
Vol.:(0123456789)

SN Computer Science (2022) 3:426
https://doi.org/10.1007/s42979-022-01258-y

SN Computer Science

ORIGINAL RESEARCH

Fuzzy Pattern Tree Evolution Using Grammatical Evolution

Aidan Murphy1  · Muhammad Sarmad Ali1  · Douglas Mota Dias1,2  · Jorge Amaral2  · Enrique Naredo1  ·
Conor Ryan1 

Received: 30 July 2021 / Accepted: 20 June 2022
© The Author(s) 2022

Abstract
A novel approach to induce Fuzzy Pattern Trees using Grammatical Evolution is presented in this paper. This new method,
called Fuzzy Grammatical Evolution, is applied to a set of benchmark classification problems. Experimental results show
that Fuzzy Grammatical Evolution attains similar and oftentimes better results when compared with state-of-the-art Fuzzy
Pattern Tree composing methods, namely Fuzzy Pattern Trees evolved using Cartesian Genetic Programming, on a set of
benchmark problems. We show that, although Cartesian Genetic Programming produces smaller trees, Fuzzy Grammatical
Evolution produces better performing trees. Fuzzy Grammatical Evolution also benefits from a reduction in the number of
necessary user-selectable parameters, while Cartesian Genetic Programming requires the selection of three crucial graph
parameters before each experiment. To address the issue of bloat, an additional version of Fuzzy Grammatical Evolution
using parsimony pressure was tested. The experimental results show that Fuzzy Grammatical Evolution with this extension
routinely finds smaller trees than those using Cartesian Genetic Programming without any compromise in performance. To
improve the performance of Fuzzy Grammatical Evolution, various ensemble methods were investigated. Boosting was seen
to find the best individuals on half the benchmarks investigated.

Keywords  Grammatical evolution · Pattern trees · Fuzzy logic

Introduction

Machine learning (ML) has been very successful in finding
solutions to a vast swathe of real-world problems and con-
tributed to innovation in products and research. Since the
turn of the millennium, the number of applications of ML
has increased owing to the availability of vast collections
of data which can be cheaply stored and massively paral-
lel computer power, new powerful training algorithms, the
emergence of new hardware platforms based on graphics
cards with GPUs, and the wide availability of open-source
libraries [10]. Such environments provide ML systems with
the ability to solve complicated real-world problems and

routinely achieve new state-of-the-art results. Remarkably, it
is seen in image classification and some other areas that ML
systems have surpassed human performance [17].

The success of ML and learning algorithms in general,
although wildly successful in terms of results and predic-
tions, have their shortcomings. The most forceful is the lack
of transparency, which identifies the so-called black-box
models. In these black-box models, it is very demanding or
even unfeasible to recognize how the ML system makes its
decision or to extract the knowledge of how the decision is
made. Put simply, it does not permit a human being, expert
or not, to examine, comprehend, and make sense of how the
model reaches its conclusions.

To try to solve these questions, Explainable Artificial
Intelligence (XAI) [1, 5] has appeared, concerned with the
interpretability of state-of-the-art ML. The main purpose of
this field of research is to design a set of models and inter-
pretable methods that are more explainable than the state
of the art. This is all done while retaining the high levels of
predictive performance which have been achieved [7].

Fuzzy logic and fuzzy set theory have supplied a frame-
work in which it is possible to generate interpretable models

This article is part of the topical collection “Computational
Intelligence” guest edited by Kurosh Madani, Kevin Warwick, Juan
Julian Merelo, Thomas Bäck and Anna Kononova.

 *	 Aidan Murphy
	 murpha56@tcd.ie

1	 Lero and University of Limerick, Limerick, Ireland
2	 Rio de Janeiro State University, Rio de Janeiro, Brazil

http://orcid.org/0000-0002-6209-4642
http://orcid.org/0000-0002-7223-5322
http://orcid.org/0000-0002-1783-6352
http://orcid.org/0000-0001-6580-5668
http://orcid.org/0000-0001-9818-911X
http://orcid.org/0000-0002-7002-5815
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01258-y&domain=pdf

	 SN Computer Science (2022) 3:426 426   Page 2 of 13

SN Computer Science

[8, 18]. It allows the knowledge obtained from the data to be
communicated in a comprehensible form to humans, close
to natural language. This gives any model which uses fuzzy
sets a high degree of interpretability [20]. Most developed
fuzzy models are rule-based fuzzy systems (FBRS) that can
represent both classification and regression functions and
for which there are many strategies developed for the syn-
thesis of these models [8]. Deriving fuzzy models based on
easily interpretable rules is not an easy task. Depending on
the application, many rules may be necessary, with many
antecedents, that make understanding the model a trouble-
some task. However, a system which contains relatively few
rules can be easily interpreted. Its predictive accuracy may
be compromised by this restriction, though.

This is an extended version of a paper published in the
proceedings of the 12th International Conference on Evo-
lutionary Theory and Applications [25]. The previous work
is built upon by investigating the effects various ensemble
methods have on the performance of the classifiers. The
techniques considered were aggregation, adaptive boosting,
and gradient boosting. A method based on the theory of
fuzzy sets, Fuzzy Pattern Trees (FPT), is used. An FPT is
not based on rules, but on a hierarchical method. The FPT
is now learned with a well-known method, Grammatical
Evolution (GE).

GE is flexible enough to derive feasible models such as
FPTs. It can easily address different problem types by aug-
menting the grammar and the evaluation function. Therefore,
GE can find FPT models which solve classification tasks and
achieve explainability simultaneously. This combination of
GE, Fuzzy Logic, and a hierarchical structure gives a valu-
able opportunity to address the new research lines in XAI.
Experimental results show that FPTs evolved using GE solve
benchmark classification problems with competitive results
against state-of-the-art methods and find superior results in
three of them.

“Background” discusses the main background concepts.
These include FPTs, Cartesian GP (CGP), and GE. “Fuzzy
GE” describes the proposal and details the contributions of
this work. Next, “Experimental Setup” presents the experi-
mental setup, outlining all of the considered variants and
performance measures. “Results” presents and discusses the
main experimental results of the research. Finally, “Conclu-
sions” presents the conclusions and puts forward the future
work derived from this research.

Background

Fuzzy Sets and Fuzzy Pattern Trees

Fuzzy sets are an extension of regular sets, which were first
introduced by [44]. They differ from traditional “crisp” sets

by utilizing fuzzy logic which allows elements to have dif-
ferent levels of membership to classes and not to simply be
associated with one single class. That is to say, it allows for
some vagueness in categorizing some data. The schematic
of a fuzzy system, how input data are fuzzified, is shown in
Fig. 1. In this example, the element has a degree, or grade,
of membership of 0.2 in Low, 0.8 in Medium, and 0 in High.

More formally, a fuzzy set is a pair (X, �) where X is a set
and � is a membership function. This membership function
� maps all elements of X to a number between 0 and 1

This is in contrast to traditional sets, which have functions
which map each element of a set X to either 0 or 1.

The membership function, � , which maps the set X to the
fuzzy set A is written as �A.

The membership function gives the degree of similarity
of an element to a fuzzy set. This could also be stated as the
distance between an element and a characteristic element
of that set. It should be noted that this is not to be confused
with probability of membership.

