fused with various tran-
scription regulatory domains creating either CRISPR activator
(CRISPRa) or CRISPR inhibitors (CRISPRi) that can specifically acti-
vate or silence the target gene [137]. In addition, the recently
reported D10A cas9 nickase-based cytidine base editors (CBEs)
and adenine base editors (ABEs) can generate A to T and C to G
transitions, respectively, causing many double-stranded breaks in
the targeted genomic region [138]. In addition, the Liu group devel-
oped high-efficiency H840A Cas9 nickase-based prime editors
(PEs) designed to restore both strands to the desired sequence
instead of the original without DSB or donor DNA template
[139]. Thus, application of the CRISPR/Cas system, which can mod-
ulate target gene expression or transcript levels in a PAM-
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independent and transient manner, could provide a controllable
approach for disease modelling and treatment.

3. Development of models for CRISPR-based correction of
defective genes

The CRISPR/Cas9 system has been widely used to create muta-
tions in target genes and generate sequence-specific genomic mod-
ification through HDR. CRISPR has been used for other purposes
such as regulation of endogenous gene expression, live-cell imag-
ing of chromosomal loci, epigenome engineering, and high-
throughput screening and editing of RNA [137]. Given its precision,
simplicity, and robustness, CRISPR has emerged as a tool for gener-
ating novel in vitro and in vivo disease models and has the potential
to connect biological discoveries with clinical therapeutic
approaches. In this section, we review the use of CRISPR/Cas9 sys-
tems to develop various disease models.

3.1. Pluripotent stem cell technology: Toward gene correction in
humans

The technique of culturing cells in a dish has been the backbone
of basic biomedical research for decades because it can provide
insights into normal and pathological cellular processes. Regener-
ative medicine and cell therapy aim to replace unhealthy or dis-
eased cells with healthy new cells. Primary cells also can be
genetically manipulated and re-implanted into patients to cure
or treat genetic diseases [140]. However, the limited lifespan of pri-
mary human cells in culture is a drawback that limits inquiries into
regulation of tissue formation, regeneration, and repair [141]. Most
human cell lines used today have been derived from tumors or
transformed derivatives of native tissues that carry mutations;
the inability to faithfully adapt these human cells for in vitro
growth limits research [141,142]. However, advances in
reprogramming human somatic cells into induced pluripotent
stem cells (iPSCs) have begun to address correction of defective
genes in mammals.

Pluripotent stem cells (PSCs) or typical embryonic stem cells
(ESCs) derived from the inner cell mass of blastocysts can differen-
tiate into specialized cells to recreate specific tissues such as lungs
or brain [143]. Thus, PSCs are an immortal population that can dif-
ferentiate into virtually any cell type within the human body and
enable establishment of new models of mammalian development
and a new source of cells for regenerative medicine [144,145].
The immortality of PSCs could help to generate clinically relevant
cell populations for aid in tissue repair and regenerative medicine,
although they show difficulty in efficient genome editing [143]. On
the contrary, iPSCs are easier to manipulate, but their applications
in regenerative medicine approaches should be considered prior to
human studies [146]. Issues such as immune rejections, carcino-
genicity, genomic instability, lack of in situ integration and lack
of quality controls have hindered application of iPSCs to routine
clinical use [146]. However, a recent study published in a reputed
journal has used autologous patient-derived iPSCs to dopaminergic
progenitor cells to treat Parkinson’s disease. Although this study is
still in its infancy, it opens up numerous avenues toward applica-
tion of iPSCs to treat human diseases [147].

iPSCs have made progress toward modeling of numerous
human genetic disorders. The scope of CRISPR/Cas9 gene editing
systems has been expanded to disease-focused research through
production and characterization of patient-derived iPSCs that carry
specific genetic diseases. CRISPR/Cas9 editing systems thus allow
either repair of genetic mutations in patient-derived iPSC models
or generation of disease mutations in healthy iPSCs to generate
disease models. An example of the application of iPSCs toward
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modeling of human diseases was described for the multifactorial
neurodegenerative Parkinson’s disease (PD) [148]. Some PD cases
are due to autosomal dominant mutations in SNCA genes that
encode a-synuclein responsible for synaptic transmission and vesi-
cle transport. Arias-Fuenzalida et al. generated isogenic-biallelic
mutations in the SNCA gene using healthy iPSCs and FACS-
assisted CRISPR/Cas9 editing to develop a PD-specific model
[148]. CRISPR/Cas9 also has been used to derive isogenic CSB/ERCC6
gene corrections in iPSCs derived from a rare autosomal recessive
disorder cockayne syndrome (CS) patient [149]. Another recent
report regarding the use of CRISPR/Cas9 to correct gene defects
was demonstrated in amyotrophic lateral sclerosis (ALS), which
is commonly caused by C9orf72 mutations. CRISPR/Cas9-
mediated excision of C9orf72 repeat expansion reversed the patho-
physiological effects of astrocytes in human iPSCs harboring these
gene mutations [150].

