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Chemical and physical quality attributes of herbal extract powders play an important role in the research and development of
Chinese medicine preparations. The active pharmaceutical ingredients have a direct impact on the herbal extract’s efficacy, while
the physical properties of raw material affect the pharmaceutical manufacturing process and the final products’ quality. In this
study, tanshinone extract powders from Salvia miltiorrhiza which are widely used for the treatment of cardiovascular diseases in
the clinic are taken as the research object. Both the chemical information and physical information of tanshinone extract powders
are analyzed by near infrared (NIR) spectroscopy. The partial least squares (PLS) and least square support vector machine (LS-
SVM) models are investigated to build the relationship between NIR spectra and reference values. PLS models performed well
for the content of crytotanshinone, tanshinone IIA, the moisture, and average median particle size, while, for specific surface area
and tapped density, the LS-SVM models performed better than the PLS models. Results demonstrated NIR to be a valid and fast
process analytical technology tool to simultaneously determine multiple quality attributes of herbal extract powders and indicated
that there existed some nonlinear relationship between NIR spectra and physical quality attributes.

1. Introduction

Pharmaceutical powders, described as heterogeneous sys-
tems with different chemical and physical attributes, are the
main source of oral solid preparations. It is estimated that
more than 80% of the drug production is based on powders
in a typical pharmaceutical industry [1]. As the input of
the pharmaceutical process, powders have great impacts on
the whole production process. Tiny quality fluctuations of
powders may result in batch to batch variations of the final
products [2–4]. For example, the performance of the granule
tableting process would be deteriorated significantly when
the initial moisture content of microcrystalline cellulose
was increased from 2.6% to 4.9%, the values of which are
considered to be within normal variations of the moisture
content (i.e., 3–5%) for microcrystalline cellulose. On the
other hand, the flow ability of the granule was improved
as the initial moisture content of microcrystalline cellulose
was increased [4]. Therefore, it is necessary to understand
and control the critical material attributes of powders at the
beginning of pharmaceutical processes.

Process analytical technology, launched by the United
States Food and Drug Administration [5], is often used
to monitor and control critical quality attributes of raw
materials and in-process products to ensure the quality of
final products. Process analytical technology approaches,
which are based on scientific knowledge and risk analysis,
afford the design and development of efficiently controlled
process. In this way, it is possible to realize the preset target
of the product when the manufacturing process is finished.
Common process analytical technology tools used in rapid
evaluation of chemical and physical properties of powder
are as follows: near infrared spectroscopy [6, 7], Raman
spectroscopy [8], Raman chemical imaging [9], acoustic
emission [10, 11], and so forth. Among them, near infrared
spectroscopy (NIR) is themost widely used process analytical
technology tool in the pharmaceutical process monitoring
and control [12, 13], since it is fast, nondestructive, and of low-
cost. Compared with the imaging technology, NIR is rapid
and of low-cost. And for the analysis of complex system with
many ingredients, that is, herbalmaterials [14, 15], NIR shows
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unique advantages over other spectroscopy technologies,
such as Raman spectroscopy which does well in the analysis
of pure compounds [16].

NIR spectra carry abundant information not only on
chemical compositions but also on physical properties (e.g.,
particle size) of the sample [17, 18]. In powder analysis,
some qualitative work with NIR has been reported, such
as rapid identification of the production area [19] and
brand traceability [20]. And some work about quantitative
analysis has also been done in relating the NIR spectra to
different quality attributes of powders, such as content of
ingredients [6], flow ability [21], content ofmoisture [22], and
particle size [23]. And subsequent unit operations of solid
dosage preparations could benefit from the quality control of
powders.

Herbal extract powders as raw materials play an impor-
tant role in the research, development, and manufacturing
of Chinese medicine preparations. Currently, the quality
control of herbal extract powders mainly focuses on the
content of active pharmaceutical ingredients according to
the Chinese Pharmacopoeia (Ch.P.) 2010 [24]. However, like
powders of chemical materials, it is far from enough to
control the quality of herbal extract powders only by the
content of components. In order to understand and control
the quality of herbal extract powders as well as related
manufacturing processes and products, physical properties
of herbal extract powders should be paid more attention.
Generally, classical methods for determination of physical
properties of herbal extract powders were time-consuming.
And, recently, NIR spectroscopy has been reported to be
successfully applied in the analysis of herbal powders, where
the contents of active pharmaceutical ingredients were the
attractive part. Quantification of contents of two or more
ingredients in herbal extract powders could be carried out
by NIR [15, 25]. Nevertheless, the application of NIR to
analysis of physical properties of herbal extract powders is
still an untouched area. Therefore, the aim of this paper
is to investigate the possibility of using NIR to predict
both the chemical and physical properties of herbal extract
powders at the same time. To the best of our knowledge,
this is the first report on the application of NIR spectroscopy
in characterization of multiple quality attributes of herbal
extract powders. It is expected that the usage of NIR could
be broadened in the quality control of rawmaterials of herbal
products.