FPTs were first introduced, independent of each other, by
Huang et al. [19] and Yi et al. [43] who called this type of
model Fuzzy Operator Trees. The FPT model class is asso-
ciated with other model classes, including fuzzy rule-based
systems (FRBS) and fuzzy decision trees (FDT).

The goal of fuzzy logic was to allow the knowledge
acquired from data to be expressed in a comprehensible
form, very close to natural language, and mimic how an
expert would convey their opinion. A doctor could describe
their patient as either young, middle-aged, or old. Depending
on the context young will have different boundaries, there is
no quantitative boundary to describe the term. A 40-year-old
person may be described as young if they have a heart attack
but old if they have Chicken Pox. The degrees of youngness
will also vary. Therefore, these terms, as well as terms like
tall, long, and hot, are referred to as fuzzy concepts.

(1)� ∶ X → [0, 1].

Fig. 1   Fuzzy system

SN Computer Science (2022) 3:426 	 Page 3 of 13  426

SN Computer Science

An advantage of using GE in the context of evolving
structures for fuzzy rule base is the flexibility it gives in
defining different partitioning geometries based on a chosen
grammar [41].

The use of fuzzy sets allows for the creation of fuzzy
rules. Similar to crisp rules, they yield an output based on
a certain input or inputs. However, unlike crisp rules which
state something is either x or y (e.g., true or false, positive
or negative, etc.) fuzzy rules allow for degrees of truth to be
incorporated into its statements. That is to say, something
does not need to be entirely true or entirely false.

An example of a binary, crisp IF–THEN rule can be seen
below:

∗ IF Cholesterol > 140

∗ THEN BMI > 25.0.

The clear drawback of such a rule is the hard cut-off limit. If
a person has a Cholesterol of 139.9, then the model will not
predict that their BMI will be greater than 25, despite being
having an almost identical Cholesterol to a person with 140.

An example of a fuzzy IF–THEN rule would be

∗ IF Cholesterol HIGH
∗ THEN BMI HIGH.

The fuzzy concepts of Cholesterol HIGH and BMI HIGH are
described using fuzzy sets. These IF statements can combine
many variables together:

∗ IF Cholesterol HIGH AND Heart Rate HIGH
∗ THEN BMI HIGH.

These combined rules can be used to identify relationships
between input and output variables and create classifiers.
The most popular of these classifiers are fuzzy rule-based
systems (FRBS) and fuzzy decision trees (FDTs).

FDTs are an extension of standard decision trees. Despite
their similar hierarchical structure, they are quite different
that FPTs. They follow a top–down approach and work by
continually partitioning the domain to build their single
classifier.

FRBS are rule-based classifiers and are flat structures
which use a fuzzy rule base to model the relationships in
the data. Despite their obvious differences in representa-
tion (flat vs hierarchical), it has been shown that FPTs are a
generalization of rule-based systems [36].

An FPT is a hierarchical, tree-like structure. The inter-
nal nodes are fuzzy logical and fuzzy arithmetic operators,
and the leaf nodes are the fuzzified input variables and
constants. Like traditional GP or GE trees, the information
passes from the bottom of the tree to the top. An operator
node takes the value or values of its descendants as inputs,

performs the required operation, and conveys the result to
its preceding node. Thus, an FPT implements a recursive
mapping producing outputs in the [0,1] interval.

FPTs have independently been introduced by [19] and
[43], who called this type of model Fuzzy Operator Trees.
The FPT model class is related to several other model
classes including fuzzy rule-based systems (FRBS) and
fuzzy decision trees (FDT).

The following fuzzy operators are used, where a and b
are the inputs to the operator:

where WTA​, WA & OWA denote Winner takes all, Weighted
Average, and Ordered Weighted Average, respectively. In
the case of the WA and OWA operators, k will be a value
created randomly within the range [0, 1]. Only one input will
be provided in the case of the concentration, dilation, and
complement. WTA​ will be the root node of every fuzzy tree.
This function receives the score from each FPT and labels
the individual corresponding to the highest scoring tree.

Figure 2 shows an example of an FPT, which was
trained from a wine quality dataset, which contains various
chemical properties of wines and an output of the wine’s
quality. This FPT represents the fuzzy concept—a fuzzy
criterion for—wine with a high quality.

To interpret a whole tree and grasp the fuzzy pattern it
depicts, we first start at its root node. It represents the final
aggregation (a simple average in this case) and outputs
the overall evaluation of the tree for a given instance (a
wine). Then, we proceed to its children and so forth. An
interpretation of this tree could be:

A high-quality wine fulfills two criteria. We call these
two criteria—the left and right subtrees of the root node—
criterion I and criterion II. Criterion I is fulfilled if the
alcohol concentration of the wine is high or its density is
high. Criterion II is fulfilled, if the wine has a high con-
centration of sulfates or a third criterion (III) is met. This

(2)WTA = IF{}()..ELSE()

(3)MAX = max(a, b)

(4)MIN = min(a, b)

(5)WA(k) = ka + (1 − k)b

(6)OWA(k) = k ⋅max(a, b) + (1 − k)min(a, b)

(7)CONCENTRATE = a2

(8)DILATE = a
1

2

(9)COMPLEMENT = 1 − a,

	 SN Computer Science (2022) 3:426 426   Page 4 of 13

SN Computer Science

is the case if both alcohol concentration and the wine’s
acidity is low.

FPTs were created with an emphasis on the representation
of knowledge through a tree-shaped expression rather than
representing it in the form of rules.

Hierarchical representation minimizes existing prob-
lems in rule-based systems, such as exponential increase
in the number of rules with increasing entries and loss of
interpretability when a large number of rules are required
to achieve accuracy requirements. The tree is represented
as a graph, favoring the human ability to recognize visual
patterns, allowing the discovery of connections between the
input variables and a class. These connections can be com-
plicated to make when using models with a fixed set of rules.

To give a better interpretability to the evolved models,
fuzzy logic is used to build more meaningful trees. To this
end, it uses the following three linguistic terms for fuzzy
labels: low, medium, and high (see Fig. 1).

To obtain a classifier one tree is created for each class, the
classifier decision occurs in favor of the tree (class) that has
the highest output value. Also, since each tree is considered
a “logical description” of the class, it allows a more specific
interpretation of the learning problem [37].

FPTs provide an alternative for the construction of accu-
rate and interpretable fuzzy models. The interpretability that
FPTs evolved using GE can offer has already been empiri-
cally shown [27].

Top–Down Induction of Pattern Trees

A successful method to create FPTs is seen in [37]. They
called their approach Pattern Tree Top–Down Epsilon
(PTTDE), a beam search technique. Epsilon determines the
improvement required to continue to grow the tree.

The Beam Search learning scheme is quite “greedy”. This
prevents optimal exploration of the search space and greatly

increases the likelihood of the algorithm getting trapped in a
local optimum. It also suffers from the curse of dimensional-
ity. That is to say, if there is a large quantity of input features
and the width of the beam is large, then the algorithm will
use a lot of resources and time to evaluate all the possibili-
ties. This leads to an exponential increase in the number of
possible combinations.

Cartesian GP

Genetic Programming (GP) examines the automatic genera-
tion of computer programs, inspired by the theory of evo-
lution. The initial representation of GP was in a tree from
[21]. CGP [24] is a flavor of GP with approximately 20 years
of interesting and varied research works addressing a wide
range of problem domains.

