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Abstract
A novel approach to induce Fuzzy Pattern Trees using Grammatical Evolution is presented in this paper. This new method, 
called Fuzzy Grammatical Evolution, is applied to a set of benchmark classification problems. Experimental results show 
that Fuzzy Grammatical Evolution attains similar and oftentimes better results when compared with state-of-the-art Fuzzy 
Pattern Tree composing methods, namely Fuzzy Pattern Trees evolved using Cartesian Genetic Programming, on a set of 
benchmark problems. We show that, although Cartesian Genetic Programming produces smaller trees, Fuzzy Grammatical 
Evolution produces better performing trees. Fuzzy Grammatical Evolution also benefits from a reduction in the number of 
necessary user-selectable parameters, while Cartesian Genetic Programming requires the selection of three crucial graph 
parameters before each experiment. To address the issue of bloat, an additional version of Fuzzy Grammatical Evolution 
using parsimony pressure was tested. The experimental results show that Fuzzy Grammatical Evolution with this extension 
routinely finds smaller trees than those using Cartesian Genetic Programming without any compromise in performance. To 
improve the performance of Fuzzy Grammatical Evolution, various ensemble methods were investigated. Boosting was seen 
to find the best individuals on half the benchmarks investigated.

Keywords  Grammatical evolution · Pattern trees · Fuzzy logic

Introduction

Machine learning (ML) has been very successful in finding 
solutions to a vast swathe of real-world problems and con-
tributed to innovation in products and research. Since the 
turn of the millennium, the number of applications of ML 
has increased owing to the availability of vast collections 
of data which can be cheaply stored and massively paral-
lel computer power, new powerful training algorithms, the 
emergence of new hardware platforms based on graphics 
cards with GPUs, and the wide availability of open-source 
libraries [10]. Such environments provide ML systems with 
the ability to solve complicated real-world problems and 

routinely achieve new state-of-the-art results. Remarkably, it 
is seen in image classification and some other areas that ML 
systems have surpassed human performance [17].

The success of ML and learning algorithms in general, 
although wildly successful in terms of results and predic-
tions, have their shortcomings. The most forceful is the lack 
of transparency, which identifies the so-called black-box 
models. In these black-box models, it is very demanding or 
even unfeasible to recognize how the ML system makes its 
decision or to extract the knowledge of how the decision is 
made. Put simply, it does not permit a human being, expert 
or not, to examine, comprehend, and make sense of how the 
model reaches its conclusions.

To try to solve these questions, Explainable Artificial 
Intelligence (XAI) [1, 5] has appeared, concerned with the 
interpretability of state-of-the-art ML. The main purpose of 
this field of research is to design a set of models and inter-
pretable methods that are more explainable than the state 
of the art. This is all done while retaining the high levels of 
predictive performance which have been achieved [7].

Fuzzy logic and fuzzy set theory have supplied a frame-
work in which it is possible to generate interpretable models 
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[8, 18]. It allows the knowledge obtained from the data to be 
communicated in a comprehensible form to humans, close 
to natural language. This gives any model which uses fuzzy 
sets a high degree of interpretability [20]. Most developed 
fuzzy models are rule-based fuzzy systems (FBRS) that can 
represent both classification and regression functions and 
for which there are many strategies developed for the syn-
thesis of these models [8]. Deriving fuzzy models based on 
easily interpretable rules is not an easy task. Depending on 
the application, many rules may be necessary, with many 
antecedents, that make understanding the model a trouble-
some task. However, a system which contains relatively few 
rules can be easily interpreted. Its predictive accuracy may 
be compromised by this restriction, though.

This is an extended version of a paper published in the 
proceedings of the 12th International Conference on Evo-
lutionary Theory and Applications [25]. The previous work 
is built upon by investigating the effects various ensemble 
methods have on the performance of the classifiers. The 
techniques considered were aggregation, adaptive boosting, 
and gradient boosting. A method based on the theory of 
fuzzy sets, Fuzzy Pattern Trees (FPT), is used. An FPT is 
not based on rules, but on a hierarchical method. The FPT 
is now learned with a well-known method, Grammatical 
Evolution (GE).

GE is flexible enough to derive feasible models such as 
FPTs. It can easily address different problem types by aug-
menting the grammar and the evaluation function. Therefore, 
GE can find FPT models which solve classification tasks and 
achieve explainability simultaneously. This combination of 
GE, Fuzzy Logic, and a hierarchical structure gives a valu-
able opportunity to address the new research lines in XAI. 
Experimental results show that FPTs evolved using GE solve 
benchmark classification problems with competitive results 
against state-of-the-art methods and find superior results in 
three of them.

“Background” discusses the main background concepts. 
These include FPTs, Cartesian GP (CGP), and GE. “Fuzzy 
GE” describes the proposal and details the contributions of 
this work. Next, “Experimental Setup” presents the experi-
mental setup, outlining all of the considered variants and 
performance measures. “Results” presents and discusses the 
main experimental results of the research. Finally, “Conclu-
sions” presents the conclusions and puts forward the future 
work derived from this research.

Background

Fuzzy Sets and Fuzzy Pattern Trees

Fuzzy sets are an extension of regular sets, which were first 
introduced by [44]. They differ from traditional “crisp” sets 

by utilizing fuzzy logic which allows elements to have dif-
ferent levels of membership to classes and not to simply be 
associated with one single class. That is to say, it allows for 
some vagueness in categorizing some data. The schematic 
of a fuzzy system, how input data are fuzzified, is shown in 
Fig. 1. In this example, the element has a degree, or grade, 
of membership of 0.2 in Low, 0.8 in Medium, and 0 in High.