The rest part of the paper is organized as follows:
firstly, contents of cryptotanshinone and tanshinone IIA of
50 batches of tanshinone extract powders were determined
by high performance liquid chromatography (HPLC), and
the physical quality attributes were measured by classical
methods. Then, the NIR spectra of tanshinone extract pow-
ders were collected in diffuse reflection mode and different
data pretreatment methods were screened. After that, partial
least squares (PLS) and least square support vector machine
(LS-SVM) models for quantitative prediction of different
quality attributes were built, and the performances of these
models were compared. Finally, a conclusion of this paper is
provided.

Table 1: Factors and levels of central composite design (𝛼 = 1).

Name Units Low High −𝛼 +𝛼
Ethanol
concentration % 80 100 80 100

Ethanol
volume L 4 6 4 6

Decoction
time Hour 0.5 3 0.5 3

𝛼means the distance between the “star” point and the central point.

2. Experimental

2.1. Materials. Salvia miltiorrhiza (batch number: 20120402)
were purchased from Beijing Ben Cao Fang Yuan Phar-
maceutical Co., Ltd. (Beijing, China). Cryptotanshinone
(batch number: 1110852-200806) and tanshinone IIA (batch
number: 110766-200619) were obtained from National Insti-
tute for the Control of Pharmaceutical and Biological
Products (Beijing, China). Acetonitrile (Fisher scientific,
Waltham, Massachusetts, USA), phosphoric acid (Fisher
scientific, Waltham, Massachusetts, USA) and distilled water
(HangzhouWahahaGroupCo., Ltd., Hangzhou, China) were
ofHPLC grade and all other reagents were of analytical grade.

30 batches of alcohol extracts of Salvia miltiorrhiza
were purchased from 5 different suppliers. 20 batches of
alcohol extracts of Salvia miltiorrhizawere homemade under
central composite experimental design in order to expand the
variation coverage of the sample sets. Factors and levels of
the alcohol extraction process are shown in Table 1, and the
experiment schedules are listed in Table 2. The alpha value
was set to 1 and the replication of center points was 5. The
extraction process was carried out according to procedures
specified in the Chinese Pharmacopoeia (Ch.P.) 2010 [24]
as follows: pulverized powders of Salvia miltiorrhiza were
extracted by alcohol through heating reflux, after which the
alcohol was filtered and the filtrates were merged. Then, the
filtrate was vacuum evaporated to recover ethanol, enriched
to 1.30∼1.35 of the relative density at 60∘C,washed to colorless
by hot water, dried at 80∘C, and crushed to fine powders
finally. As a result, 50 batches of alcohol extracts of Salvia
miltiorrhiza were used in the following experiments.

3. Method

3.1. HPLC Analysis. 5 grams of tanshinone extract powders
was taken to a 5mL volumetric flask after a precise weighing,
dissolved by methanol, and then diluted with methanol
to volume. All samples were filtered through a millipore
membrane filter with an average pore diameter of 0.45 𝜇m,
and 10 𝜇L filtrate was injected into the HPLC system for
analysis.

The contents of cryptotanshinone and tanshinone IIA
were quantitated by the reverse phase HPLC according to
Ch. P. 2010 [24]. An Agilent 1100 HPLC system (Agilent
Technologies, Santa Clara, California, USA) with a vacuum
degasser, a quaternary pump, an autosampler, a thermostatic
column compartment, and a diode array detector were
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Table 2: Experiment schedules of Salviamiltiorrhiza alcohol extrac-
tion (𝛼 = 1).