CGP uses graphs to represent solutions. Its distinguish-
ing characteristic among other GP variants is its ability to
encode computational structures as directed graphs using
redundant genes. This redundancy serves CGP to get a very
adaptable representation by allowing the outputs nodes to
either connect or disconnect to nodes from previous nodes
in the directed graph.

The synthesis of FPTs by CGP was proposed by [34] and
their results indicated that FPTs synthesized by CGP are
competitive with other classifier algorithms while at the
same time being smaller than those obtained in [37].

The synthesis of FPTs by CGP can also be found in [35].
The authors apply the improvements in CGP proposed by
[16] and implemented the well-known NSGA-II strategy to
deal with two conflicting objectives, namely, the accuracy
and the size of the tree.

The underlying difference between traditional forms of
Linear GP (LGP) and CGP and their restrictions in connec-
tivity was investigated in [42].

The difference between graph-based LGP and CGP is
the means with which they limit the feed-forward connec-
tivity of their directed acyclic graphs. In particular, CGP
restricts connectivity based on the levels-back parameter,
while LGP’s connectivity is implicit and is under evolution-
ary control as a component of the genotype.

Experimentally, it has been shown that programs evolved
using CGP do not exhibit bloat [40]. However, using CGP to
evolve programs in an arbitrary language can be problematic.

Grammatical Evolution

GE is often thought of as variant of GP. It differs in that
the space of legal programs it can explore is described by
a grammar [33] or Attribute Grammar (AG) [31] given in
Backus–Naur Form (BNF) . Crucially, it can evolve com-
puter programs or arbitrary structures which can be defined
using these grammars [3, 4, 39].

Fig. 2   Tree representing the interpretable class “Good Quality Wine”,
showing each variable with different color, taken from [25]

SN Computer Science (2022) 3:426 	 Page 5 of 13  426

SN Computer Science

The interchangeable design behind GE, as shown in
Fig. 3, means that GE is very flexible. Any search tech-
niques may be used, such as Simulated Annealing or Par-
ticle Swarm, but usually a variable-length Genetic Algo-
rithm (GA) is employed to evolve a population of binary
strings. A mapper is used to transform the strings onto a
program using the grammar. Any program/algorithm can
be used to evaluate those individuals.

The linear representation of the genome allows the use
of the typical genetic operators of crossover and muta-
tion in the manner of a typical GA. This is in contrast to
tree-based GP. We use GE for our system, because its use
of a grammar facilitates the adding of extra types in later
versions, although GP could equally have been used in this
case. Each individual’s chromosome contains in its codons
(typically groups of 8 bits) the information necessary to
select and apply the grammar production rules, construct-
ing the final program which is evaluated. The mapping
process is illustrated in Fig. 4.

Production rules for each non-terminal are indexed
starting from 0. The mapping starts with the left-most
non-terminal. To select the next production rule, the
next codon value in the genome is read and interpreted
using the formula: p = c % r , where c represents the cur-
rent codon value, % represents the modulus operator,
and r is the number of production rules for the left-most
non-terminal.

If the algorithm reaches the end of the genome, a wrap-
ping operator is invoked. This continues the mapping pro-
cess by returning to the start of the individual and reading
the codons from the beginning of the genome. The map-
ping process stops when all of the non-terminal symbols
have been replaced with terminal symbols, resulting in
a valid program. If non-terminal symbols remain after a
maximum number of iterations, the program is considered
invalid and is penalized by being given the lowest possible
fitness.

Fuzzy GE

This section introduces Fuzzy GE, an evolutionary approach
to generate classifiers with linguistic labels. The aim is to
create meaningful models applied to binary and multi-clas-
sification problems.

Standard Classification

There are many approaches used to evolve classifiers [12]
and GE has been shown to be well suited for such a task
[30]. One of the most popular methods for evolving a GP
binary classifier is Static Range Selection (SRS) [22]. For
multi-class classification, Centred Dynamic Class Boundary
Determination (CDCBD) was proposed [45].

In binary classification, an input � ∈ ℜn has to be clas-
sified as belonging to one of two classes, �1 or �2 . In this
method, the goal is to evolve a mapping g(�) ∶ ℜn

→ ℜ .
The classification rule R states that pattern � is labeled as
belonging to class �1 if g(�) > r , and belongs to �2 other-
wise, where r is the decision boundary value.

The fitness function is defined to maximize the total clas-
sification accuracy after R is applied, normally setting the

Fig. 3   The GE system uses a search engine (typically a GA) to gener-
ate solutions for a given problem, by recombining the genetic mate-
rial (genotype) and mapped onto programs (phenotype) according to
a language specification (interpreter/compiler). Taken from [25]

Fig. 4   Example of a GE genotype–phenotype mapping process for
the Iris dataset, where the binary genotype is grouped into codons
(e.g., 8 bits; red & blue), transcribed into an integer string, then used
to select production rules from a predefined grammar (BNF-Gram-
mar), and finally translated into a sequence of rules to build a classi-
fier (phenotype). Taken from [25]

	 SN Computer Science (2022) 3:426 426   Page 6 of 13

SN Computer Science

decision boundary to r = 0 . A data sample is passed to the
tree which yields a score. If the score is below the bound-
ary, it is labeled a particular class, and likewise, it is labeled
the other class if it is above the boundary. This process is
illustrated in Fig. 5.

The process for CDCBD is similar, with two or more
boundaries existing, which can dynamically change to class
each individual.

Both approaches only evolve one tree (or mapping)
regardless of the number of classes and attempt to clas-
sify the individual based on its output from that tree. There
are drawbacks to this approach as much effort needs to be
expended into designing or hand-crafting class boundaries or
creating systems to optimise them for each individual [13],
which becomes increasingly more difficult as the number of
classes increases.

FGE Classification

An FPT classifier requires that one FPT be evolved per class
in the problem. Evolving multiple trees simultaneously adds
a great deal of complexity to the problem. In general, care
must be taken and special operators, particularly when using
crossover, must be created [2]. However, due to the separa-
tion between the search space and program space in GE and
the grammar we have specified, it is not necessary to create
any special operators in our approach, Fuzzy Grammatical
Evolution (FGE).

The novel method involves evolving only one large solu-
tion. This solution comprises of FPTs, with each class hav-
ing its own FPT, and a decision node at its root. Each FPT
can therefore be thought of as a subtree of a larger clas-
sifier tree, as shown in Fig. 6, with the root node assign-
ing the label to each individual. More formally, i mappings
fi(�) ∶ ℜn

→ [0, 1] , where i is the number of classes in the
problem to be evolved. The FPT, or subtree, ( f1(�)... fi(�) )
which confers the largest score to the individual is deemed
the winner and the individual is labeled with the class that
FPT represents.

For example, if f1(�) yielded the largest score, the individ-
ual would be assigned to class 1. This is highlighted further

in Fig. 7, where the second tree yields the better score, Sc ,
the hollow star. The individual is therefore assigned class
c. This is in contrast to the methods described above which
only produce 1 score per individual and assign it a label
based on the score’s position relative to a boundary(s).

FGE does not require the use of any protected operators
when evolving multiple trees due to the unique separation
between genotype and phenotype, and only needs grammar
augmentation to address different problem types.

