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Germ granules in spermatogenesis of Drosophila
Evidences of contribution to the piRNA silencing
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Ribonucleoprotein-containing granules in the cytoplasm of
germinal cells are known to be a common attribute of
eukaryotic organisms. Germ granules appear to ensure the
posttranscriptional regulation of germline mRNAs. Recent
studies specify the participation of the germ granules in
genome integrity maintenance by mechanisms involving
short piRNAs. PIWI clade proteins and associated piRNAs are
considered as key participants of the germline-specific
piRNA pathway. Proteins of the PIWI clade, Aub and AGO3,
concentrated in the germline-specific perinuclear granules
called nuage, are involved in silencing of retrotransposons and
other selfish repetitive elements in the Drosophila genome. In
Drosophila testes, two types of perinuclear nuage granules are
found: a large amount of small particles around the nuclei and
significantly larger structures, the piNG-bodies. In this mini-
review, we analyze the recent published data about structure
and functions of Drosophila male germ granules, and especi-
ally their involvement in the piRNA silencing pathway.

Cytoplasmic RNA-rich non-membranous structures, which are
remarkably conserved in germinal tissues of many eukaryotic
species, are currently designated as germ granules. More than a
century ago, a perinuclear granule named chromatiod body (CB)
was found in the cytoplasm of mammalian male germ cells from
late spermatocytes to round spermatids.1 Germ granules differ
significantly in their morphology and functions in various species,
for example, polar granules or pole plasm in D. melanogaster,
C. elegans, X. laevis, nuage and sponge body in D. melanogaster,
P granules in C. elegans, CB and intermitochondrial cement (IMC
or pi-body) in mammals.1,2 CB is thought to be cognate to the
germ cell specification structure, nuage, in Drosophila. It has been
proposed that germ granules contain proteins and mRNAs needed
for germline development and gametogenesis. Germ granules also
shared some protein components with cytoplasmic granules of
somatic cells known as P-bodies or processing bodies.3 However,
their molecular functions remain mysterious to this day. Recent
studies suggest the involvement of germ granules in defense of
the germline genome from active endogenous elements, such as

transposons.4 Maintaining genome integrity during spermato-
genesis and oogenesis is critical for a species viability. Discoveries
of the past ten years revealed the essential role of gonad-specific
piRNAs (small RNAs of 25–30 nt that associate with proteins
of PIWI clade) in the silencing of transposons.5-10 This is now
considered as a general mechanism of genome defense in the
germlines of plants, fungi, worms, insects and mammals.4 piRNAs
are the largest and most complicated class of small RNAs.
Biogenesis of piRNAs and piRNA-mediated posttranscriptional
silencing appear to take place mainly in the cytoplasmic germ
granules.11-14 In this mini-review we focus on the recent investiga-
tions of male germ granules from the well-known eukaryotic
model organism, Drosophila, and their involvement to the piRNA
silencing pathway.

Nuage as an Organelle Composed of Germ Granules

Perinuclear granules in germ cells of Drosophila have been
named nuage (which means “cloud” in French). Nuage was
described at first in nurse cells of the Drosophila ovaries.11,15-17

These structures are visible as discontinuous rings around the
nuclei on confocal slices. Similar structures were also detected in
spermatogonial cells and primary spermatocytes in the testes.17-19

The main marker and essential component of nuage in both
sexes is RNA-helicase Vasa.16,17,20 Proteomic content of ovarian
nuage granules includes: proteins of the PIWI subfamily,
Aubergine and Argonaute 3; RNA-helicases, Vasa, Spindle E
and Belle; Tudor domain-containing proteins, Tudor, Spindle E,
Krimper, Tejas; proteins known as components of somatic
P-bodies taking part in mRNA degradation, DCP1, Me31B and
Pacman; and other proteins, such as putative nuclease Squash
and high mobility box group protein Maelstrom.11,12,15-17,21-24

Nuage is thought to be involved in the selection and translational
control of mRNAs transported from the nucleus.12,16,17 Recent
studies revealed the association of nuage with the piRNA
biogenesis and piRNA-dependent silencing of transposons.11,12

Proteins of the PIWI subfamily, Piwi, Aubergine (Aub) and
Argonaute 3 (AGO3), form complexes with piRNAs. These
complexes recognize mRNAs complementary to guide piRNAs
and perform RNA slicing, causing target degradation. PIWI
clade proteins are considered the main players of the piRNA
pathway.5-8,10,25 Two main models of piRNA processing have
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been suggested based on deep-sequencing analysis of ovarian
piRNAs. In germinal cells of the ovaries, piRNAs complementary
to transposon transcripts undergo amplification via the “ping-
pong” cycle.7,8 Aub interacts mainly with antisense piRNAs
derived from specialized genomic “master” loci, and AGO3 pre-
ferentially associates with the sense ones.7,8,10,25 Sense transposon
transcripts are targeted by the Aub-containing antisense silenc-
ing complexes, which cause transcript cleavage. The cleavage act
results in the production of 5'-termini of sense piRNAs. The
details of 3'-processing of piRNAs are unknown up to now.
These sense piRNAs are subsequently loaded into the AGO3-
containing sense silencing complexes, which presumably recog-
nize long antisense transcripts and generate 5'-ends of antisense
piRNAs, which are involved in the next round of the cycle.7,8