iPSCs have the capability to differentiate into certain cell types
relevant to disease phenotypes [151,152]. This differentiation
capability make iPSCs an important asset to model numerous dis-
eases, as described in the case of type 1 diabetes (T1D) by Leite
et al. [153]. Autoimmune T1D results in destruction of pancreatic
b cells that secrete insulin. Leite et al. used patient-derived endo-
crine cells and autologous immune cells to model T1D using an
in vitro platform. They demonstrated a cell-type specific immune
response against iPSC-derived b cells and a reduced effect against
a cells [153]. Leite et al. demonstrated use of CRISPR/Cas9 systems
to ablate HLA class I expression in iPSC-b cells, which resulted in
reduced T cell activation, the significance of which has been
described in the following sections (Section 4). iPSC-derived neu-
rons also have been recently used to generate a CRISPR
interference-based platform to study essential/non-essential gene
functions [155]. Disease-in-a-dish in vitro iPSC models have been
developed for numerous diseases including Shwachman-Bodian-
Diamond syndrome [141], adenosine deaminase deficiency-
related severe combined immunodeficiency [141], Duchenne and
Becker muscular dystrophies [141,154], Gaucher disease type III
[141], Parkinson’s disease [141,156,157], Huntington’s disease
[141,158], Alzheimer’s disease [159], rheumatoid arthritis and
osteoarthritis [160], types 1 and 2 diabetes [141,153,161], the car-
rier state of Lesch-Nyhan syndrome [141], and Down syndrome/
trisomy [141].

These disease models could also be used for high-throughput
screening of therapeutic drugs. Advances in genotyping and next-
generation sequencing techniques have facilitated identification
of genetic mutations responsible for disease pathology and pheno-
types [162]. Drugs elicit different responses in different patient-
derived iPSCs, probably due to the different genetic backgrounds
of individual donors [163]. Derivation of diseases models by induc-
ing specific mutations in healthy iPSC cell lines (isogenic controls)
allows identification of causative lesions that define cellular phe-
notype, resulting in disease. Such comparisons are not possible
by comparing iPSCs-derived from patients and healthy individuals
due to the inheritance patterns of single-nucleotide polymor-
phisms (SNPs) among individuals [162,163]. In addition to estab-
lishment of disease models without needing patient samples to
screen for drug recovery efficacy, this strategy of disease modeling
might be used to model various genetic conditions for which
obtaining patient samples is problematic. The application of
CRISPR-mediated gene correction strategies in pluripotent cells
could confirm validity and safety before clinical applications while
eliminating the need for murine models for validation. Disease-
specific pluripotent cells capable of differentiating into the various
tissues affected by each condition would provide insights into the
pathophysiology of disease in a controlled, in vitro human system
and allow screening of potential drugs in that system.
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Nonetheless, certain challenges in the use of iPSC disease mod-
els need to be addressed. For example, the rarity of certain genetic
diseases limits the ability to build patient-derived cell models, and
genetic variations among populations could result in inappropriate
interpretations of disease phenotypes in vitro [141,164,165]. The
number and use of control cell lines during iPSC development,
nuclease design, disease modeling, and drug screening also are
controversial. Previously, the use of control cells from healthy fam-
ily members was considered adequate, but isogenicity and genome
sharing among family members could influence cellular disease
phenotypes [166]. However, this problem can be tackled by the
use of gene editing techniques to generate disease models in iPSCs
derived from healthy individuals and eliminates the genetic mod-
ifiers that differ among patient-derived iPSCs and controls [162].
Another issue regarding use of iPSCs as disease models is the
somatically acquired mutations in disease-affected cells, contribut-
ing to disease pathologies. Such mutations may not be present in
iPSCs or iPSC-derived cells, though unrelated somatic mutations
that have accumulated in cells used for reprogramming also would
be propagated to iPSCs [162,167]. Advances in single-cell and
deep-genome sequencing techniques can be utilized to study the
effects of such mutations in diseases. Another issue regarding use
of iPSCs arises due to the high clonal diversity of human iPSCs.
Patient-derived iPSCs may not always be easy to derive, handle,
or transfect; thus, protocols have to be adjusted constantly for indi-
vidual cell lines. This may not be required when using universal
human iPSC cell lines [166].