Fuzzy Representation

Fuzzy logic is used to give better interpretability to the
evolved models and give a deeper meaning to the trees. It
uses the following linguistic terms for fuzzy labels: low,
medium, and high. The input space was partitioned uni-
formly to create fuzzy partitions.

The fuzzy operators used are described in “Fuzzy Sets
and Fuzzy Pattern Trees”. The values of the inputs of the

Fig. 5   Pictorial representation of static range selection. An individual
is given to the model which outputs a value. If this output exceeds
the threshold value, it is classed as belonging to on class; if it is less

than the threshold value, then it is classes as the other. In the exam-
ple, the output of the tree is less than 0, the designated threshold, and
is classed as belonging to �

2

Fig. 6   Pictorial representation of a multi-classifier evolved by Fuzzy
Grammatical Evolution. This example has c classes, so c Fuzzy Pat-
tern Trees are created, FT

1
 to FTc . Here, every Fuzzy Pattern Tree

is given a different colour. FT
1
 is the Fuzzy Pattern Tree concerning

class 1, FT
2
 is the Fuzzy Pattern Tree concerning class 2, and so on.

The winner take all (WTA) function is at the root of the tree. This
function assigns the individual to the class corresponding to the high-
est output of FT

1
 to FTc . For instance, if a problem had 3 classes, we

need to create 3 Fuzzy Pattern Trees, FT
1
 , FT

2
 , and FT

3
 . If FT

1
 has

an output of 0.2, FT
2
 an output of 0.6, and FT

3
 an output of 0.3 for a

particular instance, then the WTA function will assign this instance
as class 2, as it has the highest score

SN Computer Science (2022) 3:426 	 Page 7 of 13  426

SN Computer Science

operated nodes are a and b. In the case of the Weighted
Average (WA) and Ordered Weighted Average (OWA)
operators, the value k is produced randomly the range
(0, 1) exclusive. For concentration, dilation, and comple-
ment, only one input is needed. The Winner Takes All
(WTA) operator will be the root node of every fuzzy tree.
Each FPT gives its score to this function. It then classifies
the individual corresponding to the largest scoring FPT.

The grammar can be changed and augmented in GE
to include different operators or fuzzy terms to create
different trees.

Parsimony Pressure

Maximizing a model’s accuracy, or similarly minimiz-
ing its error, is the usual focus of research. However, the
interpretability of these models has continued to grow in
significance, with numerous workshops and conferences
now devoted to the area [1]. For an FPT to be interpret-
able or comprehensible, and therefore allow it to serve as
a description of the class, it is of utmost significance for
the evolved solutions to remain as small as possible and
avoid bloat in the final programs [12]. GP’s ability to find
highly dimensional, highly non-linear solutions is praised
and often thought of as its strong point. However, this
often leads to a significant loss of interpretability. One of
the main advantages CGP enjoys over standard GP, and
other GP variants, is its inherent lack of bloat [40].

Parsimony pressure is an approach to limit the size of
individuals [23]. It is not a GP-specific technique and can
be deployed whenever arbitrarily sized representations
are inclined to become far too large. It may generally be
divided into two varieties: parametric and objective-based
parsimony pressure.

Parametric parsimony pressure directly uses the size
of the individual when calculating its fitness. Objective-
based parsimony pressure considers the size of the indi-
vidual as a separate objective to be considered in a multi-
objective optimization procedure. A common example of
two objectives is tness and size.

Ensemble Techniques

While sacrificing the accuracy of a classifier to gain inter-
pretability may be acceptable for most users of a model,
the new interpretable models must remain highly competi-
tive with the black-box one they are replacing. Ensembling
offers an attractive approach to boost the performance of
FPTs [9]. Generally, it combines the predictions of many
“weak” classifiers to improve the overall performance.
This would not harm the interpretability of the system pro-
viding each individual model remained small and the num-
ber of models which make up the ensemble also remains
low. We considered three types of ensemble methods;
aggregation, adaptive boosting, and gradient boosting.

Aggregation randomly partitions the data differently
every run and produces a variety of learners. The outputs
of these are combined together equally to yield a final
prediction.

Boosting attempts to correct the mistakes of previous
models and build new models which can search in the
areas the previously trained models struggle to classify
accurately.

Adaptive boosting creates a new training set by sam-
pling with replacement on the original training set [14].
Data which have been incorrectly classified by the previ-
ous models trained will be far more likely to appear in the
new training set than those points which have been correctly
classified. Each model does not have an equal say, as is the
case with aggregating. The model is given a greater say in
the final decision if it is seen to classify the data accurately.

Finally, a gradient boost approach was investigated [15].
This method takes the errors from the previous models and
attempts, step-by-step, to reduce the errors by introducing
new weak learner. Due to an FPT consisting of n trees per
class and the output of each tree being confined to [0,1], a
traditional gradient boost approach would not be possible.
A new approach is constructed by taking the output of each
FPT and updating it by combing with the output of new FPT
found and then scaling the final result to ensure the total
score remains in [0,1], as shown in Eq. 17. This is repeated
a number of times until the stopping criteria are met.

Fig. 7   Graphical depiction of
the mapping process from the
feature space to a one-dimen-
sional space [0,1] using a set of
fuzzy trees FT

1
 to FTc

	 SN Computer Science (2022) 3:426 426   Page 8 of 13

SN Computer Science

Aggregation has a distinct advantage in that it may be
performed in parallel, whereas both adaptive and gradient
boosting need to be performed sequentially.

Three sets of experiments were run in this paper. The first
uses standard GE and the second implements an adjusted
parsimony pressure to bias the selection by slightly punish-
ing a solutions fitness as it grows in size. The size is defined
as the maximum depth of any of the n FPTs in a particular
solution. The final set of experiments investigated the vari-
ous ensemble methods to try to enhance the classification
performance of the FPTs. The ensemble methods were only
performed on the binary classification problems. This was
due to two reasons; any improvement given by boosting
would be easier to identify in binary problems and the added
complexity required for multi-class classification.

Experimental Setup

The approach was compared with a diverse set of state-of-
the-art classification algorithms and was also compared with
one other FPT related method, FPTs evolved using CGP
(FCGP) [34]. The benchmark classification problems used
in [34] were used to produce a fair comparison between the
two approaches. The full experimental setup for CGP and
each of the other benchmark classification techniques which
FGE is compared against can be seen in [34]. Table 3 shows
the results.

The experiments were run on Intel Xeon Gold 6138
2.00GHz CPU. LibGE, due to appear online shortly, was
used for evolution and statistical analysis was done using R.
It should be noted that the current implementation of LibGE
is only single threaded.

Datasets

Eight benchmark datasets were chosen to run the experi-
ments on, all of which can be found in the UCI and CMU
repositories online [11, 38]. Six binary classification prob-
lems and two multi-class problems are considered. The size
of each dataset, as well as the number of classes and vari-
ables, are displayed in Table 1.

GE Parameters

The experiments were run for 50 generations with a popula-
tion size of 500. Sensible Initialisation and effective crosso-
ver were used [32]. Fivefold cross-validation was used. This
was repeated 5 times for a total of 25 runs.

The ensemble methods were performed with a modified
set of parameters.