Run 𝐴: ethanol
concentration/%

𝐵: ethanol
volume/L

𝐶: decoction
time/hour

1 90 5 1.75
2 90 5 3.00
3 80 4 0.50
4 80 4 3.00
5 90 4 1.75
6 90 6 1.75
7 100 6 0.50
8 80 6 3.00
9 100 5 1.75
10 90 5 1.75
11 100 4 0.50
12 90 5 1.75
13 80 5 1.75
14 100 4 3.00
15 100 6 3.00
16 80 6 0.50
17 90 5 1.75
18 90 5 0.50
19 90 5 1.75
20 90 5 1.75

used. Separation was performed on Agilent SB C
18

column
(250mm × 4.6mm with 5𝜇m particle size) at 30∘C. The
mobile phase consisted of (A) acetonitrile and (B) 0.026%
phosphoric acid water solution. The gradient elution was as
follows: linear change from (A) 0 to 60% at 0–20min and
linear change from (A) 60% to 80% at 20–50min. The signal
was monitored at 270 nm. The flow rate was maintained at
0.8mL⋅min−1. Reequilibration duration was 10min between
individual runs.

3.2. NIR Spectroscopy. The NIR spectra were collected in
the integrating sphere mode using an Antaris Nicolet FT-
NIR system (Thermo Fisher Scientific Inc., Waltham, Mas-
sachusetts, USA). About 2 grams of powders was used with
compaction in each test. Each sample spectrum was a result
of 64 scans in the range between 10,000 and 4000 cm−1 using
8 cm−1 resolution at ambient temperature and was recorded
by log 1/𝑅 with air as reference. Every sample was scanned
three times and the final spectrum was an average of the
three. All NIR spectra were collected and archived using the
Thermo Scientific Result software.

3.3. Physical Attributes Determination. The specific surface
area was determined by the 3h-2000a automatic specific sur-
face area analyzer (Beishide Instrument Technology (Beijing)
Co., Ltd., Beijing, China) according to the multimolecular
layer absorption theory. In reference mode, with nitrogen as
the absorbate and purge medium and helium as carrier gas,
the test was purged for 60 minutes at 30∘C.

The particle size distribution was determined by the bt-
2001 laser particle size analyzer (Dandong Bettersize Instru-
ments Ltd., Dandong, Liaoning, China). Based on the light
scattering theory, measurements were obtained using dry
dispersion with air as medium and the refractive index of
sample is 1.520. The 𝐷

10
, 𝐷
50
, and 𝐷

90
values are calculated

to represent the maximal particle size diameters that include
10%, 50%, and 90% of the particles, respectively. For example,
the𝐷
90
valuemeans that 90%of particles are smaller than this

particle diameter, whereas the remaining 10% of the particles
have larger diameters. Each sample was tested for three times,
and the average value was taken.

The tapped density was analyzed by the hy-100 powder
density tester (Dandong Hengyu Instruments Ltd., Dan-
dong, Liaoning, China). According to the European Phar-
macopoeia 8.0 [26], 5 grams of powders was poured into
the measuring cylinder. Afterwards, the volumetric measure-
mentwasmade following 1250 taps, which has been described
as the number of taps sufficient to achieve maximum com-
paction equilibrium [27]. The final volume (Vt) was used to
compute the tapped density. Each sample was measured in
triplicate, and the average value of density was taken.

The moisture content of sample was determined by the
Sartorius ma-35 moisture analyzer (Sartorius AG, Gottingen,
Germany). This test needs about 2 grams of powders being
heated for 10 minutes at 105∘C.

3.4. NIR Spectra Pretreatment. A variety of preprocessing
methods for the spectroscopic data were compared to extract
the useful information from noise, such as normalization,
baseline, Savitzky-Golay smoothing, Savitzky-Golay smooth-
ing plus first-order derivatives, Savitzky-Golay smoothing
plus second-order derivatives, spectroscopic transformation,
multiplicative scatter correction, standard normal variate
transformation, and wavelet de-nosing of spectra. SIMCA
P +11.5 (Umetrics AB, Umea, Sweden) and Unscrambler 9.7
(Camo software, Oslo, Norway) served as chemometric tools
for data preprocessing.

3.5. Model Building. In order to build quantitative models,
the samples were split into the calibration and validation sets
by Kennard-Stone algorithm. In this study, 40 samples were
selected as the calibration set, while the remaining 10 samples
were kept as the validation set. The whole spectra with
wavenumber 10000–4000 cm−1 were used to build models.