More formally, a fuzzy set is a pair (X, �) where X is a set 
and � is a membership function. This membership function 
� maps all elements of X to a number between 0 and 1

This is in contrast to traditional sets, which have functions 
which map each element of a set X to either 0 or 1.

The membership function, � , which maps the set X to the 
fuzzy set A is written as �A.

The membership function gives the degree of similarity 
of an element to a fuzzy set. This could also be stated as the 
distance between an element and a characteristic element 
of that set. It should be noted that this is not to be confused 
with probability of membership.

FPTs were first introduced, independent of each other, by 
Huang et al. [19] and Yi et al. [43] who called this type of 
model Fuzzy Operator Trees. The FPT model class is asso-
ciated with other model classes, including fuzzy rule-based 
systems (FRBS) and fuzzy decision trees (FDT).

The goal of fuzzy logic was to allow the knowledge 
acquired from data to be expressed in a comprehensible 
form, very close to natural language, and mimic how an 
expert would convey their opinion. A doctor could describe 
their patient as either young, middle-aged, or old. Depending 
on the context young will have different boundaries, there is 
no quantitative boundary to describe the term. A 40-year-old 
person may be described as young if they have a heart attack 
but old if they have Chicken Pox. The degrees of youngness 
will also vary. Therefore, these terms, as well as terms like 
tall, long, and hot, are referred to as fuzzy concepts.

(1)� ∶ X → [0, 1].

Fig. 1   Fuzzy system
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An advantage of using GE in the context of evolving 
structures for fuzzy rule base is the flexibility it gives in 
defining different partitioning geometries based on a chosen 
grammar [41].

The use of fuzzy sets allows for the creation of fuzzy 
rules. Similar to crisp rules, they yield an output based on 
a certain input or inputs. However, unlike crisp rules which 
state something is either x or y (e.g., true or false, positive 
or negative, etc.) fuzzy rules allow for degrees of truth to be 
incorporated into its statements. That is to say, something 
does not need to be entirely true or entirely false.

An example of a binary, crisp IF–THEN rule can be seen 
below:

∗ IF Cholesterol > 140

∗ THEN BMI > 25.0.

The clear drawback of such a rule is the hard cut-off limit. If 
a person has a Cholesterol of 139.9, then the model will not 
predict that their BMI will be greater than 25, despite being 
having an almost identical Cholesterol to a person with 140.

An example of a fuzzy IF–THEN rule would be

∗ IF Cholesterol HIGH
∗ THEN BMI HIGH.

The fuzzy concepts of Cholesterol HIGH and BMI HIGH are 
described using fuzzy sets. These IF statements can combine 
many variables together:

∗ IF Cholesterol HIGH AND Heart Rate HIGH
∗ THEN BMI HIGH.

These combined rules can be used to identify relationships 
between input and output variables and create classifiers. 
The most popular of these classifiers are fuzzy rule-based 
systems (FRBS) and fuzzy decision trees (FDTs).

FDTs are an extension of standard decision trees. Despite 
their similar hierarchical structure, they are quite different 
that FPTs. They follow a top–down approach and work by 
continually partitioning the domain to build their single 
classifier.

FRBS are rule-based classifiers and are flat structures 
which use a fuzzy rule base to model the relationships in 
the data. Despite their obvious differences in representa-
tion (flat vs hierarchical), it has been shown that FPTs are a 
generalization of rule-based systems [36].

An FPT is a hierarchical, tree-like structure. The inter-
nal nodes are fuzzy logical and fuzzy arithmetic operators, 
and the leaf nodes are the fuzzified input variables and 
constants. Like traditional GP or GE trees, the information 
passes from the bottom of the tree to the top. An operator 
node takes the value or values of its descendants as inputs, 

performs the required operation, and conveys the result to 
its preceding node. Thus, an FPT implements a recursive 
mapping producing outputs in the [0,1] interval.

FPTs have independently been introduced by [19] and 
[43], who called this type of model Fuzzy Operator Trees. 
The FPT model class is related to several other model 
classes including fuzzy rule-based systems (FRBS) and 
fuzzy decision trees (FDT).

The following fuzzy operators are used, where a and b 
are the inputs to the operator:

where WTA​, WA & OWA denote Winner takes all, Weighted 
Average, and Ordered Weighted Average, respectively. In 
the case of the WA and OWA operators, k will be a value 
created randomly within the range [0, 1]. Only one input will 
be provided in the case of the concentration, dilation, and 
complement. WTA​ will be the root node of every fuzzy tree. 
This function receives the score from each FPT and labels 
the individual corresponding to the highest scoring tree.

Figure  2 shows an example of an FPT, which was 
trained from a wine quality dataset, which contains various 
chemical properties of wines and an output of the wine’s 
quality. This FPT represents the fuzzy concept—a fuzzy 
criterion for—wine with a high quality.

To interpret a whole tree and grasp the fuzzy pattern it 
depicts, we first start at its root node. It represents the final 
aggregation (a simple average in this case) and outputs 
the overall evaluation of the tree for a given instance (a 
wine). Then, we proceed to its children and so forth. An 
interpretation of this tree could be:

A high-quality wine fulfills two criteria. We call these 
two criteria—the left and right subtrees of the root node—
criterion I and criterion II. Criterion I is fulfilled if the 
alcohol concentration of the wine is high or its density is 
high. Criterion II is fulfilled, if the wine has a high con-
centration of sulfates or a third criterion (III) is met. This 

(2)WTA = IF{}()..ELSE()

(3)MAX = max(a, b)

(4)MIN = min(a, b)

(5)WA(k) = ka + (1 − k)b

(6)OWA(k) = k ⋅max(a, b) + (1 − k)min(a, b)

(7)CONCENTRATE = a2

(8)DILATE = a
1

2

(9)COMPLEMENT = 1 − a,
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is the case if both alcohol concentration and the wine’s 
acidity is low.

