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The importance of microenvironment on dendritic cell (DC) function and development
has been strongly established during the last two decades. Although DCs with general
tolerogenic characteristics have been isolated and defined as a particular sub-population,
it is predominantly their unequivocal biological plasticity, which allows for unparalleled
responsiveness to environmental ques and shaping of their tolerogenic characteristics
when interacting with tolerance-inducing biomolecules. Dendritic cells carry receptors for
a great number of endogenous factors, which, after ligation, can importantly influence
the development of their activation state. For this there is ample evidence merely
by observation of DC characteristics isolated from various anatomical niches, e.g.,
the greater immunosuppressive potential of DCs isolated from intestine compared to
conventional blood DCs. Endogenous biomolecules present in these environments most
likely play a major role as a determinant of their phenotype and function. In this review, we
will concisely summarize in what way various, tolerance-inducing endogenous factors
influence DC biology, the development of their particular tolerogenic state and their
subsequent actions in context of immune response inhibition and induction of regulatory
T cells.

Keywords: tolerogenic dendritic cell, cytokines, biomolecules, growth factors, complement system, lectins,

hormones, tolerance

INTRODUCTION

Dendritic cells (DCs) comprise a heterogenous and specialized immune cell subset with the main
role of sampling and presenting both endogenous and foreign antigens (Ags) to cells of the adaptive
immune system. In addition to their exceptional antigen-presenting capacity, they also possess
extensive functional plasticity that enables DCs to initiate and control both immunogenic and
tolerogenic immune responses (1, 2). The capacity of DCs to induce either immunity or tolerance
is largely dictated by their activation state, which in turn is greatly determined by their specific
microenvironment. We now know that DCs are equipped with numerous surface and intracellular
receptors which recognize danger- and pathogen-related signals, as well as inhibitory signals, which
can trigger their tolerogenic activation state (3). Considering their life-cycle, immature DCs are
mainly found near body surfaces in physiological conditions, where their main task is to sample
and process Ags for future presentation to Ag-specific T cells. Immature DCs express low levels of
co-stimulatory molecules and produce little or no pro-inflammatory cytokines. The immature state
alone can induce T cell anergy or even de novo induction of regulatory T cells (Tregs), due to Ag-
presentation in the absence of signal 2 (co-stimulatory molecules), or signal 3 (soluble cytokines)
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delivery. This can also be referred to as passive tolerance
induction. In the case of an encounter with pathogen-associated
molecular patterns (PAMPs) or danger-associated molecular
patterns (DAMPs), DCs reach their opposite activation state,
termed mature DCs, which migrate to adjacent lymph nodes
with an extensive capacity to induce effector T cells. In the
case of partial maturation (e.g., exposure to TNF-α for a
limited period of time), the DCs can obtain a so-called semi-
mature activation state. This means there is either a lack of
certain phenotypic markers or a lower production of pro-
inflammatory cytokines, which can lead to tolerogenic outcome
after interaction with responding T cells (4), but does not exclude
the potential of generating effector responses in certain instances
(5). Tolerogenic DCs (TolDCs) on the other hand are induced
by numerous immunosuppressive agents which can represent
cytokines such as interleukin (IL)-10 or transforming growth
factor (TGF)-β, endogenous immunosuppressants such as
glucocorticoids, as well as several synthetic immunosuppressive
drugs (e.g., rapamycin, aspirin), natural products (e.g., curcumin,
resveratrol) and others (6, 7). If one was to search for reason
why TolDCs are much more efficient in inducing tolerogenic
responses in comparison to immature DCs, it is the presence
of elements of active tolerance-induction (surface inhibitory
molecules, immunosuppressive cytokines), which are expressed
on TolDCs in an extensive manner.

One of the first reports of using an immunosuppressive
agent to induce an in vitro tolerogenic state in DCs is that
of Steinbrink et al., where they showed that IL-10-treated DCs
display significantly reduced allo-stimulatory potential, a low
expression level of CD86 and T cell anergy (8). A few years
later it was shown that a similar effect can be achieved using
small molecule immunosuppressants, namely corticosteroids (9)
or the active form of vitamin D (vit D3) (10). Since then, a great
number and variety of biomolecules or synthetic drugs have been
shown to affect different stages of the DC life-cycle in a way that
inhibits their maturation potential or even induces tolerogenic
properties. Several good quality reviews have also been written
on this subject, particularly on the subject of pharmacological
agents. We refer the reader to these manuscripts in order to get
a more detailed insight on the background of TolDC induction
(11–14). However, in recent years we have witnessed several
reports highlighting the tolerogenic role of several endogenous
biomolecules not previously discussed in detail (Table 1). In this
review, we will focus mainly on these novel findings with the goal
of contributing an up-date on previous discussions.

CYTOKINES

More than 20 years have now passed since Steinbrink et al.
have shown that the treatment of immature, monocyte-derived
DCs with IL-10 results in resistance to maturation stimuli and
the acquisition of functional tolerogenic properties (8). A few
years later, the same group demonstrated that IL-10-treated DCs
induce both CD4+ and CD8+ anergic T cells with regulatory
functions (15). Soon after, another immunosuppressive cytokine,
namely transforming growth factor (TGF)-β, was shown

to induce tolerogenic antigen-presenting cells (APCs). Their
adoptive transfer to mice with experimental autoimmune
encephalomyelitis (EAE) attenuated disease severity via the
induction of CD8+ regulatory T cells (16). In experimental
diabetes setting, TGF-β-treated DCs conferred islet-specific
protection via the induction of Fox P3+ Tregs (17, 18). At about
the same time, several other biomolecules were identified as
having the capacity to induce DC tolerance such as interferon
(IFN)-α (19), TNF-α (20), vasoactive intestinal peptide (VIP) (21,
22), combination of IL-16 and thrombopoietin (23) and IFN-λ
(24). It must be emphasized that the use of pro-inflammatory
cytokines such as TNF-α and IFN-α to achieve DC tolerance can
be specific to particular study designs and experimental models,
since immunogenic maturation can also be achieved using these
same cytokines (5, 25).