PLS regression algorithm performed on Matlab version
7.0 (Mathworks Inc., Natick, Massachusetts, USA) with PLS
Toolbox 2.1 (Eigenvector Research Inc., Wenatchee, Wash-
ington, USA) was used to set up quantitative models. The
number of latent variables was optimized by the leave-one-
out cross validation method and predicted residual error
sum square (PRESS). The performances of PLS models
were evaluated in terms of correlation coefficient 𝑟 for
both calibration and validation sets (𝑟cal and 𝑟pre, resp.), the
root mean square error of calibration (RMSEC), the root
mean square error of cross validation (RMSECV), the root
mean square error of prediction (RMSEP), BIAS for both
calibration and validation (BIAScal and BIASpre, resp.), and
the relative predictive deviation (RPD). PLS model showed
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good performance with large 𝑟 and RPD values, while small
RMSEC, RMSECV, RMSEP, and BIAS values. The equations
of these indicators were as follows:
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where 𝑛 is the number of samples, 𝐶
𝑖
is the reference value

of the sample of number 𝑖, 𝐶
𝑝𝑖

is the predictive value of
the sample of number 𝑖, 𝐶

𝑖
is the average value of reference

value, and 𝐶
𝑝𝑖
is the average value of predictive value. SDpre

is the standard deviation of prediction set data, 𝐶
𝑖𝑝

is the
reference value of prediction set, and 𝐶

𝑖𝑝
is the average value

of prediction set.
LS-SVM algorithms carried out by LS-SVM lab Toolbox

1.8 (Department of Electrical Engineering, Leuven-Heverlee,
Belgium) [28] was also used to set up quantitative models. In
order to obtain the LS-SVM model, two extra hyperparam-
eters, gam and sig2, need to be tuned by leave-one-out cross
validation. Gam is the regularization parameter, determining
the tradeoff between the training error minimization and
smoothness of the estimated function. Sig2 is the Gaussian
RBF kernel function parameter. The performance of the
LS-SVM model was evaluated in terms of chemometric
indicators the same as PLS regression.

4. Results and Discussion

4.1. HPLC Determination of Cryptotanshinone and Tan-
shinone IIA. For quantitative consideration, the calibra-
tion curves of cryptotanshinone and tanshinone IIA were
established upon eleven consecutive injections of differ-
ent concentrations. The concentration range is from 0.73
to 102.48 𝜇g⋅mL−1 for cryptotanshinone and from 0.83 to
182.56 𝜇g⋅mL−1 for tanshinone IIA. Regression equation cal-
ibrated for cryptotanshinone was 𝑦 = 46.95𝑥 + 2.506 (𝑅2 =
0.9999, 𝑛 = 11) and 𝑦 = 44.74𝑥+19.93 (𝑅2 = 0.9999, 𝑛 = 11)
for tanshinone IIA. Seen in Table 3, it is obvious that contents
of cryptotanshinone and tanshinone IIA varied considerably
among different samples. And large quality fluctuations could
be observed among the commercial tanshinone extracts
produced under the same specifications according to the

Table 3: The contents of cryptotanshinone and tanshinone IIA of
tanshinone extract powders.

Type Index Contents/mg⋅g−1
Relative
standard
deviation

Homemade Cryptotanshinone 21 ± 22 1.0
(20 batches) Tanshinone IIA 25 ± 27 1.1
Commercial Cryptotanshinone 18 ± 18 1.0
(30 batches) Tanshinone IIA 12 ± 28 2.3

Ch.P. 2010 [24]. For example, contents of cryptotanshinone
in commercial extract powders varied from 2.8 to 88mg⋅g−1,
with the mean value of 12mg⋅g−1 and the standard deviation
of 28mg⋅g−1. And, for tanshinone IIA in commercial extract
powders, the contents were from 0.85 to 1.4 × 102mg⋅g−1
with the average value and standard deviation being 25
and 27mg⋅g−1, respectively. The possible reasons could be
attributed to different sources of Salvia miltiorrhiza, different
preparation processes, and various storage conditions.

4.2. Analysis of Physical Attributes. The results of physical
attributes tests are shown in Table 4. The relative standard
deviations of all physical attributes were smaller than 0.5.
It is clear that the variation coverage of physical properties
were smaller than the contents of active pharmaceutical
ingredients, whose relative standard deviations values were
above than 1.0.