The amplification cycle produces pairs of sense and antisense
piRNAs which have a ten nucleotide overlap of complementary
sequence in their 5'-ends. Nuage in nurse cells of the Drosophila
ovaries is considered to be a site for both the piRNA maturation
and the piRNA-guided silencing.10-12,25 The third member of
PIWI subfamily, nuclear protein Piwi, is expressed in both
germline and somatic cells of the ovaries. In somatic cells in the
absence of germline-specific Aub and AGO3 Piwi-associated
piRNAs are produced by another mechanism, presumably via
direct cleavage of long transcripts (primary processing). The ping-
pong cycle is shown to be independent from Piwi.7,10 However,
Piwi is essential for transposon silencing in the germline,6,10,25

and, according to recent data, is involved in co-transcriptional
repression of telomeric retrotransposons.26

piRNA Pathway in the Testes

The first case of natural piRNA-mediated silencing of endogenous
genes was discovered in the Drosophila testes.5 However, the
majority of papers published since then is devoted to the piRNA
silencing in the ovaries, where powerful transposon activity is
easily detectable in piRNA pathway mutant flies. Here we
summarize the known peculiarities of the piRNA pathway in the
testes.

Transcripts of the X-linked endogenous tandemly repeated
Stellate genes, but not of transposons, are shown to be the main
targets of the piRNA silencing in the testes of D. melanogaster.18,27

Stellate gene expression is strongly repressed by the piRNA
machinery in wild type males. In case of a deletion of the
homologous Y-linked crystal or Suppressor of Stellate (Su(Ste))
locus, abnormally high-level Stellate expression occurs in primary
spermatocytes and leads to the accumulation of protein crystals,
disturbances in meiotic chromosome condensation and segrega-
tion and essentially reduced fertility.28,29 Abundant anti-sense
transcription of the crystal locus is responsible for the production
of antisense Su(Ste) piRNAs complementary to Stellate transcripts.
Nuage proteins, such as Aub, AGO3, Spindle E, Armitage,
Tejas, Krimper, Maelstrom, Vasa and Squash are found to be
necessary for the piRNAs-mediated Stellate silencing. Mutations
in these genes result in the loss of Su(Ste) piRNAs and Stellate
derepression.5,6,18,19,24,25,30,31 It should be noted that the proteins,
which deficiencies lead to Stellate derepression, are largely

concentrated to nuage. Piwi, the founder of PIWI clade, is
known to be expressed mainly in somatic cells of the testis
germinal proliferative center.27 It is considered dispensable for
Stellate silencing.6

Large-scale sequencing of testis Aub-associated short RNAs
revealed that 70% of these piRNAs were Su(Ste)-derived,
predominately in antisense orientation.18 About 90% of Su(Ste)
piRNAs were presented by a piRNA of a single type, called Su
(Ste)-4, or its variants. This observation strongly favors the
assumption that Su(Ste) piRNAs are non randomly produced
from precursor anti-sense Su(Ste) transcripts, but rather from a
limited number of “hotspots.”However, among AGO3-associated
piRNAs only 6% belongs to Su(Ste) piRNAs abundantly
represented by Su(Ste)-4 too. Only a trace amount of sense Su
(Ste) piRNAs was found in Aub and AGO3 complexes.18 Also,
a few complementary pairs of Su(Ste) piRNAs overlapping by
5'-ends (bearing signatures of the ping-pong cycle) were found.
Thus, the bulk of testis piRNAs is generated by primary
processing rather than the ping-pong mechanism. In spite of
AGO3 expression level being significantly lower in the testes
than that of Aub,18 the biogenesis of Su(Ste) piRNAs and
Stellate silencing are dependent on both Aub and AGO3.5,18,25

A biological rationale for these requirements is still unclear now.
Only 54% of piRNAs from the AGO3-derived library and 7%

from the Aub-derived one belong to transposon sequences.18 A
significant part of transposon-associated piRNAs demonstrated
ping-pong signatures and generated ping-pong pairs similarly to
the situation in the ovaries. However, contrary to their effects in
the ovaries, Aub and AGO3 deficiencies only slightly affect
transposon expression in the testes.5,18 Apparently, mobilization
of transposons in the testes is essentially under the control of an
alternative mechanism.