In more recent years we have witnessed several additions
to the understanding of how various other biomolecules
can influence DC biology in an immunosuppressive fashion
(Figure 1). Interestingly, IFN-γ, a well-known Th1-signature
cytokine has been associated with DC tolerance in specific
settings (26). As regards to DC biology, its role as a priming
agent has been firmly established, where it can greatly induce
both maturation-associated phenotypic markers and IL-12p70
production when combined with either CD40 ligand (CD40L)
or toll-like receptor (TLR) activation (27, 28). However, the
pleiotropic nature of IFN-γ has been demonstrated in many
experimental models, and the mechanisms regarding its anti-
inflammatory actions are beginning to emerge. Following DC
maturation and extensive IL-12 production, their stimulatory
capacity can be reduced over time in a phenomenon known as
“DC exhaustion.” Interferon-γ plays a role in this process by the
induction of indoleamine-2,3-dioxygenase (IDO), a tryptophan-
catabolizing enzyme known for its immunoregulatory function
(29). In the absence of maturation stimuli, IFN-γ has been
shown to be a crucial inducer of IDO-competence and able
to generate DCs with regulatory properties in an IFN-γ-
rich environment (30). The effect of tryptophan catabolites,
namely kynurenines, can spread the tolerogenic function beyond
cell contact to otherwise immunogenic DCs, as was shown
in transwell experiments. The tolerogenic function of DCs
expressing IFN-γ-induced IDO can be seen in reduced T cell
proliferation (31) and the induction of Tregs (32). It was
also shown that IDO, induced in DCs after contact with
apoptotic cells, is the result of the autocrine production of
IFN-γ, the blockade of which diminishes IDO expression (33).
The context-specific role of IFN-γ was recently demonstrated
by our group, where we investigated the effects of an IFN-γ-
rich environment on the DC inhibitory phenotype. Particularly
at high concentrations, IFN-γ did not induce extensive DC
maturation, but strongly up-regulated inhibitory molecules of
HLA-G and the immunoglobulin-like transcript (ILT)-4 (34).
Such IFN-γ-high DCs suppressed cytotoxic T cell responses
with a down regulation of T cell proliferation and granzyme
B expression. This effect was IDO-independent and could be
reversed by HLA-G blocking mAbs. The tolerogenic role of
IFN-γ was frequently described in vivo. For example, its disease-
attenuating effects have been described in EAE, experimental
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TABLE 1 | The effects of various tolerogenic biomolecules on DC phenotype and function.

Biomolecules Effect on DC characteristic/subsequent T cell response References

Cytokines

IL-10 ↓ maturation, DC-10, ↑ inhibitory molecules, T cell anergy, Treg induction (8, 15, 57–61)

TGF-β CD8+ Treg induction, EAE attenuation (17, 18)

IFN-α Semi-mature, ↑IL-10 production, T cell apoptosis, Tr1 induction (19)

TNF-α Semi-mature, FoxP3+ Treg induction (20)

VIP ↓ maturation, ↑ IL-10 production, CD4+/CD8+ Treg induction (21, 22)

IL-16+thrombopoietin ↑ ILT-2/ILT-3/ILT-4 expression, T cell anergy (23)

IFN-λ ↓ co-stimulatory molecules, FoxP3+ Treg expansion (24)

IFN-γ ↑ IDO competence, ↑ ILT-4/HLA-G expression, ↓ CD8+ cytotoxic responses (26, 29–37)

IL-37 ↓ maturation in vivo, ↑ IL-10 production, ↓ allo-stimulatory capacity, Treg induction (42, 43)

IL-35 ↓ co-stimulatory capacity, ↑ IL-10 production, ↓ monocyte-to-DC differentiation (44–47)

IL-27 ↑ PDL-1 and CD39 expression, ↑ extracellular ATP catabolism, ↓ Th9 differentiation (52–55)

LECTINS*

DC-SIGN ↓ maturation, modulation of PRR signaling, ↑ IL-10 production (64–67)

Galectin-1 ↑ tolerogenic characteristics via IL-27 and IL-10, ↓ IL-12p70 production (74, 78)

Siglec-E ↓ maturation, inhibition of TLR-activated Nf-κB (80, 84)

Siglec-H inhibition of T cell responses via pDCs in EAE (82)

Siglec-1 semi-mature phenotype of pDCs, ↓ IFN-α production (83)

Complement system

C1q Resistance to maturation, ↓ co-stimulatory molecules, ↓ allo-stimulatory capacity (88, 89)

C4BP α7β0 Semi-mature state, ↓ CD80/CD83/CD86 expression, ↑ IL-10 production, FoxP3+ Treg induction (92, 93)

Factor H ↓ CD40/CD80/CD86/MHC-II expression, ↑ IL-10 production (103, 106)

Growth factors

VEGF ↓ maturation, ↓ T cell-stimulatory capacity, TLR-4 modulation via Nrp-1 (109, 111–113)

PIGF ↓ CD40/CD80/CD83/CD86/MHC-II expression, ↓ IL-8, IL-12p70, TNF-α production (114)

HGF High IL-10/IL-12 ratio, ↑ ILT-3 expression, FoxP3+ Treg induction (119–121, 123)

Adrenomedullin Semi-mature state, ↑ IDO-competence, FoxP3+ and IL-10+ Treg induction (131, 132)

Hormones

Glucocorticoids ↓ monocyte-to-DC differentiation, resistance to maturation (134–147)

vit D3 ↓ monocyte-to-DC differentiation, ↑ ILT-3 and PDL-1 expression (148–152)

hCG ↑ IL-10 production, ↓ Ag-specific T cell proliferation, in vivo Treg induction (154, 156, 157)

Progesterone ↓ T-cell stimulatory capacity in vivo (158, 159)

Neurotransmitters

Serotonin ↓ monocyte-to-DC differentiation, ↑ IL-10/IL-12 ratio, ↓ CXCL-10 production (164–166)

Histamine ↓ IL-12 production, ↓ CXCL-10 production, ↑ Th2 polarization, (167–172)

Adrenaline ↑ IL-10 production, ↓ IL-6, IL-12, IL-23 production, FoxP3+ Treg induction (175)

*Present on DC surface.

arthritis, as well as colitis (35–37). Furthermore, there are
numerous reports describing an immunosuppressive role of IFN-
γ in models of graft-vs.-host-disease (GvHD)(26). An important
characteristic when observing the immunoregulatory effects
of IFN-γ in vivo are its paradoxical actions, where it can
aggravate disease severity in some cases, while attenuating disease
progression in others, e.g., in EAE. This is frequently dependent
on the time course of disease (e.g., IFN-γ treatment/blockade
before or after disease onset). In detail mechanisms regarding
these and several other phenomena of IFN-γ have been recently
discussed by Svajger and colleagues and we refer the reader to this
review for further reading (26).