3.2. Transgenic animal models for in vivo gene editing

The CRISPR system has evolved at a rapid pace; during the past
few years, its applications have expanded far beyond DNA mutage-
nesis [168]. Heritable gene editing has been achieved using the
CRISPR/Cas9 system and generated a variety of transgenic animals.
Those studies delivered the CRISPR/Cas9 system directly into fertil-
ized zygotes using methods such as microinjection and
electroporation incorporating DNA [169,170]. However, applica-
tion of CRISPR to somatic tissues in postnatal animals has been
challenging due to larger transgene size and existing delivery
strategies for Cas9 in vivo [129]. To address that issue, various vec-
tors, such as adeno-associated virus, lentivirus, and particle-
mediated delivery, have been developed to offer low immunogenic
potential, broad serotype specificity, and reduced oncogenic poten-
tial and host-genome interactions with the delivery of Cas9
[171,172]. Direct injection of nuclease-encoding messenger RNA
into early mammalian embryos has proven quite effective in gen-
erating germline modifications, adding another tool for mam-
malian genetics [173].

CRISPR/Cas9 genome engineering has been successfully applied
in many model organisms, including mice, cynomolgus monkeys,
rats, pigs, Caenorhabditis elegans, Xenopus tropicalis, and Drosophila
[169,174]. Among them, the mouse model is the most popular and
has been used in developing many nuclease-directed systems,
including CRISPR/Cas9, and brings a new level of flexibility to
genomic manipulation [168]. The collective research using
CRISPR/Cas9 for in vivo gene therapeutics in animal models of var-
ious human genetic diseases has demonstrated the potential appli-
cability of the system for human use. These research advances
suggest that CRISPR/Cas9 could be used to correct disease-driving
mutations in vivo [164,169].

CRISPR/Cas9 systems have been routinely used to generate
single-nucleotide polymorphism (SNP) animal models of human
disease in rodents [169,175,176]. Such models provide a functional
insight into human genetics that allow development of potential
new therapies. An example of a pathological SNP modelled in mice
was identified by human genome-wide association studies (GWAS)
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in the STXBP5 gene (rs1039084 A > G). STXBP5 acts as a regulator
of platelet secretion in humans. The SNP-rs1039084 A > G has been
reproduced by CRISPR in the mouse to display nearly the same
thrombosis phenotype, confirming the causality of this SNP in
humans [169,177].

The most popular application of CRISPR/Cas9 to the study of
gene functions and drug discovery has been generation of specific
gene knockouts. Conditional transgenesis in adult mice has been
attempted to enable tissue-specific and inducible Cas9-mediated
mutagenesis. Cre-mediated systems have been modified by includ-
ing CRISPR targeting systems to enable them to express Cas9 under
control of strong promoters such as CAGs [178]. Doxycycline-
inducible systems have also been attempted, as demonstrated
recently by Dow et al., to provide Cas9 and sgRNA to the germlines
of animals. These models can target individual and multiple tissues
and have not been restricted by the exogenous sgRNA delivery effi-
ciency required to extinguish the expression of Cas9 after gene
editing [179]. CRISPR systems also have been successfully utilized
to insert LoxP sites surrounding various exons in mice. This strat-
egy was described as Easi-CRISPR (Efficient additions with ssDNA
inserts-CRISPR) that efficiently allows creation of conditional
knock-in as well as knock-out models [180].

CRISPR also holds great promise for use in larger vertebrate
model systems that reflect human disease progression better than
mouse models. For example, pigs closely resemble human physiol-
ogy and can be a highly relevant model for human diseases, as
demonstrated by research into familial adenomatous polyposis
and cystic fibrosis (CF). The existing mouse models of these mono-
genic diseases did not accurately resemble disease progression or
treatment, and the pig models were more accurate. CRISPR can
be applied to create monoallelic and biallelic mutants in higher
animal models such as pigs, providing a gateway for improved
study of cardiovascular diseases, metabolic treatments, and
wound-healing. With implementation of new tools and technolo-
gies, these models could improve future drug discovery and treat-
ment research [181,182]. Homozygous Pink1/Parkin knockout pigs
have been developed as models for PD using CRISPR/Cas9 systems
and somatic cell nuclear transfer (SCNTs) producing gene-edited
animals with single identical mutations [183]. CRISPR/Cas9-based
genome editing strategies have heightened the capacity to geneti-
cally modify pigs to engineer organs for xenotransplantation [184].
Toward such goals, CRISPR/Cas9 has been utilized to inactivate
copies of the porcine endogenous retrovirus (PERVs) in pigs that
could potentially be passed to humans [185]. Wu et al. demon-
strated disruption of pancreatogenesis in pig embryos utilizing
the CRISPR/Cas9 system to target the PDX1 gene. These models
could serve as a platform for xeno-generation of human organs
in pigs when combined with chimeric-competent human iPSC
technologies [186].