FPTs were created with an emphasis on the representation 
of knowledge through a tree-shaped expression rather than 
representing it in the form of rules.

Hierarchical representation minimizes existing prob-
lems in rule-based systems, such as exponential increase 
in the number of rules with increasing entries and loss of 
interpretability when a large number of rules are required 
to achieve accuracy requirements. The tree is represented 
as a graph, favoring the human ability to recognize visual 
patterns, allowing the discovery of connections between the 
input variables and a class. These connections can be com-
plicated to make when using models with a fixed set of rules.

To give a better interpretability to the evolved models, 
fuzzy logic is used to build more meaningful trees. To this 
end, it uses the following three linguistic terms for fuzzy 
labels: low, medium, and high (see Fig. 1).

To obtain a classifier one tree is created for each class, the 
classifier decision occurs in favor of the tree (class) that has 
the highest output value. Also, since each tree is considered 
a “logical description” of the class, it allows a more specific 
interpretation of the learning problem [37].

FPTs provide an alternative for the construction of accu-
rate and interpretable fuzzy models. The interpretability that 
FPTs evolved using GE can offer has already been empiri-
cally shown [27].

Top–Down Induction of Pattern Trees

A successful method to create FPTs is seen in [37]. They 
called their approach Pattern Tree Top–Down Epsilon 
(PTTDE), a beam search technique. Epsilon determines the 
improvement required to continue to grow the tree.

The Beam Search learning scheme is quite “greedy”. This 
prevents optimal exploration of the search space and greatly 

increases the likelihood of the algorithm getting trapped in a 
local optimum. It also suffers from the curse of dimensional-
ity. That is to say, if there is a large quantity of input features 
and the width of the beam is large, then the algorithm will 
use a lot of resources and time to evaluate all the possibili-
ties. This leads to an exponential increase in the number of 
possible combinations.

Cartesian GP

Genetic Programming (GP) examines the automatic genera-
tion of computer programs, inspired by the theory of evo-
lution. The initial representation of GP was in a tree from 
[21]. CGP [24] is a flavor of GP with approximately 20 years 
of interesting and varied research works addressing a wide 
range of problem domains.

CGP uses graphs to represent solutions. Its distinguish-
ing characteristic among other GP variants is its ability to 
encode computational structures as directed graphs using 
redundant genes. This redundancy serves CGP to get a very 
adaptable representation by allowing the outputs nodes to 
either connect or disconnect to nodes from previous nodes 
in the directed graph.

The synthesis of FPTs by CGP was proposed by [34] and 
their results indicated that FPTs synthesized by CGP are 
competitive with other classifier algorithms while at the 
same time being smaller than those obtained in [37].

The synthesis of FPTs by CGP can also be found in [35]. 
The authors apply the improvements in CGP proposed by 
[16] and implemented the well-known NSGA-II strategy to 
deal with two conflicting objectives, namely, the accuracy 
and the size of the tree.

The underlying difference between traditional forms of 
Linear GP (LGP) and CGP and their restrictions in connec-
tivity was investigated in [42].

The difference between graph-based LGP and CGP is 
the means with which they limit the feed-forward connec-
tivity of their directed acyclic graphs. In particular, CGP 
restricts connectivity based on the levels-back parameter, 
while LGP’s connectivity is implicit and is under evolution-
ary control as a component of the genotype.

Experimentally, it has been shown that programs evolved 
using CGP do not exhibit bloat [40]. However, using CGP to 
evolve programs in an arbitrary language can be problematic.

Grammatical Evolution

GE is often thought of as variant of GP. It differs in that 
the space of legal programs it can explore is described by 
a grammar [33] or Attribute Grammar (AG) [31] given in 
Backus–Naur Form (BNF) . Crucially, it can evolve com-
puter programs or arbitrary structures which can be defined 
using these grammars [3, 4, 39].

Fig. 2   Tree representing the interpretable class “Good Quality Wine”, 
showing each variable with different color, taken from [25]
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The interchangeable design behind GE, as shown in 
Fig. 3, means that GE is very flexible. Any search tech-
niques may be used, such as Simulated Annealing or Par-
ticle Swarm, but usually a variable-length Genetic Algo-
rithm (GA) is employed to evolve a population of binary 
strings. A mapper is used to transform the strings onto a 
program using the grammar. Any program/algorithm can 
be used to evaluate those individuals.

The linear representation of the genome allows the use 
of the typical genetic operators of crossover and muta-
tion in the manner of a typical GA. This is in contrast to 
tree-based GP. We use GE for our system, because its use 
of a grammar facilitates the adding of extra types in later 
versions, although GP could equally have been used in this 
case. Each individual’s chromosome contains in its codons 
(typically groups of 8 bits) the information necessary to 
select and apply the grammar production rules, construct-
ing the final program which is evaluated. The mapping 
process is illustrated in Fig. 4.

Production rules for each non-terminal are indexed 
starting from 0. The mapping starts with the left-most 
non-terminal. To select the next production rule, the 
next codon value in the genome is read and interpreted 
using the formula: p = c % r , where c represents the cur-
rent codon value, % represents the modulus operator, 
and r is the number of production rules for the left-most 
non-terminal.