Interleukin-37, an IL-1 family member, was discovered
in the year 2000 by several independent groups using in

silico research of human databases (38). Initially its anti-
inflammatory effects were shown in the context of innate
immunity functions, demonstrating its ability to down regulate
all major pro-inflammatory cytokine production and attenuating
experimental lipopolysaccharide (LPS)-induced shock (39, 40).
It has been suggested that the regulation of innate immunity
by IL-37 requires it to bind to the IL-1R8 receptor in
addition to the previously recognized IL-18R (41). More
recently, the effects of IL-37 have been associated with the
suppression of adaptive immune responses via the induction
of TolDCs. Skin DCs in mice transduced with human IL-
37b isoform displayed tolerogenic characteristics in response
to a contact hypersensitivity challenge (42). Stimulation of
isolated DCs with LPS showed significantly reduced MHC

Frontiers in Immunology | www.frontiersin.org 3 October 2018 | Volume 9 | Article 2482

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Švajger and Rožman Tolerogenic Dendritic Cells Induced by Biomolecules

FIGURE 1 | A great number of cytokines and growth factors exert a considerable tolerogenic effect in terms of DC function. Major effects on DC biology concerning a
particular factor are depicted on the figure. Arrows associate cytokine or growth factor with their corresponding receptor found on DCs. (AM, adrenomedullin; HGF,
hepatocyte growth factor; IDO, indoleamine-2,3-dioxygenase; IFN, interferon; IL, interleukin; ILT, immunoglobulin-like transcript; Nf-κB, nuclear factor κB; PDL,
programmed death ligand; PIGF, placental growth factor; TGF, transforming growth factor; TNF, tumor necrosis factor; VEGF, vascular endothelial growth factor; VIP,
vasoactive intestinal peptide).

class II and co-stimulatory molecule expression in comparison
to wild-type (WT) mice. In addition, the production of IL-
1β, IL-6, and IL-12 was reduced, while IL-10 production
increased. In terms of function, DCs from IL-37 transgenic
mice displayed a reduced stimulatory capacity regarding
both syngeneic and allogeneic T cells and showed enhanced
induction of Tregs in vitro (42). In a recent study, bone
marrow-derived DCs treated with IL-37 and troponin I
showed a tolerogenic phenotype with an increased expression
of IL-10 and IDO mRNA. Such TolDCs improved cardiac
remodeling after myocardial infarction in a mouse model
by establishing a tolerogenic response and inducing Treg
development (43).

Another newly discovered cytokine, a heterodimer between
Epstein-Barr-virus-induced protein 3 (EBI3) and IL-12α, termed

IL-35, has been identified as having important regulatory
properties, initially in the context of Fox P3+ Tregs (44).
The signaling pathway of IL-35 is initiated through a unique
heterodimer of receptor chains, namely the IL-12Rβ2 and gp130,
or via homodimers of each chain (45). Later on, its role in
regulating the function of murine CD8α+ DCs was established
in a study using transduced DC cell lines with constitutive IL-
35 expression. Besides the direct regulatory effects of secreted
IL-35 on T cell function both in vitro and in vivo, it also
exerted autocrine effects inducing a tolerogenic DC phenotype
characterized by reduced co-stimulatory capacity and increased
IL-10 production (46). Vaccination ofmice with IL-35-expressing
DCs promoted melanoma and colon carcinoma growth, while
at the same time prevented the development of EAE. The in
vivo inhibitory effect on DC function was also demonstrated
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in an ovalbumin-induced asthma model. Intraperitoneal IL-
35 administration during the allergen sensitization phase was
efficient in attenuating allergic airway inflammation with reduced
Th2 cytokine signature. Importantly, IL-35 treatment reduced
the development of tissue-present monocytes to inflammatory
DCs (47). Although IL-35 production was specifically shown for
Tregs, Dixon et al. have recently shown that human, monocyte-
derived DCs produce IL-35 upon treatment with Dexamethasone
(48). The production of IL-35 was significant for optimal DC
tolerogenic function.

Similarly to IL-35, another IL-12 family member, IL-27, is a
heterodimeric cytokine composed of EBI3 and IL-27p28 (49). It
mediates its biological functions through a high-affinity receptor
complex composed of WSX-1 (IL-27 receptor α subunit) and
gp130, differentially expressed on immune cells (50). Interleukin-
27 is known by its antagonistic function on Th17 and the capacity
to generate IL-10 producing, type 1 regulatory T cells (Tr1) (51).
Dendritic cells have been shown to be an important source of
IL-27, a mechanism which allows DC-mediated induction of
Tr1 cells (52). Interestingly, IFN-γ treatment of DCs promotes
IL-27 secretion (53). In a similar manner, IFN-γ-induced IL-27
production by DCs also inhibits Th9 cell differentiation (54).
Besides its modulatory effects on T cells, IL-27 also directly affects
DC function. A study on in vitro monocyte-derived DCs and
blood DCs demonstrated the low T cell-stimulatory capacity
of IL-27-treated DCs, along with low cytokine production by
stimulated T cells. The DCs’ regulatory function was dependent
on IL-27-induced expression of PDL-1 (55). The regulatory
function of IL-27-treated DCs was also evident in a mouse EAE
model, where suppression of disease was mediated via the IL-
27-induced expression of immunoregulatory molecule CD39 and
the subsequent decrease in extracellular ATP concentration (56).

Finally, well-established immunosuppressive cytokines, such
as IL-10, have been revisited, in terms of tolerogenic DC
induction, in more recent times. In 2010, Gregori et al. identified
and characterized a new subset of high IL-10-producing TolDCs,
termed DC-10. According to their report, DC-10 are present in
vivo and can be described as CD1a−, CD1c−, CD14+, CD16+,
CD11c+, CD11b+, CD83+, HLA-DR+. Interestingly, these cells
also express high levels of co-stimulatory molecules CD40, CD86,
and up-regulate CD80 upon activation (57). Nevertheless, DC-
10 also show abundant expression of inhibitory molecules ILT-2,
ILT-3, ILT-4, and HLA-G. The in vitro counterparts of DC-10
could be differentiated from monocytes in the presence of IL-
4 and IL-10. The immunosuppressive effect of IL-10 on DCs
has already been demonstrated on many occasions. As far back
as 1998, Allavena et al. demonstrated that the addition of IL-
10 to monocyte-to-DC differentiation cultures results in the
“inhibition” of DC maturation and the preferential generation
of cells with a macrophage-like phenotype (58). Other, earlier
studies also reported on the reduced allo-stimulatory capacity
of IL-10-treated DCs, although there were also contradictory
reports on preferential DC generation (59). The more detailed
characterization by Gregori et al. allows for the understanding
that, although phenotypically similar to macrophages, DC-10
possess several DC-like qualities and are therefore more likely
to be regarded as such. The expression of inhibitory molecules,

particularly HLA-G on DC-10 has been strongly correlated with
their immunosuppressive function (60). It has been shown that
DC-10 can specifically induce the generation of Tr1 cells, which
was shown to require both IL-10 and the interaction between
ILT-4 and HLA-G. Furthermore, Amodio et al. have shown
that HLA-G expression is genetically imprinted, and therefore
donor-specific, ranging from a few percent to completely positive,
depending on the donor (60). Since a high expression level of
HLA-G is required for efficient induction of Tr1 cells by DC-10,
correct donor selection must be respected in this regard.