Another advantage offered by CRISPR/Cas9 is its ability to target
multiple genes simultaneously, offering a way to analyze multial-
lelic mutants in a single step and removing the need to breed inde-
pendent strains [168]. An example of this strategy was
demonstrated by Li et al., who generated GGTA1/iGb3S and
GGTA1/CMAH double knockout and GGTA1/iGb3S/CMAH triple
knockout pigs that are naturally deleted in humans using the
CRISPR/Cas9 system, indicating potential for xenotransplantation
[187]. Multiple double-stranded breaks in DNA can also lead to
genomic structural variations (SVs). SVs are large structural differ-
ences in genomic DNA that lead to chromosomal duplications,
deletions, inversions, insertions, translocations, or combinations
of these. Numerous human disorders are associated with such
SVs involving several genes, and CRISPR/Cas9 systems have facili-
tated a way of modeling these diseases in mouse models [188–
191]. Application of CRISPR/Cas9 to model human diseases con-
taining SVs has been demonstrated for Downs syndrome using a
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CRISpr MEdiated REarrangement (CRISMERE) strategy [188]. How-
ever, a drawback of targeting multiple sites using CRISPR is the
sequence variations caused at breakpoints due to the randomness
of NHEJ and the accessibility of CRISPR target sites that affect
sgRNA efficiency [190]. CRISPR/Cas9 has been adapted for direct
in vivo delivery systems that enable specific, multiplexed gene
modifications in select mouse tissues. Proof-of-concept therapeutic
models of CRISPR have been delivered via mosaic delivery systems
that disrupt or modify target genes in subsets of cells that surround
normal tissues [192]. CRISPR/Cas9 offers surgical-precision editing
that leaves behind little or no trace of the entire process [192]. The
future of genome editing could lie in successful, direct application
of CRISPR in vivo, which could have multiple applications in preci-
sion medicine.

3.3. Organoid-based models offer futuristic approaches to gene
correction

Organoids are 3D arrangements of specific cell types derived
from stem cells that self-organize spatially and have restricted lin-
eage commitments to represent the key structural and functional
properties of organs [193]. Organoids that represent multiple niche
interactions have been successfully established from adult stem
cells and PSCs derived from mice and humans for multiple organs,
such as the esophagus, salivary gland, prostate, fallopian tube,
brain, liver, kidney, stomach, intestine, ovary, lung, and pancreas
[194,195]. Technologies such as adeno-associated viral vectors
and other lentiviral expression systems allow for genetic manipu-
lation of organoids to successfully develop gene therapy strategies
and disease models [196].

Because the genetic signatures of tissues can be retained in
organoids, several genetic disorders, such as the autosomally
recessive CF disorder caused by mutations in the CF transmem-
brane conductance regulator (CFTR) gene, have been successfully
modeled using organoids [195,197,198]. Schwank et al. demon-
strated the successful application of CRISPR/Cas9-mediated
correction of mutations in the CFTR regions of organoids derived
from the intestines of two CF patients via homologous recombina-
tion [198]. The genome-edited organoids showed corrected CFTR
gene expression with fully functional protein expression, indicat-
ing that CRISPR/Cas9 is a potential gene therapy strategy [198].
CFTR gene correction using CRISPR/Cas9 has been demonstrated
in patient-derived iPSCs [199]. Organoids derived from CF patients
have been deposited into biobanks and could have therapeutic
applications in the near future [194].

Differentiated kidney organoids have been used to model con-
genital kidney disorders following introduction of disease muta-
tions in human PSCs (hPSCs). This strategy was demonstrated by
Freedman et al., who generated an in vitro human model of poly-
cystic kidney disease (PKD) [201]. They used CRISPR to generate
biallelic mutants of the PKD1 and PKD2 genes, which encode
polycystin-1 (PC1) and polycystin-2 (PC2), respectively. These
knockout cell-derived kidney organoids formed cysts that are char-
acteristic of the disease in kidney tubules in vitro [201]. Genetically
edited, podocalyxin gene-mutated hPSC cell lines have been devel-
oped using this strategy. Those gene-defective kidney organoids
displayed junctional organization defects in podocyte-like cells,
recapitulating glomerulopathy-like phenotypes in vitro [201].

Other kidney diseases have been studied in H9 human embry-
onic stem cells (hESCs) that were edited using CRISPR/Cas9 to tar-
get the mutations in the PKD1/PKD2 genes that cause PKD and
autosomally dominant PKD [201]. The kidney organoids derived
from PKD1 or PKD2 KO cells displayed about 6% cyst formation
compared with wildtype kidney organoids, which resembles the
clinical symptoms of PKD [202,203]. The application of CRISPR/
Cas9-modified organoids has been extended to model diseases
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such as dyskeratosis congenital disease [204], monogenic diabetes
[205], microcephaly [206], autism spectrum disorders [207], multi-
ple intestinal atresia [208], and microvillus inclusion disease [209].