Generally, the specific surface area of loose porous mate-
rial is supposed to be large due to plenty of micropores.
But values of specific surface area for the homemade and
commercial Salvia miltiorrhiza extract powders were all
below 0.500m2⋅g−1, indicating that these samples were dense
with little micropores. If such extract powder was used as
rawmaterial for dry granulation or direct tableting, the dense
structure might result negatively in the dissolution tests of
produced granules or tablets.

Homemade extract powders were treated by grinding,
while commercial extract powder was directly from spray
drying. The two different preparation methods may lead to
the variation of particle size distribution between the two
sample sets. 𝐷

50
values were 15.34∼57.17 𝜇m for commer-

cial samples and those were 35.52∼83.33 𝜇m for homemade
samples, suggesting that spray drying powders were finer
than grinding ones. In real pharmaceutical applications, that
is, granulation or tableting, fine powders made from spray
drying as raw materials are a better choice than coarse
powder, since fine powders deserve better uniformity of
distribution.

The tapped density values of homemade samples are close
to that of commercial samples. Different from the liquid
density, solid density is not a unique “band.” Tapped density
of herbal extract powders with different chemical composi-
tions and contents may be the same. For example, as seen
in Table 5, contents of cryptotanshinone for the first three
samples are 3.4, 37, and 33mg⋅g−1, and contents of tanshinone
IIA are 1.5, 2.5, and 28mg⋅g−1, respectively.The three samples
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Table 4: Results of physical attributes tests of tanshinone extract powders.

Type Index Values Relative standard deviation

Homemade (20 batches)

Specific surface area/m2
⋅g−1 0.240 ± 0.0663 0.276

𝐷
10
/𝜇m 12.05 ± 5.335 0.4427
𝐷
50
/𝜇m 52.52 ± 12.36 0.2353
𝐷
90
/𝜇m 126.1 ± 19.20 0.1523

Tapped density/g⋅cm−3 0.72 ± 0.060 0.083
Moisture/% 3.01 ± 1.22 0.405

Commercial (30 batches)

Specific surface area/m2
⋅g−1 0.317 ± 0.0546 0.1722

𝐷
10
/𝜇m 6.917 ± 1.466 0.2119
𝐷
50
/𝜇m 27.49 ± 11.57 0.4209
𝐷
90
/𝜇m 101.0 ± 31.20 0.3089

Tapped density/g⋅cm−3 0.73 ± 0.070 0.096
Moisture/% 3.21 ± 0.846 0.264

The𝐷
10
,𝐷
50
, and𝐷

90
values indicate the maximal particle size diameter that includes 10%, 50%, and 90% of particles, respectively.

Table 5: The contents of cryptotanshinone and tanshinone IIA, bulk, and tapped density of five samples exemplified.

Sample Cryptotanshinone content/mg⋅g−1 Tanshinone IIA content/mg⋅g−1 Tapped density/g⋅cm−3

1 3.4 ± 0.040 1.5 ± 0.015 0.74 ± 0.032

2 37 ± 0.036 2.5 ± 0.027 0.74 ± 0.0016

3 33 ± 0.0086 28 ± 0.047 0.74 ± 0.0013

4 4.0 ± 0.043 2.0 ± 0.034 0.70 ± 0.030

5 4.3 ± 0.015 2.9 ± 0.021 0.77 ± 0.0018

had the same tapped density 0.74 g⋅cm−3, while the former
two samples had similar contents of tanshinone IIA, and the
latter two samples had similar contents of cryptotanshinone.
In contrast, tapped density of the extract powders with
similar chemical compositionsmay be different.The contents
of cryptotanshinone of the last two samples in Table 5 are
4.0 and 4.3mg⋅g−1, and the contents of tanshinone IIA of
them are 2.0 and 2.9mg⋅g−1, indicating that the chemical
compositions and contents of these two samples are similar,
but the tapped densities are 0.77 and 0.70 g⋅cm−3, respectively.

Similar to tapped density values, values of moisture
content did not show much difference. Most of moisture
contents were below 5% except for two samples of homemade
sample sets. Moisture of extract powders could directly affect
the subsequent operations, such as dry granulation and direct
compaction. If the moisture content is too high, the storage
of extract powders will be a challenge. While, if the moisture
content is too low, it will be difficult for direct compaction of
tablet. So moisture of tanshinone extract powder should be
monitored and controlled within a proper range.