If the algorithm reaches the end of the genome, a wrap-
ping operator is invoked. This continues the mapping pro-
cess by returning to the start of the individual and reading 
the codons from the beginning of the genome. The map-
ping process stops when all of the non-terminal symbols 
have been replaced with terminal symbols, resulting in 
a valid program. If non-terminal symbols remain after a 
maximum number of iterations, the program is considered 
invalid and is penalized by being given the lowest possible 
fitness.

Fuzzy GE

This section introduces Fuzzy GE, an evolutionary approach 
to generate classifiers with linguistic labels. The aim is to 
create meaningful models applied to binary and multi-clas-
sification problems.

Standard Classification

There are many approaches used to evolve classifiers [12] 
and GE has been shown to be well suited for such a task 
[30]. One of the most popular methods for evolving a GP 
binary classifier is Static Range Selection (SRS) [22]. For 
multi-class classification, Centred Dynamic Class Boundary 
Determination (CDCBD) was proposed [45].

In binary classification, an input � ∈ ℜn has to be clas-
sified as belonging to one of two classes, �1 or �2 . In this 
method, the goal is to evolve a mapping g(�) ∶ ℜn

→ ℜ . 
The classification rule R states that pattern � is labeled as 
belonging to class �1 if g(�) > r , and belongs to �2 other-
wise, where r is the decision boundary value.

The fitness function is defined to maximize the total clas-
sification accuracy after R is applied, normally setting the 

Fig. 3   The GE system uses a search engine (typically a GA) to gener-
ate solutions for a given problem, by recombining the genetic mate-
rial (genotype) and mapped onto programs (phenotype) according to 
a language specification (interpreter/compiler). Taken from [25]

Fig. 4   Example of a GE genotype–phenotype mapping process for 
the Iris dataset, where the binary genotype is grouped into codons 
(e.g., 8 bits; red & blue), transcribed into an integer string, then used 
to select production rules from a predefined grammar (BNF-Gram-
mar), and finally translated into a sequence of rules to build a classi-
fier (phenotype). Taken from [25]
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decision boundary to r = 0 . A data sample is passed to the 
tree which yields a score. If the score is below the bound-
ary, it is labeled a particular class, and likewise, it is labeled 
the other class if it is above the boundary. This process is 
illustrated in Fig. 5.

The process for CDCBD is similar, with two or more 
boundaries existing, which can dynamically change to class 
each individual.

Both approaches only evolve one tree (or mapping) 
regardless of the number of classes and attempt to clas-
sify the individual based on its output from that tree. There 
are drawbacks to this approach as much effort needs to be 
expended into designing or hand-crafting class boundaries or 
creating systems to optimise them for each individual [13], 
which becomes increasingly more difficult as the number of 
classes increases.

FGE Classification

An FPT classifier requires that one FPT be evolved per class 
in the problem. Evolving multiple trees simultaneously adds 
a great deal of complexity to the problem. In general, care 
must be taken and special operators, particularly when using 
crossover, must be created [2]. However, due to the separa-
tion between the search space and program space in GE and 
the grammar we have specified, it is not necessary to create 
any special operators in our approach, Fuzzy Grammatical 
Evolution (FGE).

The novel method involves evolving only one large solu-
tion. This solution comprises of FPTs, with each class hav-
ing its own FPT, and a decision node at its root. Each FPT 
can therefore be thought of as a subtree of a larger clas-
sifier tree, as shown in Fig. 6, with the root node assign-
ing the label to each individual. More formally, i mappings 
fi(�) ∶ ℜn

→ [0, 1] , where i is the number of classes in the 
problem to be evolved. The FPT, or subtree, ( f1(�)... fi(�) ) 
which confers the largest score to the individual is deemed 
the winner and the individual is labeled with the class that 
FPT represents.

For example, if f1(�) yielded the largest score, the individ-
ual would be assigned to class 1. This is highlighted further 

in Fig. 7, where the second tree yields the better score, Sc , 
the hollow star. The individual is therefore assigned class 
c. This is in contrast to the methods described above which 
only produce 1 score per individual and assign it a label 
based on the score’s position relative to a boundary(s).

FGE does not require the use of any protected operators 
when evolving multiple trees due to the unique separation 
between genotype and phenotype, and only needs grammar 
augmentation to address different problem types.

Fuzzy Representation

Fuzzy logic is used to give better interpretability to the 
evolved models and give a deeper meaning to the trees. It 
uses the following linguistic terms for fuzzy labels: low, 
medium, and high. The input space was partitioned uni-
formly to create fuzzy partitions.

The fuzzy operators used are described in “Fuzzy Sets 
and Fuzzy Pattern Trees”. The values of the inputs of the 

Fig. 5   Pictorial representation of static range selection. An individual 
is given to the model which outputs a value. If this output exceeds 
the threshold value, it is classed as belonging to on class; if it is less 

than the threshold value, then it is classes as the other. In the exam-
ple, the output of the tree is less than 0, the designated threshold, and 
is classed as belonging to �

2

Fig. 6   Pictorial representation of a multi-classifier evolved by Fuzzy 
Grammatical Evolution. This example has c classes, so c Fuzzy Pat-
tern Trees are created, FT

1
 to FTc . Here, every Fuzzy Pattern Tree 

is given a different colour. FT
1
 is the Fuzzy Pattern Tree concerning 

class 1, FT
2
 is the Fuzzy Pattern Tree concerning class 2, and so on. 