Therefore, organoids have great potential in cancer research,
regenerative medicine, disease modeling, and drug screening, and
they are a potential source of cells or whole organs for transplan-
tation [210]. Combining iPSC generation strategies with CRISPR/
Cas9-HDR gene correction and organoid generation would offer a
personalized approach to correcting even rare genetic disorders
and organ transplantation. Though use of iPSCs in regenerative
medicine is currently hindered by various drawbacks, they hold
great promise in this field. Numerous strategies are being investi-
gated to aid generation of ‘‘safe” iPSCs that could have a positive
influence on regenerative medicine [211,212].
4. Stem cell immune engineering to overcome HLA barriers in
regenerative medicine

Despite the progress in regenerative therapies to replace or
restore dysfunctional cells or tissues, immuno-incompatibility is
a major barrier to clinical application. A host immune response
called graft-versus-host disease (GVHD) can be triggered by the
highly polymorphic human leukocyte antigen (HLA) system upon
transplantation of cells or tissues into immune-competent individ-
uals [212]. GVHD is triggered by alloreactive T-cells, which are the
main cellular mediators that recognize non-self HLA molecules on
the surface of allogeneic cells by a process called allorecognition
[213]. Allogeneic donor cells can trigger the adaptive immune sys-
tem via B lymphocytes, T lymphocytes, or natural killer (NK) cells
[214,215]. CRISPR/Cas9 systems used with iPSC technology could
establish universal donor iPSC cell banks to match the diversity
of HLA phenotypes. The differentiation of such gene-engineered-
iPSCs into desired cell types could be used as a strategy for regen-
erative medicine [216].

The HLA genes belong to the major histocompatibility complex
(MHC) group of membrane-bound glycoproteins that comprises
three classes, though MHC class III molecules are not involved in
immunogenicity [215]. MHC class I genes are expressed on the sur-
face of all nucleated cells and platelets and comprise three major
genes, HLA-A, HLA-B, and HLA-C [217]. The polymorphism of
MHC class I genes has been attributed to an alpha heavy chain,
and its surface expression requires b2-microglobulin encoded by
the B2M gene. These class I genes enable elimination of cells
expressing foreign or viral antigens by presenting intracellularly
processed peptides to CD8+ cytotoxic T cells [218,219]. MHC class
II genes include HLA-DR, HLA-DP, and HLA-DQ and are expressed
only on specialized antigen-presenting cells such as macrophages,
dendritic cells, and B cells. Non-self-antigens presented by MHC
class II molecules trigger immune responses via CD4+ T helper
cells. The class II proteins contain polypeptide a and b chains
and require the CIITA transcription factor to activate HLA II gene
expression [218,219]. HLA homozygosity at HLA-A, -B, -C and -
DRB1 plays an important role during transplantations at allelic
levels. HLA homozygous haplotypes have been defined as having
only one allele at each of these four loci, whereas HLA heterozygos-
ity is defined as two alleles at any of these loci [220].