In our recent paper19 we found at least two types of perinuclear
nuage granules in germinal cells of the testes: a lot of small
particles of about 0.6 mm that were concentrated around the
nuclei, and significantly larger structures of about 2.4 mm, usu-
ally one per cell. The volume of larger granules is found to be
more than 50 times that of the smaller ones. Large granules are
enriched by the known nuage proteins: Vasa, Aub, AGO3,
Tudor, Spindle E, Belle, Squash, Cutoff and also AGO1, the
principal component of the microRNA pathway. Since most of
the identified components are known as participants of the
piRNA pathway, the new structure was named the piNG-body
(piRNA Nuage Giant body). Vasa and Aub are shown to be
completely colocalized at the periphery of the piNG-bodies,
whereas AGO3 is located in the central lobe. The piNG-bodies
appear in primary spermatocytes during active transcription
period and are lost before meiotic divisions (Fig. 1). Neither
piNG-bodies nor small nuage granules are detected in round
spermatids. Mutational analysis demonstrated a strong associa-
tion of piNG-bodies formation with the Stellate silencing.19

Symmetrical arginine methylation of PIWI clade proteins
provided by arginine methyltransferase Capsuleen (Dart5)32 is
found to be essential for piNG-body formation. Capsuleen
mutations leading to Aub delocalization to random cytoplasmic
foci induce strong Stellate derepression and loss of Su(Ste)
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piRNAs.19 Since AGO1 is found to be a piNG-body com-
ponent, the functions of the large granules in the microRNA-
mediated mRNA silencing can also be expected. In addition
to that we detected DCP1, a decapping enzyme and marker
of somatic P-bodies, as a piNG-body constituent (Kibanov,
unpublished data).

Whereas no piNG-body-like large nuage
structures are observed in the ovaries, a question
concerning their role in the testes is raised.
Taking into account that the conventional nuage
granules in the ovarian nurse cells appear to be
enough for functioning of the “ping-pong”
piRNA silencing mechanism, the piNG-bodies
seem to be dispensable for the amplification
cycle. We know that Stellate transcription occurs
in primary spermatocytes30 and temporarily
coincides with the piNG-body formation.19

The analysis of Su(Ste) piRNAs derived from
the testis libraries favors their generation by
primary processing rather than by the “ping-
pong” cycle.18 The arranged internal structure of
the piNG-body and a high concentration of
piRNA pathway components19 seem to con-
tribute to effective kinetics of the Stellate
silencing process. Abundant transcription of
antisense Su(Ste) starts in spermatogonial cells,
earlier than that of Stellate genes.30 It is tempting
to speculate that Su(Ste) piRNAs are produced
before the start of Stellate transcription by a
variant of primary processing. However, details
of Stellate repression by the piRNA pathway
and Su(Ste) piRNA biogenesis remain obscure
to date.

Functional Relations
Between piNG-body and CB

The mammalian CB is another large granular
organelle involved in posttranscriptional mRNA
processing in the testes. Although it appears
in late pachytene spermatocytes and finally
forms in round spermatids as a single structure
per cell (Fig. 1), its persistence, similar to the
piNG-body, coincides with the strong wave
of transcription.1,2 Now more than 40 various
proteins are identified as CB components.1,2

The CB contains MVH, the mammalian
homolog of Drosophila Vasa protein; MIWI
and MILI, PIWI clade proteins; Tudor domain-
containing proteins; Dicer, the nuclease
necessary for the microRNAs processing.33,34

MicroRNAs and microRNA pathway proteins
were found in the CBs suggesting their role in
microRNA-mediated expression regulation.33

The CBs also contain proteins of the general
mRNA degradation machinery.1,2,33,34 Biochemical isolation of
mouse CBs reveals a high concentration of piRNAs, named late
or pachytene piRNAs,34 which do not demonstrate ping-pong
signatures unlike pre-pachytene piRNAs that are expressed earlier
in gonocytes.9,13 Pachytene piRNAs originate mainly from large
non-repeated clusters located in non-annotated genome regions,

Figure 1. Scheme of spermatogenesis in mouse and Drosophila. Left: Germ granules in
mouse gonocytes (IMC or pi-bodies, piP-bodies13,14), spermatogonia, early sprematocytes
(IMC), late spermatocytes (IMC, CB precursors) and haploid round spermatids (CB) are
depicted. Adapted from ref. 2. CB formation coincides with periods of active transcription
(arrows) and emerging of abundant pachytene piRNAs. In elongating spermatids the CBs
gradually degenerates. Right: Two types of germ granules are found in the Drosophila male
germline. There are a lot of small nuage granules, that appear early in germline stem cells,
and significantly larger structures, the piNG-bodies. The piNG-bodies form in primary
spermatocytes and disappear before meiotic divisions. Arrow indicates massive transcription
during spermatocyte growth and maturation. No germ granules are found in round
spermatids, where transcription program dramatically ceases.
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but not from transposon-related sequences.35-37 Targets of
pachytene piRNAs are largely unknown. Although the exact roles
of the CB and pachytene piRNAs in mouse spermatogenesis
remain to be determined, we suggest that the piNG-body and
CB have shared attributes and can be functionally related
structures.

The recent studies of the piRNA pathway using Drosophila
testes provide important insights into the biological role of the
germ granules. Similar characteristics and protein content of the

CB and piNG-body allow using Drosophila as the model
organism for further investigation of molecular principles of the
germ granules organization and functioning.
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