The winner take all (WTA) function is at the root of the tree. This 
function assigns the individual to the class corresponding to the high-
est output of FT

1
 to FTc . For instance, if a problem had 3 classes, we 

need to create 3 Fuzzy Pattern Trees, FT
1
 , FT

2
 , and FT

3
 . If FT

1
 has 

an output of 0.2, FT
2
 an output of 0.6, and FT

3
 an output of 0.3 for a 

particular instance, then the WTA function will assign this instance 
as class 2, as it has the highest score
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operated nodes are a and b. In the case of the Weighted 
Average (WA) and Ordered Weighted Average (OWA) 
operators, the value k is produced randomly the range 
(0, 1) exclusive. For concentration, dilation, and comple-
ment, only one input is needed. The Winner Takes All 
(WTA) operator will be the root node of every fuzzy tree. 
Each FPT gives its score to this function. It then classifies 
the individual corresponding to the largest scoring FPT.

The grammar can be changed and augmented in GE 
to include different operators or fuzzy terms to create 
different trees.

Parsimony Pressure

Maximizing a model’s accuracy, or similarly minimiz-
ing its error, is the usual focus of research. However, the 
interpretability of these models has continued to grow in 
significance, with numerous workshops and conferences 
now devoted to the area [1]. For an FPT to be interpret-
able or comprehensible, and therefore allow it to serve as 
a description of the class, it is of utmost significance for 
the evolved solutions to remain as small as possible and 
avoid bloat in the final programs [12]. GP’s ability to find 
highly dimensional, highly non-linear solutions is praised 
and often thought of as its strong point. However, this 
often leads to a significant loss of interpretability. One of 
the main advantages CGP enjoys over standard GP, and 
other GP variants, is its inherent lack of bloat [40].

Parsimony pressure is an approach to limit the size of 
individuals [23]. It is not a GP-specific technique and can 
be deployed whenever arbitrarily sized representations 
are inclined to become far too large. It may generally be 
divided into two varieties: parametric and objective-based 
parsimony pressure.

Parametric parsimony pressure directly uses the size 
of the individual when calculating its fitness. Objective-
based parsimony pressure considers the size of the indi-
vidual as a separate objective to be considered in a multi-
objective optimization procedure. A common example of 
two objectives is tness and size.

Ensemble Techniques

While sacrificing the accuracy of a classifier to gain inter-
pretability may be acceptable for most users of a model, 
the new interpretable models must remain highly competi-
tive with the black-box one they are replacing. Ensembling 
offers an attractive approach to boost the performance of 
FPTs [9]. Generally, it combines the predictions of many 
“weak” classifiers to improve the overall performance. 
This would not harm the interpretability of the system pro-
viding each individual model remained small and the num-
ber of models which make up the ensemble also remains 
low. We considered three types of ensemble methods; 
aggregation, adaptive boosting, and gradient boosting.

Aggregation randomly partitions the data differently 
every run and produces a variety of learners. The outputs 
of these are combined together equally to yield a final 
prediction.

Boosting attempts to correct the mistakes of previous 
models and build new models which can search in the 
areas the previously trained models struggle to classify 
accurately.

Adaptive boosting creates a new training set by sam-
pling with replacement on the original training set [14]. 
Data which have been incorrectly classified by the previ-
ous models trained will be far more likely to appear in the 
new training set than those points which have been correctly 
classified. Each model does not have an equal say, as is the 
case with aggregating. The model is given a greater say in 
the final decision if it is seen to classify the data accurately.

Finally, a gradient boost approach was investigated [15]. 
This method takes the errors from the previous models and 
attempts, step-by-step, to reduce the errors by introducing 
new weak learner. Due to an FPT consisting of n trees per 
class and the output of each tree being confined to [0,1], a 
traditional gradient boost approach would not be possible. 
A new approach is constructed by taking the output of each 
FPT and updating it by combing with the output of new FPT 
found and then scaling the final result to ensure the total 
score remains in [0,1], as shown in Eq. 17. This is repeated 
a number of times until the stopping criteria are met.

Fig. 7   Graphical depiction of 
the mapping process from the 
feature space to a one-dimen-
sional space [0,1] using a set of 
fuzzy trees FT

1
 to FTc
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Aggregation has a distinct advantage in that it may be 
performed in parallel, whereas both adaptive and gradient 
boosting need to be performed sequentially.

Three sets of experiments were run in this paper. The first 
uses standard GE and the second implements an adjusted 
parsimony pressure to bias the selection by slightly punish-
ing a solutions fitness as it grows in size. The size is defined 
as the maximum depth of any of the n FPTs in a particular 
solution. The final set of experiments investigated the vari-
ous ensemble methods to try to enhance the classification 
performance of the FPTs. The ensemble methods were only 
performed on the binary classification problems. This was 
due to two reasons; any improvement given by boosting 
would be easier to identify in binary problems and the added 
complexity required for multi-class classification.

Experimental Setup

The approach was compared with a diverse set of state-of-
the-art classification algorithms and was also compared with 
one other FPT related method, FPTs evolved using CGP 
(FCGP) [34]. The benchmark classification problems used 
in [34] were used to produce a fair comparison between the 
two approaches. The full experimental setup for CGP and 
each of the other benchmark classification techniques which 
FGE is compared against can be seen in [34]. Table 3 shows 
the results.

The experiments were run on Intel Xeon Gold 6138 
2.00GHz CPU. LibGE, due to appear online shortly, was 
used for evolution and statistical analysis was done using R. 
It should be noted that the current implementation of LibGE 
is only single threaded.

Datasets

Eight benchmark datasets were chosen to run the experi-
ments on, all of which can be found in the UCI and CMU 
repositories online [11, 38]. Six binary classification prob-
lems and two multi-class problems are considered. The size 
of each dataset, as well as the number of classes and vari-
ables, are displayed in Table 1.

GE Parameters

The experiments were run for 50 generations with a popula-
tion size of 500. Sensible Initialisation and effective crosso-
ver were used [32]. Fivefold cross-validation was used. This 
was repeated 5 times for a total of 25 runs.