Many groups have attempted to achieve a universal donor using
different strategies. Early strategies to achieve successful engraft-
ment included identification of HLA homozygous iPSC cell lines
at HLA-A, HLA-B, and HLA-DR loci [221–223]. Those homozygous
cell lines, however, need to be matched at the HLA C1/C2 ligands
to prevent attack by natural killer (NK) cells [224]. NK cells trigger
an allogenic response when they do not detect HLA class I expres-
sion on cell surfaces through two inhibitory receptors, the killer
cell immunoglobulin-like receptor (KIR) and NKG2A receptor
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[224]. Precise CRISPR-based gene editing strategies have been used
to efficiently target the exons of the MHC class I HLA-A, HLA-B, and
HLA-C genes [225]. Various strategies have reduced HLA class I
gene expression through knockout of B2M [226–230]. However,
those cells could be targeted by host NK cells due to their defi-
ciency of class I genes. Immune responses triggered via NKG2A
receptors can be suppressed by HLA-E surface expression fused
to the B2M promoter [228]. However, HLA-E overexpression does
not suppress KIRD2+ NK cells. The KIR2DL receptor requires HLA-
C or HLA-G expression, as demonstrated by Han et al., who ablated
the expression of HLA-A, HLA-B, HLA-C, and HLA class II genes in
human iPSCs [224,228,231]. The HLA-deficient cells were modified
to express HLA-G and the immunomodulatory factors PD-L1 and
CD47, which resulted in a blunted T cell response [231]. A recent
study has demonstrated generation of hypoimmunogenic human
PSCs (hPSCs) by knocking out B2M to ablate HLA-class 1 and
Fig. 2. CRISPR-based HLA immunoengineering toward development of immunocompat
towards generation of HLA-immunocompatible iPS cell lines by selectively targeting HL
transactivators for HLA class I-B2M gene and HLA class II-CIITA using a CRISPR/Cas9 syste
lack of HLA surface expression can activate NK cells, risking proliferation of infected cells a
dimers fused to B2M promoter or as trimers containing HLA G signal peptides in cells lack
while conferring resistance to NK cell mediated lysis [236]. Strategy 2: HLA-C plays a piv
HLA-A and HLA-B biallelically, while retaining HLA-C along with other non-canonical HL
activation. The immunocompatibility of HLA-C-retained iPSCs can be improved by targe
[234]. Strategy 3: The CRISPR/Cas9 system has been demonstrated to increase immunoco
an HLA haplotype HLA-A (24:02, 24:02) and HLA-B (40:01, 54:01). HLA-B-engineered iPSC
binding groove. The HLA-KO homozygous iPSCs exhibit less immunogenicity while ma
using the CRISPR/Cas9 system. HLA homozygous cell line stocks have been proposed to m
used to generate class I HLA haploid iPSCs by targeted allele-specific HLA disruption in H
potential to HLA homozygous iPSCs [234].
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replace it with HLA-G1 within the frame of B2M. These engineered
hPSCs are reported to be compatible with CD8 + T cells and NK cell-
mediated immunotoxicity [232]. HLA-A and HLA-B carry Bw4
motifs that can be recognized by the KIR3DL1 receptors of NK cells
[224]. HLA-C(C1) can suppress KIR2DL2/3 receptors, and HLA-C
(C2) suppresses KIR2DL1 receptors [233]. On this basis, Xu et al.
demonstrated that sequential deletion of HLA-A and -B in iPSCs
using CRISPR/Cas9 while retaining expression of HLA-C allowed
cells to evade CD8+ T cells and NK cells more efficiently than
B2M KO [234]. However, minor histocompatibility antigens on
those MHC-edited cells could trigger snap responses in patients,
diminishing the T cell repertoire [235].

HLA class II proteins present peptides to CD4+ T helper cells and
have been manipulated in ways similar to those described for class
I genes. The CIITA transcription factor is essential for class II gene
expression, and several studies have attempted CIITA KO using
ible-induced pluripotent stem cells. The figure represents various strategies aimed
A class I and/or II using the CRISPR/Cas9 system. Strategy 1: Selective knockout of
m prevents immune response from cytotoxic CD8+ and CD4+ T cells [229]. However,
nd increasing the risk of cancer. Exogenous surface expression of HLA E single-chain
ing surface expression of HLA-A, B or C escapes allogenic recognition by CD8+ T cells
otal role in suppressing activation of NK cells. CRISPR/Cas9-mediated disruption of
A class I in iPSCs expands donor compatibility while suppressing T cell and NK cell
ted knockout of class II transactivator-CIITA, suppressing activation of CD4+ T cells
mpatibility by knocking out heterozygous HLA-B in homozygous HLA-A iPSCs with
s were generated by specifically mutating the alpha 2–3 domains that form the B2M
intaining pluripotency [237]. Strategy 4: Generation of pseudo-homozygous iPSCs
atch a major percentage of the population [226]. CRISPR/Cas9 gene editing can be
LA heterozygous iPSCs to generate ‘‘pseudo-homozygous” iPSCs with similar donor
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CRISPR/Cas9 [228,231,234]. Deuse et al. generated HLA-I and HLA-
II KO mouse and human iPSCs using CRISPR/Cas9, generating
hypoimmunogenic iPSCs that could evade immune rejection
[228]. However, depending on the cell fate of those modified stem
cells, deletion of important HLA genes could affect antigen presen-
tation. For example, dendritic cells derived from CIITA-deleted
iPSCs could have ablated antigen-presenting functions. Various
strategies aimed toward generation of universal donor stem cells
are highlighted in Fig. 2.

The use of genome editing tools such as the CRISPR/Cas9 system
with gene knock-in strategies opens avenues that could theoreti-
cally change the serotype of any HLA genes to better match donors
to recipients. This strategy could potentially generate fully func-
tional universal donor cell lines that would enable transplantation
into any patient.
Table 3
The CRISPR/Cas-based cell therapy in clinical trial. Data available at https://clinicaltrials.g

Clinical Trial
Identifier

Trial name Disease Targ

NCT03745287 A safety and efficacy study evaluating
CTX001 in subjects with severe sickle cell
disease