Additional recent data also highlight the somewhat diverse
effects of IL-10 on DC biology. In a study by Kryczanowsky
et al., IL-10-treatment of monocyte-derived DCs on day
5 (in the presence of maturation stimuli) resulted in
two major populations defined as CD83highCCR7+ and
CD83lowCCR7− DCs. The CD83high DCs displayed a superior
immunosuppressive function compared to that of CD83low.
Additionally, CD83high DCs possessed the capacity to
migrate toward secondary lymph node chemokine CCL21
(61). Of interesting note, an alternative DC-associated
immunosuppressive mechanism by CD83high cells was proposed
based on surface expression and secretion of CD25. Similarly to
CD25-expressing Tregs, CD25 secreted by DCs can inhibit IL-2-
dependent T cell proliferation. This was described previously in
the context of tumor-mediated DC suppression via PGE2 (62).
Lastly, the extensive tolerogenic potential of DC-10 indicates
the importance of DC life-cycle stage in their tolerogenic
development. Although treatment of already established
immature DCs with IL-10 is known to induce tolerogenic
properties and resistance to maturation, DC-10, which are
generated with IL-10 present during their differentiation phase
have been found superior in this aspect. It is very likely this is
not merely due to prolonged IL-10 exposure but concerns more
fundamental changes in cell biology development, as somewhat
indicated by their unique phenotype.

GLYCAN-BINDING LECTINS

The recognition of specific glycan structures by endogenous
lectins expressed on DCs play a major role in the shaping of
the DC activation state and subsequent tailoring of adaptive
immune responses. Although a great number of glycans with
DC immunomodulatory properties are present on invading
pathogens including bacteria, fungi or viruses, and therefore
do not represent endogenous biomolecules, we will discuss
this subject due to the importance of DC-expressed lectins.
Considering their involvement in the immunoregulation of DC
function, we will focus on three major lectin families, namely the
galectins, siglecs, and C-type lectins (Figure 2).

C-Type Lectins
C-type lectin receptors (CLRs) were initially described as
scavenger receptors, however it is now clear that many of
them can function as signaling, adhesion, as well as Ag
receptors. The most representative CLR found on DCs is
most likely the dendritic cell-specific intercellular adhesion
molecule-3-grabbing non-integrin (DC-SIGN) (63). DC-SIGN

Frontiers in Immunology | www.frontiersin.org 5 October 2018 | Volume 9 | Article 2482

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Švajger and Rožman Tolerogenic Dendritic Cells Induced by Biomolecules

FIGURE 2 | The influence of complement system components and surface-bound lectins on DC tolerogenic function. (C4BP, C4b binding protein; CR, complement
receptor; DC-SIGN, dendritic cell-specific ICAM-grabbing non-integrin; IL, interleukin; ITIM, immunoreceptor tyrosine-based inhibitory motif; IκB, inhibitor of κB;
PAMPs, pathogen-associated molecular patterns; SHP, Src homology region 2 domain-containing phosphatase; TLR, toll-like receptor).

is predominantly expressed on myeloid DCs, but has also been
detected on interstitial DCs, dermal DCs, as well as monocyte-
derived DCs. Its recognition of Ags proceeds via mannose-
and fucose-containing glycans, present on various bacteria
(H. pylori, M. tuberculosis), viruses (HIV-1, Ebola), fungi (C.
albicans, A. fumigatus), and others. Signaling via DC-SIGN
upon ligand binding has been extensively studied and associated
with modulation of concomitant signaling via other pattern-
recognition receptors (PRRs), such as TLRs. Simultaneous
signaling via DC-SIGN and TLRs (e.g., TLR-3, TLR-4, or TLR-5)
can result in increased IL-10 production by DCs, contributing to
the pathogen-mediated deviation of adaptive immune responses

from Th1 to Th2 (64). For example,Mycobacterium scrofulaceum
can induce a semi-mature DC phenotype by simultaneously
interacting with DC-SIGN and TLR-4. In this way, the pathogen
exerts an immunoregulatory effect characterized by the DC’s
low co-stimulatory molecule expression level and simultaneous
high expression level of PDL-2 and IL-10 (65). In a similar
manner, Lactobacillus rhamnosus can induce a tolerogenic DC
phenotype by simultaneously triggering DC-SIGN and TLR-2
signaling (66). Such DCs can subsequently induce autologous
T cell differentiation toward FoxP3-expressing Tregs. However,
the complex nature of ligand binding by DC-SIGN coupled with
intricate PRR-signaling mediated interactions, does not always
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issue a tolerogenic outcome, but can also result in positive DC
activation as well (67).

The common feature of pathogens that bind DC-SIGN
is that by using above described mechanisms, they cause
chronic infections by deviating the immune response away
from Th1 development, which in turn allows their persistence
(68). This is of course due to intracellular nature of these
pathogens. Probably the most notorious example of pathogen
evasion is that exerted by HIV-1, where the native function
of an endogenous biomolecule is exploited for viral infection
and immune suppression. Binding of HIV-1 to DC-SIGN
forms a stable complex whereby after internalization, a small
amount of virus can survive and stays protected from the
immune system. Adding to this the suppression of DC
function by DC-SIGN signaling after interaction with e.g., viral
envelope protein gp120 (69), the chance of viral persistence
and subsequent infection of T cells is strongly increased
(63, 70).

Galectins
The tolerogenic DC function mediated by IL-27 is also regulated
by Galectin-1 (Gal-1), a glycan-binding protein encoded by
the lgals1 gene (71). Recently, Gal-1 has been recognized
as having a central role in the resolution of various acute
and chronic inflammatory conditions involving autoimmune
diseases, allergic inflammation, cancer and infection (72). On
the cellular level, Gal-1 mediates regulatory programs in both
innate and adaptive immunity. It is secreted by a number of
cells including macrophages (73), dendritic cells (74), activated
lymphocytes (75, 76), Fox P3+ Tregs (77), and others. In an effort
to demonstrate its association with TolDC function, Ilarregui
et al. treated immature DCs with recombinant Gal-1 and found
they exhibit important TolDC characteristics (74). The binding
of Gal-1 to immature DCs resulted in membrane segregation of
its proposed glycoreceptor, a leukosialin protein also known as
sialophorin or CD43. Furthermore, TolDCs generated with Gal-1
or other tolerogenic stimuli such as IL-10, vit D3 or VIP displayed
an increased expression of Gal-1. Using an lgals1 knockout
model, they highlighted the importance of Gal-1 expression
in DC tolerogenic function, including the capacity to produce
low levels of IL-12p70 and increased IL-27. The production of
IL-27 by Gal-1-treated DCs was associated with a regulatory
circuit involving increased differentiation of IL-10-secreting
T cells (74).