The ensemble methods were performed with a modified 
set of parameters.

For aggregation, the data were randomly split at the 
beginning of each run 40% for training, 35% for validation, 

and an identical 25% for testing. This is similar to the 
approach of random forest with the exception being that the 
training sample was selected without replacement from the 
pool of individuals. The best seven performing models on 
the validation set are chosen and used for aggregation for 
the test data.

For adaptive boosting and gradient boosting, the data 
were split 75% training and 25% for test. This was repeated 
at the beginning of each run, so that a different, randomized 
training and test data were used in each experiment. There 
were ten boosting iterations and the total cost of each run 
remained the same. That is to say, every 5 generations, the 
best individual was added to the ensemble and the weights 
of each sample updated and the evolution was restarted. This 
yielded the full ensemble after 50 generations.

These experimental values lead to a larger computational 
cost than the CGP experiments [34]. The full experimental 
setup can be seen in Table 2. Each run took approximately 
90 min to complete.

The binary classification grammar used in experiments 
can be seen in Fig. 8. The WTA​ node contains two < exp > 

Table 1   Benchmark datasets for binary and multi-class classification 
problems, taken from the UCI repository and and the CMU reposi-
tory

Datasets Short #Classes #Variables #Instances

Binary
 Lupus Lupus 2 3 87
 Haberman Haber 2 3 306
 Lawsuit Law 2 4 264
 Transfusion Transf 2 4 748
 Pima Pima 2 8 768
 Australian Austr 2 14 690

Multiclass
 Iris Iris 3 4 150
 Wine Wine 3 13 178

Table 2   List of the main parameters used to run GE

Parameter Value

Folds 5
Runs 25 (5 per fold)
Total Generations 50
Population 500
Replacement Tournament
Crossover 0.9 (Effective)
Mutation 0.01
Initialisation Sensible
For Adaptive and Gradient Boosting:
Boosting Iterations 10
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non-terminals which need to be expanded. These will be 
the FPTs for each class when they are fully expanded. Two 
FPTs are required for binary classification. To make this 
grammar suitable for multi-class classification, it needs to 
be augmented by simply adding more < exp > symbols in 
the expression. Three classes require three < exp > symbols 
and so on. Constants were created using the standard GE 
approach of digit concatenation [6].

Fitness Function

The fitness function chosen seeks to minimize the RMSE 
for each individual, similar to the approach used previ-
ously in CGP evolution. This is seen in Eq. 11. The bench-
mark datasets used in experimentation are quite balanced 
and it was decided a non-standard fitness function, such as 
cross entropy, was not required. However, it may be neces-
sary in future experiments to alter this if the data are very 
unbalanced

The fitness function for FGE with lexicographic parsimony 
pressure which aims to find small, interpretable solutions is 
calculated by penalizing the solution as its size grows. It is 
computed as follows:

Experiments using fitness function F are denoted as FGE in 
the results section. Experiments which used FL are signified 
by FGE − L

The max depth of each FPT in an individual is averaged 
to find the mean depth of a solution. For a binary classifier 
C with two FPTs, FPT1 and FPT2 , the mean depth would be

For adaptive boosting, the influence each classification 
model has in the final classification is calculated as

The gradient boost and aggregation experiments used fitness 
function 12. A larger penalty was applied in the adaptive 
boosting experiments, equation 15, to produce very small 
trees to add to the forest, which are preferred in adaptive 
boosting [14]. The weight of a sample j, wj , after evolution 
of i + 1 FPTs was updated per equation 16.

(10)RMSE =

√

√

√

√

n
∑

i=1

(ŷi − yi)
2

n

(11)F =1 − RMSE.

(12)FL = 1 − RMSE × 0.99 −MaxDepth × 0.01.

(13)
MeanDepth(C) =

1

2

(

MaxDepth(FPT1) +MaxDepth(FPT2)
)

.

(14)�i =
1

2
ln

(

1 − Errori

Errori

)

.

(15)FAda =1 − RMSE × 0.99 −MaxDepth × 0.05

(16)

wi+1
j

=
1

zi+1
×

{

wi
j
× e−�i+1 if classified correctly by classifieri + 1

wi
j
× e�i+1 otherwise.

< start >::=WTA(< exp >,< exp >)

< exp >::=max(< exp > , < exp >) |
min(< exp > , < exp >) |
WA(< const > , < exp > , < exp >) |
OWA(< const > , < exp > , < exp >) |
concentrate(< exp >) |
dilation(< exp >) |
complement(< exp >) |
x1 | x2 | x3 |...

< const >::=0. < digit >< digit >< digit >

< digit >::=0 | 1 | 2 |....

Fig. 8   Grammar used to evolve a Fuzzy Pattern Tree for a binary 
dataset. The WTA​ node can be augmented by adding extra < exp > to 
include as many subtrees as necessary, making it a multi-class gram-
mar

Table 3   Classification 
performance comparison of 
FGE versions against previous 
related work results, showing 
average classification on the test 
data for the best solution found 
per run

Bold indicates the best-performing method

Dataset FGE FGE-L FCGP SVM-L RF SVM-R PTTDE

Lupus 0.73 0.73 0.74 0.74 0.62 0.73 0.77
Haber 0.74 0.72 0.73 0.72 0.65 0.71 0.74
Law 0.96 0.94 0.93 0.99 0.97 0.96 0.94
Transf 0.76 0.77 0.76 0.76 0.70 0.73 0.77
Pima 0.74 0.74 0.72 0.77 0.77 0.71 0.76
Austr 0.86 0.86 0.85 0.86 0.79 0.85 0.85
Iris 0.96 0.96 0.95 0.96 0.95 0.95 0.95
Wine 0.83 0.83 0.90 0.98 0.98 0.98 0.98
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Here, zi+1 is a normalization term to ensure all the weights 
sum to 1 and �i+1 is calculated as in 14.