Sickle cell
disease

BCL1

NCT03655678 A safety and efficacy study evaluating
CTX001 in subjects with transfusion-
dependent b-thalassemia

b-
thalassemia

BCL1

NCT03728322 iHSCs with gene correction of HBB
intervention subjects with b-thalassemia
mutations

b-
thalassemia

HBB

NCT03872479 Single ascending dose study in participants
with LCA10

Leber
congenital
amaurosis
type 10

CEP2

NCT03166878 A study evaluating UCART019 in patients
with relapsed or refractory CD19 + leukemia
and lymphoma

B cell
leukemia, B
cell
lymphoma

TCR

NCT03081715 PD-1 knockout engineered T cells for
advanced esophageal cancer

recurrent or
metastatic
esophageal
cancer

PD-1

NCT02793856 PD-1 knockout engineered T cells for
metastatic non-small cell lung cancer

Stage IV non-
small cell
lung cancer

PD-1

NCT03545815 Study of CRISPR-Cas9 mediated PD-1 and
TCR gene-knocked out mesothelin-directed
CAR-T cells in patients with mesothelin-
positive multiple solid tumors.

Solid tumor,
adult

PD1

NCT03399448 NY-ESO-1-redirected CRISPR (TCRendo and
PD1) edited T cells (NYCE T Cells)

Multiple
myeloma,
melanoma,
synovial
sarcoma

PD-
1 an

NCT04037566 CRISPR (HPK1)-edited CD19-specific CAR-T
cells (XYF19 CAR-T cells) for
CD19 + leukemia or lymphoma

CD19-
positive
leukemia,
lymphoma

HPK

NCT03164135 Safety of transplantation of CRISPR CCR5-
modified CD34 + cells in HIV subjects with
hematological malignancy

HIV-1-
infection

CCR5

NCT03057912 Safety and efficacy study of TALEN and
CRISPR/Cas9 in treatment of HPV-related
cervical intraepithelial neoplasiaⅠ

HPV-related
malignant
neoplasm

HPV
16 a

NCT03855631 Exploiting epigenome editing in Kabuki
Syndrome: a new route toward gene therapy
for rare genetic disorders (Epi-KAB)

Kabuki
syndrome 1

KMT
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5. Transition of a CRISPR/Cas9-based genome editing system to
the clinical system

CRISPR/Cas systems have applicability far beyond the disease
modeling and universal cell line generation strategies reviewed
in this article. Advanced clinically approved gene editing strategies
rely on ex vivo gene manipulation that can provide therapeutic
advantage following transplantation of modified cells into recipi-
ents. Currently, clinical protocols are in progress to study applica-
tion of CRISPR/Cas9 technology in lung, renal, bladder, and
esophageal cancer [128]. In particular, a gene editing approach
using engineered T cells overexpressing chimeric antigen receptors
(CARs) has been successfully used in T cell-based immunotherapies
[238,239]. Researchers have successfully used multiplex genome
editing to generate CAR-T cells resistant to inhibitory programmed
ov/

et gene Interventions Phase
of
study

Group Status

1A Autologous CD34+ HSPCs Phase
I/II

Vertex
Pharmaceuticals
Incorporated,
USA

Recruiting

1A Autologous CD34+ HSPCs Phase
I/II

Vertex
Pharmaceuticals
Incorporated,
USA

Recruiting

CRISPR–Cas9-treated
induced hematopoietic
stem cells

Early
phase

Allife Medical
Science and
Technology Co.,
Ltd, China

Not yet
recruiting

90 Subretinal injection of
Drug AGN-151587

Phase
I/II

Allergan, USA Recruiting

and B2M CRISPR–Cas9 treated
CD19-directed chimeric
antigen receptor T (CAR
T) cells (UCART019)

Phase
I/II

Chinese PLA
General Hospital,
China

Recruiting

Autologous T-cells Phase
II

Hangzhou
Cancer Hospital,
China

Completed

Autologous T-cells Phase
I

Sichuan
University, China

Active, not
recruiting

and TCR CRISPR–Cas9-treated CAR
T cell infusions (ex vivo)

Phase
I

Chinese PLA
General Hospital,
China

Recruiting

d TCR
CRISPR–Cas9-treated
autologous T cells
(ex vivo), combined with
chemotherapy agents

Phase
I

University of
Pennsylvania,
USA

Terminated

1 CRISPR–Cas9-treated
autologous CD19-
directed T cells

Phase
I

Xijing Hospital,
China

Recruiting

Transplantation of
CRISPR–Cas9-treated
CD34 + HSPCs (ex vivo)