For aggregation, the data were randomly split at the
beginning of each run 40% for training, 35% for validation,

and an identical 25% for testing. This is similar to the
approach of random forest with the exception being that the
training sample was selected without replacement from the
pool of individuals. The best seven performing models on
the validation set are chosen and used for aggregation for
the test data.

For adaptive boosting and gradient boosting, the data
were split 75% training and 25% for test. This was repeated
at the beginning of each run, so that a different, randomized
training and test data were used in each experiment. There
were ten boosting iterations and the total cost of each run
remained the same. That is to say, every 5 generations, the
best individual was added to the ensemble and the weights
of each sample updated and the evolution was restarted. This
yielded the full ensemble after 50 generations.

These experimental values lead to a larger computational
cost than the CGP experiments [34]. The full experimental
setup can be seen in Table 2. Each run took approximately
90 min to complete.

The binary classification grammar used in experiments
can be seen in Fig. 8. The WTA​ node contains two < exp >

Table 1   Benchmark datasets for binary and multi-class classification
problems, taken from the UCI repository and and the CMU reposi-
tory

Datasets Short #Classes #Variables #Instances

Binary
 Lupus Lupus 2 3 87
 Haberman Haber 2 3 306
 Lawsuit Law 2 4 264
 Transfusion Transf 2 4 748
 Pima Pima 2 8 768
 Australian Austr 2 14 690

Multiclass
 Iris Iris 3 4 150
 Wine Wine 3 13 178

Table 2   List of the main parameters used to run GE

Parameter Value

Folds 5
Runs 25 (5 per fold)
Total Generations 50
Population 500
Replacement Tournament
Crossover 0.9 (Effective)
Mutation 0.01
Initialisation Sensible
For Adaptive and Gradient Boosting:
Boosting Iterations 10

SN Computer Science (2022) 3:426 	 Page 9 of 13  426

SN Computer Science

non-terminals which need to be expanded. These will be
the FPTs for each class when they are fully expanded. Two
FPTs are required for binary classification. To make this
grammar suitable for multi-class classification, it needs to
be augmented by simply adding more < exp > symbols in
the expression. Three classes require three < exp > symbols
and so on. Constants were created using the standard GE
approach of digit concatenation [6].

Fitness Function

The fitness function chosen seeks to minimize the RMSE
for each individual, similar to the approach used previ-
ously in CGP evolution. This is seen in Eq. 11. The bench-
mark datasets used in experimentation are quite balanced
and it was decided a non-standard fitness function, such as
cross entropy, was not required. However, it may be neces-
sary in future experiments to alter this if the data are very
unbalanced

The fitness function for FGE with lexicographic parsimony
pressure which aims to find small, interpretable solutions is
calculated by penalizing the solution as its size grows. It is
computed as follows:

Experiments using fitness function F are denoted as FGE in
the results section. Experiments which used FL are signified
by FGE − L

The max depth of each FPT in an individual is averaged
to find the mean depth of a solution. For a binary classifier
C with two FPTs, FPT1 and FPT2 , the mean depth would be

For adaptive boosting, the influence each classification
model has in the final classification is calculated as

The gradient boost and aggregation experiments used fitness
function 12. A larger penalty was applied in the adaptive
boosting experiments, equation 15, to produce very small
trees to add to the forest, which are preferred in adaptive
boosting [14]. The weight of a sample j, wj , after evolution
of i + 1 FPTs was updated per equation 16.

(10)RMSE =

√

√

√

√

n
∑

i=1

(ŷi − yi)
2

n

(11)F =1 − RMSE.

(12)FL = 1 − RMSE × 0.99 −MaxDepth × 0.01.

(13)
MeanDepth(C) =

1

2

(

MaxDepth(FPT1) +MaxDepth(FPT2)
)

.

(14)�i =
1

2
ln

(

1 − Errori

Errori

)

.

(15)FAda =1 − RMSE × 0.99 −MaxDepth × 0.05

(16)

wi+1
j

=
1

zi+1
×

{

wi
j
× e−�i+1 if classified correctly by classifieri + 1

wi
j
× e�i+1 otherwise.

< start >::=WTA(< exp >,< exp >)

< exp >::=max(< exp > , < exp >) |
min(< exp > , < exp >) |
WA(< const > , < exp > , < exp >) |
OWA(< const > , < exp > , < exp >) |
concentrate(< exp >) |
dilation(< exp >) |
complement(< exp >) |
x1 | x2 | x3 |...

< const >::=0. < digit >< digit >< digit >

< digit >::=0 | 1 | 2 |....

Fig. 8   Grammar used to evolve a Fuzzy Pattern Tree for a binary
dataset. The WTA​ node can be augmented by adding extra < exp > to
include as many subtrees as necessary, making it a multi-class gram-
mar

Table 3   Classification
performance comparison of
FGE versions against previous
related work results, showing
average classification on the test
data for the best solution found
per run

Bold indicates the best-performing method

Dataset FGE FGE-L FCGP SVM-L RF SVM-R PTTDE

Lupus 0.73 0.73 0.74 0.74 0.62 0.73 0.77
Haber 0.74 0.72 0.73 0.72 0.65 0.71 0.74
Law 0.96 0.94 0.93 0.99 0.97 0.96 0.94
Transf 0.76 0.77 0.76 0.76 0.70 0.73 0.77
Pima 0.74 0.74 0.72 0.77 0.77 0.71 0.76
Austr 0.86 0.86 0.85 0.86 0.79 0.85 0.85
Iris 0.96 0.96 0.95 0.96 0.95 0.95 0.95
Wine 0.83 0.83 0.90 0.98 0.98 0.98 0.98

	 SN Computer Science (2022) 3:426 426   Page 10 of 13

SN Computer Science

Here, zi+1 is a normalization term to ensure all the weights
sum to 1 and �i+1 is calculated as in 14.

For gradient boosting, a new FPT is added to an ensemble
of i − 1 trees for class c as

where Sc
i
 is the score for the ensemble of class c consisting

of i FPTs, Sc
i−1

 is the score at the previous iteration, and
FPTc

i
(x) is the output of the FPT at iteration i to be added

to the ensemble.

Results

The experimental results are shown in Table 3. The mean
test performance from all 25 runs of FGE is presented. Other
methods performances are taken from [35]. The best result
for each problem is highlighted in bold. The binary problems
(1-6) are shown first, with the multi-classification problems
(7-8) following after.

The first column in Table 3 shows the results for FGE.
The second shows FGE with lexicographic pressure applied.
The third, fourth, and fifth columns show the results for CGP
(FCGP), Support Vector Machine with Linear Kernel (SVM-
L), and Random Forest (RF), respectively. The sixth column
shows Support Vector Machine with Radial Basis Function
Kernel (SVM-R), and finally, column seven shows the Pat-
tern Tree Top–Down Epsilon (PTTDE). This was the origi-
nal proposed technique used to produce FPTs [37]. For those
experiments, epsilon was set to 0.25%. Epsilon determines
the improvement required to continue to grow the tree.

A Friedman test was performed to compare the perfor-
mance of the classifiers. This test showed that no evidence
there was one classifier that was statistically significantly
better than all others.