It could be summarized that, for each quality attribute,
the values fluctuatedwithin a certain range.The differences of
tapped density (the values of relative standard deviation being
0.083 for homemade and 0.096 for commercial) were smaller
than other indexes (all values of relative standard deviation
being more than 0.15 for the homemade and commercial).
Tapped density is macroscopic, while other quality attributes
are microscopic, which may lead to the different variation
coverage of measured indexes.

4.3. Data Pretreatment. Figure 1 shows the raw NIR spec-
tra without any pretreatment. In the region of wavelength
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Figure 1: The near infrared spectra of 50 samples without any
pretreatment.

7000∼4000 cm−1, serious peak overlapping and great noise
could be observed, suggesting that a great deal of information
may be concealed.

For different quality attributes, the NIR spectra with
different data pretreatment methods were found to bear
different capability in both calibration and validation. As
shown in Tables 6 and 7, the best preprocessing methods in
prediction of the contents of cryptotanshinone and tanshi-
none IIA are normalization and Savitzky-Golay smoothing
plus first-order derivatives, respectively. Normalization could
eliminate redundant information and increase the difference
among samples. Savitzky-Golay smoothing could clear high
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Table 6: Comparison of different preprocessing methods of partial least squares model for content of cryptotanshinone/mg⋅g−1.

Preprocessing method LVs Calibration set Validation set
𝑟cal RMSEC RMSECV BIAScal 𝑟pre RMSEP RPD BIASpre

Raw 10 0.9922 0.0026 0.0049 0.0019 0.9798 0.0027 4.4 0.0021
S-G smooth 10 0.9921 0.0026 0.0049 0.0019 0.9796 0.0027 4.4 0.0022
Normalization 11 0.9963 0.0018 0.0033 0.0013 0.9969 0.0013 8.9 0.0011
S-T 11 0.9955 0.0020 0.0041 0.0015 0.9922 0.0014 8.1 0.0011
MSC 14 0.9983 0.0012 0.0029 0.0010 0.9921 0.0015 7.9 0.0012
S-G 1st 6 0.9883 0.0032 0.0041 0.0023 0.9949 0.0020 5.9 0.0016
S-G 2nd 6 0.9934 0.0024 0.0043 0.0016 0.9910 0.0015 7.7 0.0014
Baseline 8 0.9845 0.0036 0.0055 0.0025 0.9882 0.0021 5.6 0.0017
SNV 11 0.9962 0.0018 0.0037 0.0015 0.9963 0.0015 8.1 0.0010
WDS 8 0.9799 0.0041 0.0059 0.0029 0.9814 0.0023 5.1 0.0020
Raw means using the original spectra without any pretreatment; LVs means numbers of latent factors of the PLS model. 𝑟cal and 𝑟pre represent correlation
coefficients for calibration and validation sets, respectively. RMSEC, RMSECV, and RMSEP represent the rootmean square error of calibration, cross validation,
and prediction, respectively. BIAScal and BIASpre represent bias for calibration and validation, respectively. RPD means relative predictive deviation.
S-G smooth means Savitzky-Golay smoothing; S-T represents spectroscopic transformation; MSC means multiplicative scatter correction; S-G 1st is Savitzky-
Golay smoothing plus first-order derivatives for short; S-G 2nd means Savitzky-Golay smoothing plus first-order derivatives; baseline means baseline
correction; SNV represents standard normal variate transformation and WDS is wavelet denoise of spectra for short.

Table 7: Comparison of different preprocessing methods of the partial least squares model for the content of tanshinone IIA/mg⋅g−1.