N/A Academy of
Military Medical
Sciences, China

Recruiting

E6/E7,
nd 18

CRISPR/Cas9-HPV18 E6/
E7T2

Phase
I

Sun Yat-Sen
University

Not yet
recruiting

2D Unknown (ex vivo) N/A University
Hospital,
Montpellier,
France

Active, not
recruiting

https://clinicaltrials.gov/
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cell death protein 1 (PD-1) that prevents recognition of tumor cells
by T-cells [239–241]. In fact, knock out of PD-1 in autologous
T-cells and infusion back into cancer patients was the first reported
use of CRISPR/Cas9 system in a human clinical trial in Europe
(NCT03399448) and China (NCT03081715) [242]. Several clinical
trials registered at www.clinicaltrials.gov (NCT04438083,
NCT03545815, NCT04037566, NCT04035434) are studying the
safety and efficacy of CRISPR/Cas9-engineered T cells to treat can-
cer [243]. The first reported CRISPR treatment for a rare condition
called Leber congenital amaurosis 10 (LCA10) used ex vivo correc-
tion of patient-derived retinal cells. The CEP290 gene mutation
responsible for LCA10 was deleted using CRISPR/Cas9 in retinal
cells that were then re-implanted into the eye [244,245]. Human
trials based on the CRISPR/Cas system have been undertaken for
treatment of various genetic diseases like b-thalassemia
(NCT03655678) (NCT0372832) and Kabuki syndrome 1
(NCT03855631) [246] (https://clinicaltrials.gov/). Table 3 summa-
rizes the application and advances of CRISPR/Cas system in clinical
trials. Collectively, the success of these clinical trials suggests the
potential of development and establishment of protocols for treat-
ment of various diseases and cancer using a CRSISR/Cas9-based
genome editing system.
6. Concluding remarks

CRISPR/Cas systems have been efficiently used to generate dis-
ease models, and great strides have been made toward clinical
applications. Research evidence demonstrates that genome editing
systems such as CRISPR/Cas9 can make significant contributions to
therapeutic strategies for various human diseases by directly inter-
fering with target genes or deriving multifunctional tools. The
news of the first CRISPR-gene-edited babies in China back in
2018 shocked the scientific world. That work, conducted by He
Jiankui et al., was a direct violation of the international scientific
consensus that gene editing using CRISPR/Cas9 is still in its infancy
and is not ready to use in germline modifications of humans, which
could be passed through generations [247]. However, CRISPR tech-
nologies have progressed ethically toward clinical trials. Develop-
ment of CRISPR/Cas9 genome editing technology has enabled
therapeutic application of CAR-T therapy through targeted inter-
vention of endogenous genes [248]. Engineered CAR-T cells called
iCARTs can be generated from patient-derived iPSCs with HLA-
independent customizable antigen recognition, and they have been
shown to kill cancer cells [248–250]. Together, these studies show
that patient-derived iPSCs or hESCs used to generate NK cells in
combination with CRISPR/Cas9-mediated gene modification could
be an efficient cancer immunotherapy. Such studies provide hope
that CRISPR will advance as an off-the-shelf cell therapeutic
approach.

Although hindered by drawbacks such as potential off-target
effects, Cas9 immunity, and HDR efficiency for gene correction, this
genome editing technology is progressing toward clinical applica-
tion. Much research is being conducted to tackle such drawbacks;
for example, the specificity of CRISPR can be improved by modify-
ing Cas9 construction [251], optimizing sgRNA designs [97,252], or
using Cas9 mRNA for transient Cas9 expression [44]. The efficiency
of HDR has been improved utilizing single-stranded donors
[253,254] and small molecules [14,16], varying the lengths of
homologous arms [255], or using modified double-stranded donors
[256]. The immunogenicity of CRISPR/Cas9 can be addressed utiliz-
ing non-viral delivery systems such as nanoparticles or lipid-based
vectors [257,258]. Deeper exploration of this genome editing tech-
nology has the potential to uncover fundamental biological mech-
anisms that drive many diseases and provide permanent cures for
previously untreatable diseases. The compatibility of CRISPR sys-
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tems with various biological systems, including stem cells, makes
them an incredible tool. However, use of stem cells is surrounded
by controversies including the ethical issues surrounding embry-
onic stem cells (ESCs) and somatic cell nuclear transfer (SCNTs),
carcinogenicity, and genetic instability factors surrounding iPSCs
[146,259,260]. iPSCs are not hindered by ethical issues, and pro-
gress is being made toward derivation of clinically relevant ‘‘safe”
iPSCs. Efforts are being made to replace the oncogenic genes in the
reprogramming cocktail that typically include Oct4, Sox2, Nanog,
and c-Myc with non-oncogenic genes such as Nkx3.1 or by elimi-
nating them completely [261–265]. Gene-corrected iPSCs could
be differentiated into specific cell types, and such ‘‘safe” stem cell
lines could be developed as universal donor stem cells that can
be transplanted into any patient and can be realistically achieved
using CRISPR systems to revolutionize the future of regenerative
medicin.
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