Like DC-SIGN, Gal-1 is commonly distributed at sites
of inflammation and pathogen entry. Additional similarities
regarding its role in pathogen evasion have been recently
demonstrated in a model of Trypanosoma cruzi infection (78).
Using Gal-1-deficient mice, Poncini et al. have demonstrated a
reduced mortality and lower parasite load compared to wild type
(WT) mice. The absence of Gal-1 resulted in increased cytotoxic
CD8+ T cell response compared to a more pronounced Treg
response in WT mice. The observed tolerogenic circuit in the
presence of Gal-1 was associated with increased tolerogenicity
of Gal-1-expressing DCs (78). The broad immunoregulatory
role of Gal-1 extends to other immunopathological scenarios,
such as cancer and involves modulation of other immune

cell types, namely macrophage polarization, eosinophil
and neutrophil migration, Treg expansion and others (72),
which falls beyond the scope of this manuscript. However,
its important immunoregulatory role including that in
context of DC tolerogenicity makes Gal-1 an increasingly
important therapeutic target, which could be addressed with
the aim to regulate immunity in various immune-mediated
diseases.

Siglecs
Siglecs are sialic acid-binding immunoglobulin-like lectins
expressed on various immune cell types. Like other members
of the Ig superfamily, they act as cell-surface transmembrane
receptors and consist of 2–17 extracellular Ig domains (79).
Most intercellular domains of Siglecs contain immunoreceptor
tyrosine-based inhibitory motifs (ITIMs) which, contrary to
activation motifs (ITAMs), deliver negative signals by recruiting
SH2 domain-containing tyrosine phosphatases such as SHP1 and
SHP2. Like C-type lectin receptors, Siglecs expressed on DCs
can modulate TLR-mediated immune responses when bound
e.g., by endogenous glycans. This was directly demonstrated
with murine DCs, where stimulation of TLRs induces the
expression of Siglec-E via the Myd88-dependent pathway (80).
Increased expression of Siglec-E inhibited the activation of Nf-
κB after TLR activation, which coincided, furthermore, with
the inhibition of IFN-β and RANTES production, usually
up-regulated during viral infection. In this manner, Siglec-
E serves as part of a negative feedback loop maintaining
homeostasis after infection. Signaling via intracellular ITIM
domains of Siglec-E was associated with the inhibition of Nf-
κB. In macrophages, signaling via ITIM domains of Siglec-9
resulted in increased IL-10 production after TLR-engagement
by either LPS, peptidoglycans, unmethylated CpG, or double-
stranded RNA (81). The tolerogenic role of DC-expressed
Siglecs could also serve a therapeutic role. The initiation of
immune responses by targeting Ags to Siglec-H expressed on
plasmacytoid DCs was shown to result in the inhibition of
T cell responses during disease progression in an EAE model
(82). Delivery of myelin-derived auto-Ag to plasmacytoid DCs
subsequently induced T cell hyporesponsiveness and reduced
polarization toward Th1/Th17 effector T cells. Also in humans, a
subset of plasmacytoid DCs expressing Siglec-1 and additionally
characterized by high HLA-DR and CD11c expression levels,
displayed a predominantly semi-mature phenotype. In contrast
to Siglec-1-negative pDCs, Siglec-1-positive pDCs do not
produce type I IFNs upon engagement of TLR-7 or TLR-9
(83). The induction of tolerance initiated by Siglec-mediated
Ag up-take can expand beyond the inhibition of T cell
activation to de novo induction of regulatory T cells. In a
recent study, Perdicchio et al. pulsed splenic CD11c+ DCs
with sialic acid-modified Ags. When these Ag-loaded DCs were
used in co-cultures with naïve T cells there was a 2- to 5-
fold increase in FoxP3+ T cell populations. The induction of
TolDCs by up-take of sialylated Ags was shown to be mediated
mainly via Siglec-E, as demonstrated using siglec-e−/− models
(84).
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THE COMPLEMENT SYSTEM

The complement system is part of the innate immune system
which consists of more than sixty protein components that
involve activation fragments, proteases and enzymes, receptors
for complement effector molecules, as well as regulators
and inhibitors (85). Complement activation releases cleavage
products that bind a number of receptors found on myeloid,
lymphoid and stromal cells (86). These complex interactions
provide a basis for a link between certain complement proteins
and the control of adaptive immune responses, as first described
by Fearon and Carter (87). As discussed below, DCs play a
central role in this type of regulation (Figure 2). One of first
demonstrations regarding the role of the complement system
in DC regulation was described by Castellano and colleagues,
who showed that differentiation of DCs from monocytes in the
presence of C1q generates CD1a+, DC-SIGN+ DCs resistant
to LPS-induced maturation with low co-stimulatory and allo-
stimulatory potential (88). This mechanism was also observed
in recognition of apoptotic cells. The tolerogenicity triggered
by apoptotic cells is a well described mechanism of peripheral
tolerance, which allows continuous clearance of dead cells
without collateral inflammatory damage. Interestingly, DCs that
ingest apoptotic cells which are bound to C1q, attain greater
tolerogenic function compared to DCs exposed to apoptotic
cells alone(89). This was evident by increased PDL-2/CD86
ratio and the capacity to induce Th1 responses. Such evidence
could have important implications in resolving the underlying
mechanisms of existing cell therapies, namely the extracorporeal
photopheresis, where T cell apoptosis is speculated to be of major
importance for its tolerogenic effect in e.g., GvHD treatment
(90). The receptor for C1q, namely the C1qR, was shown to
mediate its cell signaling events through DC-SIGN by forming a
membrane complex consisting of C1q, C1qR, andDC-SIGN (91).
In this manner, C1qR utilizes the intracellular signaling domain
of DC-SIGN.

More recently, complement regulators and inhibitory proteins
were described as having an important immunosuppressive role
in terms of DCmodulation. One isoform of C4b-binding protein
(C4BP), an important soluble inhibitor of the classical and lectin
pathways of complement activation, namely C4BP α7β0 isoform,
can induce a tolerogenic state in monocyte-derived DCs (92).
There are several ligands that C4BP can bind, for example, other
complement proteins, CD91, heparin, etc. However, it has been
proposed that C4BP also represents an alternative ligand for
CD40, which is abundantly expressed on DCs to serve as a co-
stimulatory receptor (93). Whether CD40 is the primary receptor
for C4BP on DCs in this context, or if there are other ligands
involved, remains to be determined. After the activation of DCs
pre-treated with C4BP α7β0 isoform, the cells obtained a semi-
mature state with low expressions of CD80, CD83, and CD86
molecules. They were also unable to produce pro-inflammatory
cytokines, such as TNF-α, IL-12, etc. but showed increased
production of IL-10. In terms of function, they were incapable
of inducing allogeneic T cell proliferation and promoted the
polarization of CD4+CD25+CD127lowFoxP3+ T cells. Although
in the physiological state, the ratio of isoforms C4BP α7β1

vs. C4BP α7β0 is roughly 4:1, under acute phase responses
C4BP α7β0 can drastically increase, which could have important
implications in terms of DC function (94).