It can be seen that FGE obtained very competitive perfor-
mance compared with the previous experiments. However, it
was noticeably outperformed in one benchmark, Wine, how-
ever. In this benchmark, it was the worst-performing classi-
fier of all considered. FGE achieved mean best performance
of 83%, compared to 98% found by SVM, RF, and PTTDE.
It was also noticeably worse than the result achieved by
CGP, which reached 90%. The reason for FGE’s inconsist-
ent performance on the non-binary problems requires further
investigation. It is possible the small size and the imbalance
of the wine dataset resulted in FGE’s poor performance.

FGE attained the best performance in three problems:
(i) Haberman—FGE achieves 74%, outperforming all and
matching PTTDE as the best result; (ii) Australian—FGE
and FGE-L score 86% for a tie in best-performing clas-
sifier; and (iii) Iris—FGE and FGE-L again equal the

(17)Sc
i
(x) =

Sc
i−1

(x) + 0.1 × FPTc
i
(x)

1.1
,

best-performing classifier attaining 96%. Intriguingly,
FGE-L achieves best in class performance, 77%, on the
Transfusion problem.

As well as these results, FGE and FGE-L both reach com-
petitive performance on the remaining classification prob-
lems, with the only outlier being the Lupus dataset. On the
Lupus problem, FGE reaches similar performance as FCGP,
73% and 74%, respectively, but PTTDE produced the best
accuracy, 77%. FGE-L performs equivalently, finding 73%
accuracy.

FGE-L can be seen to produce much smaller solutions
than those found by FGE, as shown in Table 4. “SizeReduc”
represents the reduction of the average tree size found by
FGE-L compared to FGE. Note that if an FPT contains just
a leaf node, it will be given a depth of 0.

FGE-L was able to discover remarkably smaller trees
across all the problems considered. Specifically, the Haber-
man, Pima, and Australian problems were all seen to have a
reduction in size by over 80%. Crucially, parsimony pressure
does not appear to greatly affect the performance. A minor
decrease in accuracy is seen in two problems: Haberman
and Lawsuit. FGE is statistically significantly better on the
Haberman dataset, with no difference seen between FGE
and FGE-L in any other benchmark. Strikingly, there was an
increase in the performance on the Transfusion problem by
1%. This major reduction may point to bloat being a signifi-
cant problem in FGE. A pressure of 1% of size was applied
in these experiments but tuning this parameter and how it is
best applied is an avenue for future research.

FGE-L was the best-performing classifier on the Transfu-
sion, Iris, and Australian problems. On the problems consid-
ered, there seems to be very little, and oftentimes none at all,
trade-off in performance associated with evolving smaller
trees. It is possibly the case that the global optima for these
problems were smaller trees. This requires further investiga-
tion on larger, more complex problems. However, the results
hint strongly that bloat may be an issue in FGE.

Table 4   Average size comparison in terms of the tree depth between
fuzzy pattern trees approaches; FCGP, FGE, and FGE-L

Best results are in bold. SizeReduc is the average size reduction seen
in FGE-L vs FGE

Dataset FCGP FGE FGE-L SizeReduc

Lupus 1.65 7.84 2.38 70%
Haber 1.85 9.42 0.2 98%
Law 1.05 5.02 0.98 79%
Transf 2 6.76 1.54 77%
Pima 1 6.7 1 85%
Austr 1.5 5.12 0.92 82%
Iris 1.24 1.8 0.64 64%
Wine 1 2.47 0.68 72%

SN Computer Science (2022) 3:426 	 Page 11 of 13  426

SN Computer Science

FGE was statistically significantly better than FCGP on
the Haberman, Lawsuit, Pima, and Australian benchmarks.
FGE-L was significantly better than FCGP on the Transfu-
sion and Australian problems. FCGP significantly outper-
formed both FGE and FGE-L on the Wine dataset.

CGP was previously seen to produce much smaller trees
than those using PTTDE and will be used to compare to
the trees found using GE [35]. The trees found using CGP
are much smaller than those found using FGE but larger
than those using FGE-L. When the search is biased towards
smaller sized individuals, FGE-L finds smaller solutions in
seven problems. Due to these small sizes, FPTs found using
FGE-L should lead to very interpretable results.

On the benchmarks considered, SVM-L was seen to be
the best performing method, attaining best performance on 5
of the the benchmark problems. On the other hand, SVM-L
does not allow any interpretability of its solutions. FGE was
best performing on three problems, FGE-L was best per-
forming on three problems and FCGP was not seen to be
best on any. FGE beat or equalled FCGP in 6/8 problems
studied and FGE-L evolved the smallest trees in all but one
problem, Lupus, but was able to beat FCGP in 5/8 problems.

The mean size of the final trees found by FGE, FGE-L
with parsimony pressure, and CGP are shown in Table 4, and
best results are in bold.

The ensemble methods were seen to have mixed perfor-
mance on the problems considered. The results can be seen
in Table 5, FGE had the best performance on the Lupus and
Haberman datasets. This was likely due to the very small
dataset each of the problems have, meaning that the ensem-
bled classifiers may be prone to overfit. This is a particular
concern for the aggregation approach, with only 40% of the
dataset used to train the model. Gradient boosting found
the best-performing model for the Australian model, besting
FGE by over 2%. AdaBoost was best on Lawsuit, 99%, and
tied for best on Pima with FGE, achieving 77%. FGE was
best on the Transfusion dataset, attaining 78%. Aggregating
was not seen to perform best on any benchmark considered,
being noticeably outperformed on the Transfusion, 76% vs
78%, and Australian, 87% vs 90%.

While boosting was seen to match or improve classifica-
tion performance of FGE in three examples, without any
further computational cost, it was seen to overfit badly on
the Lupus dataset. It remains to be investigated what loss of
interpretability comes from combing many FPTs to form an
ensemble against considering just one FPT. Due to the very
similar performance between standard FGE and the ensem-
ble methods, any loss of interpretabilty associated with their
implementation may not be justified.

Conclusions

This paper proposes a new approach to evolving Fuzzy Pat-
tern Trees. It uses Grammatical Evolution as the learning
algorithm, an approach we call Fuzzy Grammatical Evolu-
tion. The experimental results showed that Fuzzy Grammati-
cal Evolution has comparable performance in classification
accuracy with some of the best classification algorithms
available. Grammatical Evolution was seen to exceed the
performance of Cartesian Genetic Programming on the
problems considered.

Fuzzy Grammatical Evolution was seen to exhibit incon-
sistent performance on the multi-class classification prob-
lems, achieving best results on the Iris problem and achiev-
ing worst results on the Wine benchmark. For problems
requiring many Fuzzy Pattern Trees, it may improve perfor-
mance to evolve each Fuzzy Pattern Tree individually and
not evolve the ensemble of Fuzzy Pattern Trees all at once.
This requires further investigation.

As interpretability is a key concern, experiments were
conducted on methods to control program size. A simple
pressure was applied by penalizing the fitness of individuals
as they grew larger. We found that the final performance was
unaffected by employing such measures and Fuzzy Gram-
matical Evolution with this pressure applied found both
smaller and more accurate trees than those found using Car-
tesian Genetic Programming. This suggested that programs
evolved using standard Fuzzy Grammatical Evolution are
growing unnecessarily large and bloat was a considerable
factor to consider in future experimentation.