Preprocessing
method LVs Calibration set Validation set

𝑟cal RMSEC RMSECV BIAScal 𝑟pre RMSEP RPD BIASpre
Raw 10 0.9893 0.0043 0.0093 0.0036 0.9484 0.0060 2.0 0.0055
S-G smooth 13 0.9952 0.0029 0.0091 0.0019 0.9932 0.0044 2.7 0.0029
Normalization 10 0.9939 0.0033 0.0063 0.0027 0.9716 0.0043 2.7 0.0039
S-T 12 0.9965 0.0025 0.0066 0.0020 0.9921 0.0034 8.1 0.0022
MSC 14 0.9984 0.0017 0.0044 0.0014 0.9943 0.0024 5.0 0.0017
S-G 1st 8 0.9953 0.0029 0.0060 0.0021 0.9957 0.0019 6.2 0.0015
S-G 2nd 4 0.9915 0.0039 0.0056 0.0027 0.9955 0.0021 5.6 0.0016
Baseline 10 0.9899 0.0022 0.0055 0.0033 0.9529 0.0048 2.5 0.0041
SNV 11 0.9973 0.0018 0.0037 0.0018 0.9977 0.0015 3.6 0.0018
WDS 9 0.9772 0.0063 0.0106 0.0045 0.9532 0.0059 2.0 0.0046

frequency noise by means of least square polynomial fitting
to the data in the moving window. And 1st derivative spec-
trum could eliminate shift irrelevant to the wavelength. As
shown in Table 8, the best preprocessing method for specific
surface area,𝐷

10
,𝐷
50
, andmoisture content is Savitzky-Golay

smoothing plus first-order derivatives. Figure 2 shows the
NIR spectra after Savitzky-Golay smoothing plus first-order
derivatives, where the shifted baselines of the raw spectra are
corrected. For 𝐷

90
and tapped density, the best preprocess-

ing methods are spectroscopic transformation and wavelet
denoising, respectively. Spectroscopic transformation is often
used to switch between absorbance and reflectance data
and transform reflectance data into Kubelka-Munk units.
And wavelet denoising deals with high frequency noise of
spectrum.

4.4. Calibration and Validation of Quantitative Models. The
calibration results of the content of cryptotanshinone (see
Figure 3) demonstrate that 11 latent factors with minimum
RMSECV and PRESS values are enough to build the PLS

models.The correlation coefficients of calibration and valida-
tion sets were 0.9963 and 0.9969, respectively. The values of
root mean square error for calibration, cross validation, and
prediction were 0.0018, 0.0033, and 0.0013mg⋅g−1, respec-
tively. And the RPD value was 8.9.

Gam and sig2 of the LSSVMmodel for the tapped density
are optimized by the standard simplex algorithm and resulted
values are 6.9355 and 111.63, respectively (see Figure 4). The
correlation coefficients of calibration and validation sets were
0.9851 and 0.8875, respectively. The values of root mean
square error of prediction were 0.020 g⋅cm−3. And the RPD
value was 2.2.

Furthermore, the established PLS and LS-SVM models
are compared, as shown in Tables 8 and 9. It can be found
that PLS models exhibited good performance in prediction
of chemical properties, particle size, and moisture content.
But, for specific surface area and tapped density, LS-SVM
models performed better than PLS models. Take the tapped
density for example, the correlation coefficients of calibration
and validation sets for the PLS model were 0.8830 and
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Table 8: The best preprocessing methods for near infrared spectra of partial least squares models of physical attributes.

Index Processing method LVs Calibration Validation
𝑟cal RMSEC RMSECV BIAScal 𝑟pre RMSEP RPD BIASpre

SSA/m2
⋅g−1 S-G 1st 11 0.9591 0.021 0.045 0.017 0.8282 0.025 1.7 0.020

𝐷
10
/𝜇m S-G 1st 12 0.9867 0.74 2.4 0.56 0.9720 0.76 2.8 0.54
𝐷
50
/𝜇m S-G 1st 5 0.9392 6.0 7.1 4.6 0.9561 4.1 3.3 3.28
𝐷
90
/𝜇m S-T 11 0.9477 10 16 7.5 0.9058 8.7 2.5 6.3
𝐷
𝑡
/g⋅cm−3 WDS 10 0.8830 0.034 0.038 0.027 0.8940 0.023 1.9 0.019

Moisture/% S-G 1st 12 0.9679 0.26 0.68 0.18 0.9191 0.33 2.6 0.25
LVs means numbers of latent factors of the PLS model. 𝑟cal and 𝑟pre represent correlation coefficients for calibration and validation sets, respectively. RMSEC,
RMSECV, and RMSEP represent the root mean square error of calibration, cross validation, and prediction, respectively. BIAScal and BIASpre represent bias
for calibration and validation, respectively. RPD means relative predictive deviation.

Table 9: The best preprocessing methods for near infrared spectra of the least squares support vector machine model for different quality
attributes.