For gradient boosting, a new FPT is added to an ensemble 
of i − 1 trees for class c as

where Sc
i
 is the score for the ensemble of class c consisting 

of i FPTs, Sc
i−1

 is the score at the previous iteration, and 
FPTc

i
(x) is the output of the FPT at iteration i to be added 

to the ensemble.

Results

The experimental results are shown in Table 3. The mean 
test performance from all 25 runs of FGE is presented. Other 
methods performances are taken from [35]. The best result 
for each problem is highlighted in bold. The binary problems 
(1-6) are shown first, with the multi-classification problems 
(7-8) following after.

The first column in Table 3 shows the results for FGE. 
The second shows FGE with lexicographic pressure applied. 
The third, fourth, and fifth columns show the results for CGP 
(FCGP), Support Vector Machine with Linear Kernel (SVM-
L), and Random Forest (RF), respectively. The sixth column 
shows Support Vector Machine with Radial Basis Function 
Kernel (SVM-R), and finally, column seven shows the Pat-
tern Tree Top–Down Epsilon (PTTDE). This was the origi-
nal proposed technique used to produce FPTs [37]. For those 
experiments, epsilon was set to 0.25%. Epsilon determines 
the improvement required to continue to grow the tree.

A Friedman test was performed to compare the perfor-
mance of the classifiers. This test showed that no evidence 
there was one classifier that was statistically significantly 
better than all others.

It can be seen that FGE obtained very competitive perfor-
mance compared with the previous experiments. However, it 
was noticeably outperformed in one benchmark, Wine, how-
ever. In this benchmark, it was the worst-performing classi-
fier of all considered. FGE achieved mean best performance 
of 83%, compared to 98% found by SVM, RF, and PTTDE. 
It was also noticeably worse than the result achieved by 
CGP, which reached 90%. The reason for FGE’s inconsist-
ent performance on the non-binary problems requires further 
investigation. It is possible the small size and the imbalance 
of the wine dataset resulted in FGE’s poor performance.

FGE attained the best performance in three problems: 
(i) Haberman—FGE achieves 74%, outperforming all and 
matching PTTDE as the best result; (ii) Australian—FGE 
and FGE-L score 86% for a tie in best-performing clas-
sifier; and (iii) Iris—FGE and FGE-L again equal the 

(17)Sc
i
(x) =

Sc
i−1

(x) + 0.1 × FPTc
i
(x)

1.1
,

best-performing classifier attaining 96%. Intriguingly, 
FGE-L achieves best in class performance, 77%, on the 
Transfusion problem.

As well as these results, FGE and FGE-L both reach com-
petitive performance on the remaining classification prob-
lems, with the only outlier being the Lupus dataset. On the 
Lupus problem, FGE reaches similar performance as FCGP, 
73% and 74%, respectively, but PTTDE produced the best 
accuracy, 77%. FGE-L performs equivalently, finding 73% 
accuracy.

FGE-L can be seen to produce much smaller solutions 
than those found by FGE, as shown in Table 4. “SizeReduc” 
represents the reduction of the average tree size found by 
FGE-L compared to FGE. Note that if an FPT contains just 
a leaf node, it will be given a depth of 0.

FGE-L was able to discover remarkably smaller trees 
across all the problems considered. Specifically, the Haber-
man, Pima, and Australian problems were all seen to have a 
reduction in size by over 80%. Crucially, parsimony pressure 
does not appear to greatly affect the performance. A minor 
decrease in accuracy is seen in two problems: Haberman 
and Lawsuit. FGE is statistically significantly better on the 
Haberman dataset, with no difference seen between FGE 
and FGE-L in any other benchmark. Strikingly, there was an 
increase in the performance on the Transfusion problem by 
1%. This major reduction may point to bloat being a signifi-
cant problem in FGE. A pressure of 1% of size was applied 
in these experiments but tuning this parameter and how it is 
best applied is an avenue for future research.

FGE-L was the best-performing classifier on the Transfu-
sion, Iris, and Australian problems. On the problems consid-
ered, there seems to be very little, and oftentimes none at all, 
trade-off in performance associated with evolving smaller 
trees. It is possibly the case that the global optima for these 
problems were smaller trees. This requires further investiga-
tion on larger, more complex problems. However, the results 
hint strongly that bloat may be an issue in FGE.

Table 4   Average size comparison in terms of the tree depth between 
fuzzy pattern trees approaches; FCGP, FGE, and FGE-L

Best results are in bold. SizeReduc is the average size reduction seen 
in FGE-L vs FGE

Dataset FCGP FGE FGE-L SizeReduc

Lupus 1.65 7.84 2.38 70%
Haber 1.85 9.42 0.2 98%
Law 1.05 5.02 0.98 79%
Transf 2 6.76 1.54 77%
Pima 1 6.7 1 85%
Austr 1.5 5.12 0.92 82%
Iris 1.24 1.8 0.64 64%
Wine 1 2.47 0.68 72%
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FGE was statistically significantly better than FCGP on 
the Haberman, Lawsuit, Pima, and Australian benchmarks. 
FGE-L was significantly better than FCGP on the Transfu-
sion and Australian problems. FCGP significantly outper-
formed both FGE and FGE-L on the Wine dataset.