First characterized in 1965, factor H (FH) is a major regulator
of the alternative pathway of complement activation (95). It is
mainly synthesized in the liver but for the exception of certain
tissue cells such as endothelial cells, glomerular mesangial cells,
mesenchymal stem cells, and others (96–98). Besides the direct
negative regulation of complement activation, FH also interacts
with other endogenous ligands or receptors which extends its
activity to protection from oxidative stress (99), modulation
of platelet function (100), and regulation of immunity via
interaction with several cells of the immune system (101,
102). Recently, treatment of DCs with FH during the early
stages of differentiation from monocytes was shown to have an
important influence on their tolerogenic capacity (103). When
used in 10µg/ml concentration, factor H caused an extensive
down-regulation of all major co-stimulatory molecules, namely
CD40, CD80, and CD86, as well as MHC class II molecules.
The expression of inhibitory surface molecules was not
confirmed, however, FH-treated DCs produced low quantities
of pro-inflammatory cytokines and allowed for increased IL-10
production. Assessment of the DCs’ functional capacity revealed
a low allo-stimulatory capacity. Activation of responsive T cells
in co-cultures resulted in down-regulation of IFN-γ-producing
T cells and an increase in the induction of FoxP3 expression,
where FH-treated DCs were used as stimulators. Interestingly,
the group found that the same surface binding-region of the
FH protein which binds to C3b and glycosaminoglycans on
host cells to mediate cell-surface protection, is also responsible
for inducing the tolerogenic effect on DCs (103). Although the
corresponding receptor on DCs responsible for mediating the
described tolerogenic effects was not determined, the authors
excluded the involvement of interaction between FH and CR3,
which has been reported on many occasions in the past
(104, 105).

Interestingly, the production of FH can also be induced by
DCs themselves via the influence of local microenvironment.
This effect was shown to be characteristic of TolDCs, which
are induced by specific factors, particularly IFN-γ. A similar
effect by DCs was also observed for IL-12 family member IL-
27. In addition to the above described tolerogenic properties
of both IFN-γ and IL-27, the induction of FH by DCs
complements the tolerogenic activity of these cytokines (106). In
this manner, increased production of FH by either IFN-γ or IL-
27-stimulated DCs resulted in the decreased capacity to stimulate
T cell proliferation and deviation from Th1 polarization. The
possibility of autocrine tolerogenic effects of DC-secreted FH is
not excluded.

The above mentioned contributions of complement cleavage
products to induction of DC tolerogenicity expand the classical
view of the role of complement cascade within the innate
immune system. By additionally serving as soluble mediators,
capable of inducing immune cell signaling via receptor-ligand
binding, the role of complement activation extends to regulation
of T cell immunity either via suppression of effector T cells or
de novo induction of Tregs. It is of importance that the extent
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of this contribution in vivo is even further elaborated in the
future.

GROWTH FACTORS

Both haematopoietic and growth factors from other tissues can
importantly govern the development and biological function
of DCs (Figure 1). In the mid-1990s, Gabrilovich et al.
identified a soluble factor released from tumor cells that can
dramatically affect DC maturation. This was recognized as
vascular endothelial growth factor (VEGF) (107). Today VEGF
is well recognized as a major pro-tumorigenic growth factor,
which also represents an important therapeutic target (108).
VEGF binds its corresponding Flt-1 (VEGFR1) and VEGFR2
receptors expressed on DCs and can negatively affect maturation
via inhibition of the Nf-κB pathway (109). While VEGFR1 can
be found both on immature and mature DCs, the expression
of VEGFR2 was reported only on mature DCs (110). Although
the effect of VEGF on DC co-stimulatory molecules is less
pronounced, it extensively suppresses the T cell-stimulatory
capacity of DCs (111). In patients with chronic obstructive
pulmonary disease, increased concentrations of VEGF have been
positively correlated with reduced CD83 expression on DCs
and the number of immature DCs was significantly related to
the severity of disease (112). Recently, a study by Nougboli
et al. examined the role of neuropilin-1 (Nrp-1), another known
receptor of VEGF. Neuropilin-1, also known as BDCA-4 or
CD304, is found primarily on plasmacytoid DCs in humans,
while in mice it can be detected on myeloid, bone marrow-
derivedDCs (BMDCs). It has been demonstrated that in BMDCs,
Nrp-1 interacts directly with TLR-4, and suppresses down-stream
signaling upon LPS-induced maturation (113). In this way, Nrp-
1 causes extensive inhibition of ERK and Nf-κB pathways and
consequent down-regulation of MHC class II and co-stimulatory
molecules, along with pro-inflammatory cytokine production.

Another member of the VEGF family, namely the placental
growth factor (PIGF), has also been designated as having a DC-
modulatory capacity. The differentiation of DCs frommonocytes
in the presence of PIGF resulted in alternative responses to
LPS-induced stimulation. Such DCs were characterized by low
expression levels of CD40, CD80, CD83, and CD86 (114).
Production of IL-8, IL-12p70, and TNF-α was also down-
regulated, as was the expression of MHC class II molecules.
Interestingly, PIGF did not seem to inhibit monocyte-to-DC
differentiation as CD1a expression was increased in treated
cultures. Similarly to VEGF, PIGF inhibits Nf-κB activation
and its effects could be reversed by anti-VEGFR1 mAb,
demonstrating its similarity to VEGF’s mode of action. However,
PIGF seems to affect co-stimulatory molecule expression more
extensively. In terms of its tolerogenic role, PIGF seems to bear
certain similarities with IFN-γ. While its immunosuppressive
effects on DCs have been demonstrated when acting alone,
PIGF has also been shown to enhance TLR-mediated signaling.
Bagby and colleagues demonstrated PIGF can amplify TLR-
dependent gene expression via MAPK-activated protein kinase-2
pathway, when DCs were stimulated with R848, a TLR-8 ligand

(115). Therefore, PIGF can also cause exaggerated inflammatory
response, depending on pathogen presence.