Index Processing method gam sig2 Calibration set Validation set
𝑟cal BIAScal 𝑟pre RMSEP RPD BIASpre

Cc/mg⋅g−1 S-G 1st 2299.6 50195 0.9980 9.3 × 10−4 0.9985 0.0020 15 6.5 × 10−4

IIA/mg⋅g−1 S-G smooth 15042 5963.3 0.9996 6.9 × 10−4 0.9978 0.0010 12 7.2 × 10−4

SSA/m2
⋅g−1 Normalization 17.4749 2541.4 0.9207 0.023 0.9661 0.017 2.5 0.016

𝐷
10
/𝜇m S-G 1st 212.18 4476.9 0.9908 0.42 0.9723 0.67 3.2 0.49
𝐷
50
/𝜇m Raw 25.830 2222.9 0.9604 3.9 0.9795 3.1 4.3 2.69
𝐷
90
/𝜇m Normalization 1928.5 2106.5 0.9835 3.8 0.9276 7.8 2.7 5.8
𝐷
𝑡
/g⋅cm−3 S-g smooth 6.9355 111.63 0.9851 0.011 0.8875 0.020 2.2 0.018

Moisture/% Baseline 2042.3 1970.5 0.8900 0.28 0.9336 0.30 2.9 0.25
Gam and sig2 are two tuned hyperparameters of LS-SVMmodel. 𝑟cal and 𝑟pre represent correlation coefficient for calibration and validation sets, respectively.
RMSEP represents the root mean square error of prediction. BIAScal and BIASpre represent bias for calibration and validation, respectively. RPDmeans relative
predictive deviation.
Cc and IIA mean the content of cryptotanshinone and tanshinone IIA, respectively. SSA, 𝐷

𝑡
mean specific surface area and tapped density, respectively. The

𝐷
10
,𝐷
50

and𝐷
90

values represent the maximal particle size diameters that include 10%, 50% and 90% of the particles, respectively.
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Figure 2: The near infrared spectra of 50 samples after Savitzky-
Golay smoothing plus first-order derivatives.

0.8940, respectively. The root mean square error for cali-
bration, cross validation, and prediction were 0.034, 0.038,
and 0.023 g⋅cm−3, respectively. The RPD value was only 1.9.
In contrast, the correlation coefficients of calibration and
validation sets for the LS-SVMmodel were 0.9851 and 0.8875,
respectively. The root mean square error of prediction was

decreased to 0.020 g⋅cm−3. And the RPD value was increased
to 2.2.

For all quality attributes, the performances of LS-SVM
models were slightly better than PLS models. As stated in
[29], the LS-SVMmodels could take into account some non-
linearity between the dependent and independent variables,
while improved PLS models with the low prediction abilities.
That is to say, there may be some nonlinear relationship
between the NIR spectra and quality attributes. However, in
prediction of the content of cryptotanshinone and tanshinone
IIA, particle size, and moisture, PLS models were sufficient,
since they are easy to be implemented. While, for physical
attributes, such as the specific surface area and tapped density,
where the prediction of PLSmodels did not performwell, LS-
SVMmodel may be a better choice.

5. Conclusions

In this paper, the chemical and physical quality attributes of
tanshinone extract powders are determined simultaneously
by near infrared spectroscopy for the first time. The PLS
and LS-SVM models are used to build quantitative models.
It is found that PLS models exhibit good performance in
prediction of the chemical properties, particle size (𝐷

10
,𝐷
50
,

and 𝐷
90
), and moisture content. And the LS-SVM models
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Figure 3: Calibration characteristics versus number of latent factors
for the content of cryptotanshinone. RMSEC,RMSECV, andRMSEP
represent the root mean square error for calibration, cross valida-
tion, and prediction, respectively. PRESS means predicted residual
error sum square.
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Figure 4: Hyperparameters optimization of the least squares sup-
port vector machine model for tapped density. RMSECV represents
the root mean square error of cross validation. Gam is the regu-
larization parameter, and sig2 is the Gaussian RBF kernel function
parameter.

are good at predicting the specific surface area and tapped
density. Results demonstrated that the massive information
concealed in NIR spectra could be analyzed with the help
of a combination of process analytical technology tools and
chemometric methods. The subsequent process operations,
such as blending, granulation, and tableting and even the final
products could benefit from the understanding and control of
herbal extract powders.
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