In a final set of experiments, various ensemble techniques
were investigated. This was in a bid to increase the accuracy
of the final models where there may be a large discrepancy
between them and black-box approaches. Adaptive boosting
was seen to find better models than Fuzzy Grammatical Evo-
lution on less than half the benchmarks considered. Further
works must be done on larger, real-world datasets with more
than three classes to fully gauge the improvements boosting
may give over standard Fuzzy Grammatical Evolution.

Our experimentation verified that Fuzzy Pattern Trees are
a viable replacement of the classic rule-based fuzzy mod-
els. This is due to their hierarchical structure which yields a

Table 5   Best-performing individual found for each ensemble method
compared to best individual found using regular FGE

Best-performing method is shown in bold

Dataset FGE Aggr’n AdaBoost GradBoost

Lupus 0.94 0.50 0.86 0.86
Haber 0.82 0.67 0.80 0.76
Law 0.98 0.96 0.99 0.97
Transf 0.78 0.77 0.76 0.77
Pima 0.77 0.75 0.77 0.76
Austr 0.88 0.87 0.87 0.90

	 SN Computer Science (2022) 3:426 426   Page 12 of 13

SN Computer Science

more compact representation and allows for a better compro-
mise between the accuracy and the simplicity of the model.
Importantly, it also gives an interpretable model. That is to
say, the knowledge which has been obtained in the learning
process can be extracted from the final model and is shown
to a user in understandable terms.

Several avenues of future research can be explored from
the present work. The proposed algorithms should be evalu-
ated on other machine learning problems, such as unsuper-
vised clustering.

Another interesting course of action is to try other tech-
niques to reduce the size of the trees, such as regulariza-
tion or encapsulation [28], or hybridise GE with another
technique to optimise smaller models already found [29].
Furthermore, the use of different types or sets of grammar
could be investigated.

A final potential route for future exploration is to empiri-
cally examine if smaller tree sizes do offer more interpret-
ability to the user. Some work on validating the interpret-
ability of the final solutions found has already been carried
out [26]. It is possible that some other metric, the number of
variables used or the presence/absence of particular subtrees
for example, may grant better interpretability. This must be
examined.

Acknowledgements  The authors are supported by Research Grants 13/
RC/2094 and 16/IA/4605 from the Science Foundation Ireland and by
Lero, the Irish Software Engineering Research Centre (www.lero.ie).
The third and fourth authors are partially financed by the Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)—
Finance Code 001, and FAPERJ.

Funding  Open Access funding provided by the IReL Consortium.

Declarations 

Conflict of Interest  The authors declare that they have no conflict of
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Adadi A, Berrada M. Peeking inside the black-box: a sur-
vey on explainable artificial intelligence (XAI). IEEE Access.
2018;6:52138–60.

	 2.	 Ain QU, Al-Sahaf H, Xue B, Zhang M. A multi-tree genetic pro-
gramming representation for melanoma detection using local and
global features. In: Mitrovic T, Xue B, Li X, editors. AI 2018:
advances in artificial intelligence. Cham: Springer International
Publishing; 2018. p. 111–23.

	 3.	 Ali MS, Kshirsagar M, Naredo E, Ryan C. Autoge: a tool
for estimation of grammatical evolution models. ICAART.
2021;2:1274–81.

	 4.	 Anjum MS, Ryan C. Ariadne: Evolving test data using grammati-
cal evolution. In: EuroGP, 2019.

	 5.	 Arrieta AB, Díaz-Rodríguez N, Ser JD, Bennetot A, Tabik S, Bar-
bado A, Garcia S, Gil-Lopez S, Molina D, Benjamins R, Chatila
R, Herrera F. Explainable artificial intelligence (xai): concepts,
taxonomies, opportunities and challenges toward responsible AI.
Inf Fusion. 2020;58:82–115.

	 6.	 Azad RMA, Ryan C. The best things don’t always come in small
packages: constant creation in grammatical evolution. In: Nico-
lau M, Krawiec K, Heywood MI, Castelli M, García-Sánchez P,
Merelo JJ, Rivas Santos VM, Sim K, editors. Genetic program-
ming. Berlin: Springer; 2014. p. 186–97.

	 7.	 Carvalho DV, Pereira EM, Cardoso JS. Machine learning
interpretability: a survey on methods and metrics. Electronics.
2019;8(8):832.

	 8.	 Cordón O. A historical review of evolutionary learning meth-
ods for Mamdani-type fuzzy rule-based systems: designing
interpretable genetic fuzzy systems. Int J Approx Reason.
2011;52(6):894–913.

	 9.	 Dietterich TG, et al. Ensemble learning. Handb Brain Theory
Neural Netw. 2002;2:110–25.

	10.	 Došilović FK, Brčić M, Hlupić N. Explainable artificial intel-
ligence: a survey. In: 2018 41st International Convention on
Information and Communication Technology, Electronics and
Microelectronics (MIPRO), 2018, pp. 0210–5.

	11.	 Dua, D. and Graff, C. UCI Machine Learning Repository. Irvine,
CA: University of California, School of Information and Com-
puter Science. 2019. http://​archi​ve.​ics.​uci.​edu/​ml

	12.	 Espejo PG, Ventura S, Herrera F. A survey on the application
of genetic programming to classification. IEEE Trans Syst Man
Cybern Part C. 2009;40(2):121–44.

	13.	 Fitzgerald J, Ryan C. Exploring boundaries: optimising individual
class boundaries for binary classification problem. In: Proceed-
ings of the 14th Annual Conference on Genetic and Evolutionary
Computation, 2012, pp. 743–50.

	14.	 Freund Y, Schapire RE, et al. Experiments with a new boosting
algorithm. Icml. 1996;96:148–56.

	15.	 Friedman JH. Greedy function approximation: a gradient boosting
machine. Ann Stat. 2001;29:1189–232.

	16.	 Goldman BW, Punch WF. Analysis of cartesian genetic program-
ming’s evolutionary mechanisms. IEEE Trans Evolut Comput.
2014;19(3):359–73.

	17.	 He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: Sur-
passing human-level performance on imagenet classification. In
Proceedings of the IEEE international conference on computer
vision 2015 (pp. 1026-1034).

	18.	 Herrera F. Genetic fuzzy systems: taxonomy, current research
trends and prospects. Evolut Intell. 2008;1(1):27–46.

	19.	 Huang Z, Gedeon TD, Nikravesh M. Pattern trees induction: a new
machine learning method. Trans Fuzzy Syst. 2008;16(4):958–70.
https://​doi.​org/​10.​1109/​TFUZZ.​2008.​924348.

http://creativecommons.org/licenses/by/4.0/
http://archive.ics.uci.edu/ml
https://doi.org/10.1109/TFUZZ.2008.924348

SN Computer Science (2022) 3:426 	 Page 13 of 13  426

SN Computer Science

	20.	 Hüllermeier E. Fuzzy methods in machine learning and data min-
ing: status and prospects. Fuzzy Sets Syst. 2005;156(3):387–406.
https://​doi.​org/​10.​1016/j.​fss.​2005.​05.​036.

	21.	 Koza JR. Genetic programming - on the programming of com-
puters by means of natural selection. Complex adaptive systems.
London: MIT Press; 1992.

	22.	 Loveard T, Ciesielski V. Representing classification prob-
lems in genetic programming. Proce Congr Evolut Comput.
2001;2:1070–7.