Hepatocyte growth factor (HGF) was first described as an
important mitogen for a number of epithelial and endothelial
cells involved in organ regeneration, such as liver regeneration
by stimulating the proliferation of hepatocytes (116, 117). It can
also act on different types of immune cells such as hematopoietic
stem cells, monocytes, macrophages, and dendritic cells via its
corresponding proto-oncogenic c-Met receptor, also known as
HGF receptor (HGFR) (118). A little more than 10 years ago,
two studies published within the span of a year, first described
that differentiation ofmonocytes to dendritic cells in the presence
of HGF or its administration to isolated native DCs leads to
development of high IL-10-, low IL-12-producing dendritic-like
cells (119, 120). Dendritic cells treated with HGF also showed
an increased expression of ILT-3, commonly associated with
DC tolerogenicity. Interestingly, blockade of ILT-3 or IL-10
using neutralization mAbs partially restored the proliferation
of FoxP3+ T cells induced by HGF-treated DCs. Systemic
treatment with HGF was shown to ameliorate autoimmune
diseases in models such as EAE (121). In this context, the main
cellular mechanism was the increased generation of TolDCs via
induction of the glucocorticoid-induced leucine zipper (GILZ),
which is also the underlying mechanism for TolDC-induction
by IL-10 or glucocorticoids (122). In the inflamed c(CNS)
environment during EAE, HGF-induced TolDCs can contribute
to the increased presence of IL-10-secreting, FoxP3+ Tregs
(123). The last to be mentioned in terms of having a capacity
to induce DCs with tolerogenic properties is adrenomedullin
(AM), a hormone first described with hypotensive properties
and found in adrenal medulla, which gave rise to its current
nomenclature (124). Now known to be ubiquitously present in
all biological fluids and several tissues, the levels of AM are
up-regulated during inflammation, infection and are inducible
by immunological stimuli such as IL-1 and TNF-α (125).
Besides being a potent vasodilator, AM was shown to have an
important influence on the differentiation (126), proliferation
(127), migration (128), and apoptosis (129) of various cells.
Adrenomedullin was also shown to possess immunomodulatory
properties in vivo by attenuating leukocyte recruitment and
inhibiting cytokine production (130). Dendritic cells have been
shown to express AM receptors, which consist of calcitonin
receptor-like receptor (CRLR), as well as AM1 and AM2
receptors (131). The treatment of BMDCs with 10−7–10−6 M
concentrations resulted in a semi-mature DC phenotype with
tolerogenic properties. Stimulation with AM induced IDO-
competence in treated DCs and promoted their ability to induce
FoxP3 expression in responding T cells. When studied in a model
of EAE, systemic treatment with AM attenuated disease severity
and incidence of EAE, characterized by reduced demyelination
and axonal damage (132). Importantly, AM increased the
number of IL-10-producing T cells with suppressive effect on
disease development. Within the same study, TolDCs obtained
ex vivo using AM, reduced the severity of EAE following their
administration in vivo. Such DCs were characterized by low
expression levels of CD40 and CD80, low production of TNF-α
and IL-12, and with an induced production of IL-10 (132).
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HORMONES

The bidirectional interactions between the endocrine and the
immune system have been demonstrated over many decades and
are well accepted by the scientific community (133). Immune
cells, namely DCs, carry receptors for numerous hormones
that importantly influence the cell cycle and differentiation
(Figure 3). Themost well established TolDC-inducing hormones
of all are perhaps steroid hormones, particularly glucocorticoids
(GCs), which bind to the glucocorticoid receptor in the nucleus.
In addition to naturally occurring GCs (134), the effects of
various synthetic glucocorticoids have been studied in the
context of TolDCs in the past, including methylprednisolone
(135), prednisolone (136, 137), prednisone (138), and mostly
dexamethasone, presumably because of its potency (139–141).
Glucocorticoids strongly inhibit monocyte-to-DC differentiation
leading to a CD1alowCD14+CD16+ phenotype. This effect is
associated with the suppressed expression of co-stimulatory
and Ag-presenting molecules (CD40, CD54, CD86) and the
inhibition of maturation marker CD83 after DC activation
(142). Dexamethasone induces tolerogenic DC characteristics
administered either during the differentiation phase, or to
cultures of already established DCs. Immature DCs treated
with dexamethasone are resistant to maturation. When such
DCs are simultaneously exposed to maturation stimuli (e.g.,
LPS) they can become “alternatively activated,” possessing
certain features of mature DCs like migration via the CCR7
(143). Migration toward secondary lymph nodes in response
to CCL19 or CCL21 would represent a greater probability of
interacting with responsive T cells, a welcome characteristic
in the design of negative DC vaccines for the treatment
of autoimmune or chronic inflammatory diseases. Indeed,
dexamethasone is frequently used in protocols for the generation
of clinically-applicable TolDCs with or without GMP-grade
TLR agonists such as monophosphoryl lipid A (MPLA)
(144). Dendritic cells treated with dexamethasone and MPLA
possess strong regulatory functions, and have been shown to
modulate both naïve and memory T cell responses (145). As
a further boost to its tolerogenic potential, dexamethasone
is also used in combination with other immunosuppressive
drugs like minocycline (146) or more frequently with
another naturally occurring secosteroid hormone, vit D3

(147).
The hormonally active metabolite of vitamin D, calcitriol,

or vit D3 is, like dexamethasone, one of the most thoroughly
studied TolDC-inducing agents. Its efficiency in inducing DC
tolerogenicity was recognized around the same time as that
of dexamethasone, however it induces certain unique TolDC
characteristics. For instance, similarly to IL-10, vit D3 upregulates
ILT-3, an inhibitory molecule strongly associated with TolDCs
(148–150). Besides ILT-3 being the denominator of tolerogenic
DC state, the functional importance of its expression on vit D3

-treated DCs has not been directly confirmed so far. On the
other hand, the blockade of PDL-1, which is also extensively
induced upon vit D3 treatment, has been shown to be important
(151). Neutralization of PDL-1 in DC-T cell co-cultures resulted

in an increase of IFN-γ-producing T cells and decreased the
percentage of IL-10-secreting Tregs. Vitamin D3 exerts its actions
after binding to its corresponding nuclear receptor, the vitamin D
receptor (VDR). Recently, the mechanisms of vit D3 -mediated
tolerance induction in DCs have been associated with the
modulation of cellular metabolic pathways. Using microarray
analysis it has been shown that vit D3 upregulates several
genes directly associated with glucose metabolism, that is, Krebs
cycle and oxidative phosphorylation (152). More specifically,
the availability of glucose and glycolysis, regulated by the
PI3K/Akt/mTOR pathway, was demonstrated to have direct
control over the tolerogenic DC phenotype and function induced
by vit D3.

During human pregnancy, an increased number of leukocytes,
including DCs, can be found in the pregnancy decidua and the
weight of evidence supports the role of sex hormones in DC
regulation (153–155). Human chorionic gonadotropin (hCG) is
an early pregnancy-associated hormone and plays a vital part
in pregnancy establishment and maintenance. Human CG has
been shown to bind respective receptors on DCs, namely the
luteinizing hormone receptor (LHR), and can stimulate the
production of immunosuppressive IL-10, thereby inhibiting Ag-
specific T cell proliferation (154, 156). In a mouse model, the
adoptive transfer of hCG-treated DCs prior to mating had a
protective effect on pregnancy stability, and was accompanied
by increased Treg numbers and decidual expression of TGF-
β and IL-10 (157). A number of studies also support the
immunosuppressive function of progesterone, which was shown
to regulate the DC stimulatory capacity in rats (158). While
estrogen has been shown to promote DC differentiation (159),
high physiological concentrations of progesterone that can
be seen during pregnancy (cca 10−6 M) have recently been
demonstrated to counteract this effect (160). In contrast to
estrogen, progesterone increased the endocytotic capacity of DCs
and significantly lowered IL-12 and IL-1β, while increased TGF-β
production after LPS-induced maturation.