CGP was previously seen to produce much smaller trees 
than those using PTTDE and will be used to compare to 
the trees found using GE [35]. The trees found using CGP 
are much smaller than those found using FGE but larger 
than those using FGE-L. When the search is biased towards 
smaller sized individuals, FGE-L finds smaller solutions in 
seven problems. Due to these small sizes, FPTs found using 
FGE-L should lead to very interpretable results.

On the benchmarks considered, SVM-L was seen to be 
the best performing method, attaining best performance on 5 
of the the benchmark problems. On the other hand, SVM-L 
does not allow any interpretability of its solutions. FGE was 
best performing on three problems, FGE-L was best per-
forming on three problems and FCGP was not seen to be 
best on any. FGE beat or equalled FCGP in 6/8 problems 
studied and FGE-L evolved the smallest trees in all but one 
problem, Lupus, but was able to beat FCGP in 5/8 problems.

The mean size of the final trees found by FGE, FGE-L 
with parsimony pressure, and CGP are shown in Table 4, and 
best results are in bold.

The ensemble methods were seen to have mixed perfor-
mance on the problems considered. The results can be seen 
in Table 5, FGE had the best performance on the Lupus and 
Haberman datasets. This was likely due to the very small 
dataset each of the problems have, meaning that the ensem-
bled classifiers may be prone to overfit. This is a particular 
concern for the aggregation approach, with only 40% of the 
dataset used to train the model. Gradient boosting found 
the best-performing model for the Australian model, besting 
FGE by over 2%. AdaBoost was best on Lawsuit, 99%, and 
tied for best on Pima with FGE, achieving 77%. FGE was 
best on the Transfusion dataset, attaining 78%. Aggregating 
was not seen to perform best on any benchmark considered, 
being noticeably outperformed on the Transfusion, 76% vs 
78%, and Australian, 87% vs 90%.

While boosting was seen to match or improve classifica-
tion performance of FGE in three examples, without any 
further computational cost, it was seen to overfit badly on 
the Lupus dataset. It remains to be investigated what loss of 
interpretability comes from combing many FPTs to form an 
ensemble against considering just one FPT. Due to the very 
similar performance between standard FGE and the ensem-
ble methods, any loss of interpretabilty associated with their 
implementation may not be justified.

Conclusions

This paper proposes a new approach to evolving Fuzzy Pat-
tern Trees. It uses Grammatical Evolution as the learning 
algorithm, an approach we call Fuzzy Grammatical Evolu-
tion. The experimental results showed that Fuzzy Grammati-
cal Evolution has comparable performance in classification 
accuracy with some of the best classification algorithms 
available. Grammatical Evolution was seen to exceed the 
performance of Cartesian Genetic Programming on the 
problems considered.

Fuzzy Grammatical Evolution was seen to exhibit incon-
sistent performance on the multi-class classification prob-
lems, achieving best results on the Iris problem and achiev-
ing worst results on the Wine benchmark. For problems 
requiring many Fuzzy Pattern Trees, it may improve perfor-
mance to evolve each Fuzzy Pattern Tree individually and 
not evolve the ensemble of Fuzzy Pattern Trees all at once. 
This requires further investigation.

As interpretability is a key concern, experiments were 
conducted on methods to control program size. A simple 
pressure was applied by penalizing the fitness of individuals 
as they grew larger. We found that the final performance was 
unaffected by employing such measures and Fuzzy Gram-
matical Evolution with this pressure applied found both 
smaller and more accurate trees than those found using Car-
tesian Genetic Programming. This suggested that programs 
evolved using standard Fuzzy Grammatical Evolution are 
growing unnecessarily large and bloat was a considerable 
factor to consider in future experimentation.

In a final set of experiments, various ensemble techniques 
were investigated. This was in a bid to increase the accuracy 
of the final models where there may be a large discrepancy 
between them and black-box approaches. Adaptive boosting 
was seen to find better models than Fuzzy Grammatical Evo-
lution on less than half the benchmarks considered. Further 
works must be done on larger, real-world datasets with more 
than three classes to fully gauge the improvements boosting 
may give over standard Fuzzy Grammatical Evolution.

Our experimentation verified that Fuzzy Pattern Trees are 
a viable replacement of the classic rule-based fuzzy mod-
els. This is due to their hierarchical structure which yields a 

Table 5   Best-performing individual found for each ensemble method 
compared to best individual found using regular FGE

Best-performing method is shown in bold

Dataset FGE Aggr’n AdaBoost GradBoost

Lupus 0.94 0.50 0.86 0.86
Haber 0.82 0.67 0.80 0.76
Law 0.98 0.96 0.99 0.97
Transf 0.78 0.77 0.76 0.77
Pima 0.77 0.75 0.77 0.76
Austr 0.88 0.87 0.87 0.90
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more compact representation and allows for a better compro-
mise between the accuracy and the simplicity of the model. 
Importantly, it also gives an interpretable model. That is to 
say, the knowledge which has been obtained in the learning 
process can be extracted from the final model and is shown 
to a user in understandable terms.

Several avenues of future research can be explored from 
the present work. The proposed algorithms should be evalu-
ated on other machine learning problems, such as unsuper-
vised clustering.

Another interesting course of action is to try other tech-
niques to reduce the size of the trees, such as regulariza-
tion or encapsulation [28], or hybridise GE with another 
technique to optimise smaller models already found [29]. 
Furthermore, the use of different types or sets of grammar 
could be investigated.

A final potential route for future exploration is to empiri-
cally examine if smaller tree sizes do offer more interpret-
ability to the user. Some work on validating the interpret-
ability of the final solutions found has already been carried 
out [26]. It is possible that some other metric, the number of 
variables used or the presence/absence of particular subtrees 
for example, may grant better interpretability. This must be 
examined.
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