	23.	 Luke S, Panait L. Lexicographic parsimony pressure. In: Proceed-
ings of the 4th annual conference on genetic and evolutionary
computation, GECCO’02. San Francisco: Morgan Kaufmann
Publishers Inc.; 2002. p. 829–36.

	24.	 Miller JF. An empirical study of the efficiency of learning boolean
functions using a cartesian genetic programming approach. In:
Proceedings of the 1st annual conference on genetic and evo-
lutionary computation - volume 2, GECCO’99. San Francisco:
Morgan Kaufmann Publishers Inc.; 1999. p. 1135–42.

	25.	 Murphy A, Ali M, Dias D, Amaral J, Naredo E, Ryan C. Gram-
mar-based fuzzy pattern trees for classification problems. Proc Int
Jt Conf Comput Intell. 2020. https://​doi.​org/​10.​5220/​00101​11900​
710080.

	26.	 Murphy A, Murphy G, Amaral JLM, Dias DM, Naredo E, Ryan
C. Towards incorporating human knowledge in fuzzy pattern
tree evolution. In: Hu T, Lourenço N, Medvet E, editors. Genetic
programming - 24th European conference, eurogp 2021, held as
part of EVOSTAR 2021, virtual event, april 7–9, 2021, proceed-
ings lecture notes in computer science. Berlin: Springer; 2021. p.
66–81. https://​doi.​org/​10.​1007/​978-3-​030-​72812-0_5.

	27.	 Murphy A, Murphy G, Dias DM, Amaral J, Naredo E, Ryan C.
Human in the loop fuzzy pattern tree evolution. SN Comput Sci.
2022;3(2):1–14.

	28.	 Murphy A, Ryan C. Improving module identification and use in
grammatical evolution. IEEE Congr Evolut Comput (CEC). 2020.
https://​doi.​org/​10.​1109/​CEC48​606.​2020.​91855​71.

	29.	 Murphy A, Youssef A, Gupt KK, Raja MA, Ryan C. Time is on
the side of grammatical evolution. Int Conf Comput Commun Inf
(ICCCI). 2021. https://​doi.​org/​10.​1109/​ICCCI​50826.​2021.​94023​
92.

	30.	 Nyathi T, Pillay N. Comparison of a genetic algorithm to gram-
matical evolution for automated design of genetic programming
classification algorithms. Expert Syst Appl. 2018;104:213–34.

	31.	 Patten JV, Ryan C. Attributed grammatical evolution using
shared memory spaces and dynamically typed semantic func-
tion specification. Genet Program. 2015. https://​doi.​org/​10.​1007/​
978-3-​319-​16501-1_9.

	32.	 Ryan C, Azad RMA. Sensible initialisation in grammatical evolu-
tion. In: GECCO. Menlo Park: AAAI; 2003. p. 142–5.

	33.	 Ryan C, Collins JJ, O’Neill M. Grammatical evolution: evolving
programs for an arbitrary language. In: Banzhaf W, Poli R, Schoe-
nauer M, Fogarty TC, editors. EuroGP, lecture notes in computer
science, vol. 1391. Berlin: Springer; 1998. p. 83–96.

	34.	 dos Santos AR. Síntese de árvores de padrões fuzzy através de
programação genética cartesiana. Ph.D. thesis, Dissertação de
mestrado, Universidade do Estado do Rio de Janeiro, 2014.

	35.	 dos Santos AR, do Amaral JLM, Soares CAR, de Barros AV.
Multi-objective fuzzy pattern trees. In: 2018 IEEE International
Conference on Fuzzy Systems (FUZZ-IEEE), 2018; pp. 1–6.

	36.	 Senge R. Machine learning methods for fuzzy pattern tree induc-
tion. Ph.D. thesis, Philipps-Universität Marburg, 2014.

	37.	 Senge R, Hüllermeier E. Top-down induction of fuzzy pattern
trees. IEEE Trans Fuzzy Syst. 2011;19(2):241–52.

	38.	 StatLib: Statlib – datasets archive 2020. http://​lib.​stat.​cmu.​edu/​
datas​ets/

	39.	 Tetteh MK, Mota Dias D, Ryan C. Evolution of complex com-
binational logic circuits using grammatical evolution with sys-
temverilog. In: Hu T, Lourenço N, Medvet E, editors. Genetic
programming. Cham: Springer International Publishing; 2021. p.
146–61.

	40.	 Turner AJ, Miller JF. Cartesian genetic programming: Why no
bloat? In: Nicolau M, Krawiec K, Heywood MI, Castelli M,
García-Sánchez P, Merelo JJ, Rivas-Santos VM, Sim K, editors.
Genetic programming. Berlin: Springer; 2014. p. 222–33.

	41.	 Wilson D, Kaur D. Fuzzy classification using grammatical evolu-
tion for structure identification. IEEE. 2006. https://​doi.​org/​10.​
1109/​NAFIPS.​2006.​365864.

	42.	 Wilson G, Banzhaf W. A comparison of cartesian genetic pro-
gramming and linear genetic programming. IEEE. 2008. https://​
doi.​org/​10.​1007/​978-3-​540-​78671-9_​16.

	43.	 Yi Y, Fober T, Hüllermeier E. Fuzzy operator trees for modeling
rating functions. Int J Comput Intell Appl. 2009;8:413–28.

	44.	 Zadeh L. Fuzzy sets. Inf Control. 1965;8(3):338–53. https://​doi.​
org/​10.​1016/​S0019-​9958(65)​90241-X.

	45.	 Zhang M, Smart W. Multiclass object classification using genetic
programming. In: Ch M, editor. Workshops on applications of
evolutionary computation. Berlin: Springer; 2004. p. 369–78.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.fss.2005.05.036
https://doi.org/10.5220/0010111900710080
https://doi.org/10.5220/0010111900710080
https://doi.org/10.1007/978-3-030-72812-0_5
https://doi.org/10.1109/CEC48606.2020.9185571
https://doi.org/10.1109/ICCCI50826.2021.9402392
https://doi.org/10.1109/ICCCI50826.2021.9402392
https://doi.org/10.1007/978-3-319-16501-1_9
https://doi.org/10.1007/978-3-319-16501-1_9
http://lib.stat.cmu.edu/datasets/
http://lib.stat.cmu.edu/datasets/
https://doi.org/10.1109/NAFIPS.2006.365864
https://doi.org/10.1109/NAFIPS.2006.365864
https://doi.org/10.1007/978-3-540-78671-9_16
https://doi.org/10.1007/978-3-540-78671-9_16
https://doi.org/10.1016/S0019-9958(65)90241-X
https://doi.org/10.1016/S0019-9958(65)90241-X

	Fuzzy Pattern Tree Evolution Using Grammatical Evolution
	Abstract
	Introduction
	Background
	Fuzzy Sets and Fuzzy Pattern Trees
	Top–Down Induction of Pattern Trees

	Cartesian GP
	Grammatical Evolution

	Fuzzy GE
	Standard Classification
	FGE Classification
	Fuzzy Representation
	Parsimony Pressure
	Ensemble Techniques

	Experimental Setup
	Datasets
	GE Parameters
	Fitness Function

	Results
	Conclusions
	Acknowledgements
	References