NEUROTRANSMITTERS

The nervous system plays an important role in communicating
and interacting with the immune system. The ability of
immune cells to respond to released neurotransmitters
is reflected in immunological changes that accompany
psychological disorders. For example, immune suppression
followed by increased inflammatory activity has been found in
depressed patients (161, 162). Several neurotransmitters exert
their immunomodulatory effects by influencing DC biology
(Figure 3). The immunomodulatory characteristic of serotonin
(5-HT), a neurotransmitter closely related to depression, has
been demonstrated by its direct effects on PBMCs, differentially
modulating cytokine production via the 5-HT2A receptor (163).
In terms of DCs, 5-HT has been shown to have a potent effect
on various aspects of their biology. In the presence of 5-HT,
monocytes differentiate into DCs with reduced expression
levels of CD1a and co-stimulatory molecules, while retaining
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FIGURE 3 | The figure describes various hormones and neurotransmitters and their immunosuppressive effects on DC biology. Each biomolecule as associated with
its correspondent receptor on DCs. (5-HT, 5-hydroxytryptamine (serotonine) receptor; Aβ2R, adrenergic β2 receptor; GR, glucocorticoid receptor; H, histamine
receptor; hCG, human chorionic gonadotropin; IL, interleukin; ILT, immunoglobulin-like transcript; LHR, luteinizing hormone/choriogonadotropin receptor; PDL,
programmed death ligand; PR, progesterone receptor; TGF, transforming growth factor; VDR, vitamin D receptor).
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their expression levels of CD14 (164). Functionally, such DCs
displayed a decreased allo-stimulatory capacity and increased
IL-10/IL-12 ratio. The use of specific 5-HT receptor antagonists
suggested the involvement of receptors 5-HTR1 and 5-HTR7 in
these immunoregulatory actions. Serotonin was also associated
with the modulation of DC migratory capacity. Modulation of
chemokine production was characterized by the inhibition of
the Th1 chemoattractant CXCL-10, and the up-regulation of
CCL-22, which primarily attracts Th2 effector cells (165). In
this same study, the addition of 5-HT during DC maturation
increased the IL-10/IL-12 ratio and up-regulated the production
of IL-6. In terms of function, 5-HT-treated DCs favored the
induction of Th2 over Th1 responses. Very recently, a detailed
analysis on 5-HT1-7 expression and function on CD1a+ and
CD1a− monocyte-derived DCs (MoDCs) was performed (166).
The authors found an important role for HT2B expression
on CD1a+ MoDCs, wherein the activation of this receptor
strongly inhibited DC stimulation via TLR-2, TLR-3, and
TLR-7/8. They found a strong down-regulation of cytokine
and chemokine expression such as TNF-α, IL-6, IL-8, IL-12,
and CXCL-10. The resulting DC phenotype deviated from
the capacity to induce Th1 and Th17 polarization of T cell
responses. The expression of 5-HT2B was not detected on
CD1a− populations and was highlighted as an important
negative regulator of inflammatory responses mediated by
CD1a+ MoDCs.

Another monoamine neurotransmitter, histamine, has been
characterized as having numerous immunoregulatory functions
including some exerted on DCs. In this context, the effect
of histamine can be interpreted as anti-inflammatory in the
sense that it was initially described as having the capacity
to skew DCs toward Th2 polarization. Dendritic cells treated
with histamine showed a dose-dependent down-regulation of
LPS-induced IL-12 production (167). When co-cultured with
naïve CD4+ T cells, such DCs promoted an induction of IL-4-
secreting T cells. Using synthetic antagonists, the negative effect
of histamine on IL-12 production was found to be mediated via
H1 and H2, and also by H3 and H4 receptors (168, 169). In a
recent study, histamine-dependent cytoskeleton re-organization
was found crucial for its known Th2 polarizing effect (170).
Indeed, the connection between cytoskeletal arrangement and
DC polarizing capacity has been demonstrated before (171).
Aldinucci et al. have shown that histamine affects the mature
cytoskeleton of TLR-4-stimulated DCs, but not when the cells are
matured with TLR-2 agonists, suggesting the association between
various maturation states achieved via different TLR pathways
and differences in corresponding cytoskeletal rearrangement. As
shown by this group, as well as others, histamine also down-
regulates CXCL-10 expression by DCs (172). On the other hand,
the up-regulation of IL-10 production by histamine-treated DCs
has not been confirmed in all studies. Interestingly, in a recent
study using the EAE model, disease symptoms were alleviated
by immethridine, a selective H3 agonist. The mechanism mainly
proposed was the inhibition of DC function, low co-stimulatory

molecule expression, as well as the inhibition of Nf-κB
p65 (173).

Both the sympathetic and parasympathetic nervous systems
are known to affect inflammatory responses via released
adrenergic and cholinergic mediators (174). Nijhuis et al. have
compared the effect of acetylcholine (ACh), nicotine (both
parasympathetic), and epinephrine (sympathetic) on various DC
functions such as maturation, cytokine production, endocytosis
and function (175). They demonstrated that adrenergic signals,
rather than cholinergic, enhance immunosuppressive DC
characteristics. Activation of the adrenergic β2 receptor (Aβ2R)
by epinephrine enhanced IL-10 production by DCs and at the
same time decreased the production of IL-6, IL-12, and IL-
23. Such DCs were potent at inducing Fox P3+ Tregs with
a suppressive capacity. The tolerogenic potential of Aβ2R-
stimulated DCs was not dependent on the autocrine actions of
released IL-10, TGF-β, or retinoic acid secretion, but rather on
direct signaling via Aβ2R itself. Dendritic cells are also known to
express bothmuscarinic and nicotinic receptors. In another study
by Gori et al., treatment of MoDCs and directly isolated CD1c+

bloodDCswith ACh stimulated the surface expression of OX40L,
a Th2-promoting co-stimulatory molecule and Th2-associated
chemokine CCL22 (176).

CONCLUSION

The data summarized in this review show a definite impact
of various endogenous biomolecules on induction of DCs’
tolerogenic state. The importance of tissue microenvironment,
as well as immunomodulatory factors produced by immune cells
themselves, has been proposed as a crucial player in regulating
both innate and adaptive immune responses many years ago
in so-called “danger model” proposed by Polly Matzinger. It is
now becoming increasingly clear that both tissues and immune
cells, via soluble or surface-bound factors, can regulate the
immune system in both ways, leading to increased activation
or on the other hand, predominantly tolerogenic immunological
outcomes. Since DCs serve a central role in bridging innate
and adaptive immunity, understanding the manner in which
they are influenced by the above mentioned repertoire of
diverse factors can be regarded as fundamental to interpretation
of their functionality toward cells of the adaptive immune
system.
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