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ABSTRACT Soybean oil and meal are major contributors to world-wide food production. Consequently,
the genetic basis for soybean seed composition has been intensely studied using family-based mapping.
Population-based mapping approaches, in the form of genome-wide association (GWA) scans, have been
able to resolve loci controlling moderately complex quantitative traits (QTL) in numerous crop species. Yet,
it is still unclear how soybean’s unique population history will affect GWA scans. Using one of the popu-
lations in this study, we simulated phenotypes resulting from a range of genetic architectures. We found
that with a heritability of 0.5, �100% and �33% of the 4 and 20 simulated QTL can be recovered, re-
spectively, with a false-positive rate of less than �6·1025 per marker tested. Additionally, we demonstrated
that combining information from multi-locus mixed models and compressed linear-mixed models improves
QTL identification and interpretation. We applied these insights to exploring seed composition in soybean,
refining the linkage group I (chromosome 20) protein QTL and identifying additional oil QTL that may allow
some decoupling of highly correlated oil and protein phenotypes. Because the value of protein meal is
closely related to its essential amino acid profile, we attempted to identify QTL underlying methionine,
threonine, cysteine, and lysine content. Multiple QTL were found that have not been observed in family-
based mapping studies, and each trait exhibited associations across multiple populations. Chromosomes 1
and 8 contain strong candidate alleles for essential amino acid increases. Overall, we present these and
additional data that will be useful in determining breeding strategies for the continued improvement of
soybean’s nutrient portfolio.
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Soybeans are a primary contributor to the worldwide production of
culinary oils and animal feed. They also serve as a significant source of
renewable biofuel, in the form of biodiesel (Hill et al. 2006). Given the
importance of protein and oil content to soybean producers, the

quantitative trait loci (QTL) underlying these traits have undergone
intensive investigation (Diers et al. 1992; Chung et al. 2003; Fasoula
et al. 2004; Nichols et al. 2006; Bolon et al. 2010; Hwang et al. 2014).
Although many QTL have been identified across the soybean ge-
nome, a region of linkage group (LG) I has consistently shown the
strongest association with percent protein composition of the seed
(Diers et al. 1992; Chung et al. 2003; Nichols et al. 2006). A high-
protein allele on LG-I has been introgressed from soybean’s wild
progenitor, Glycine soja (Diers et al. 1992; Sebolt et al. 2000); there-
fore, this allele is likely to be dispersed throughout global soybean
germplasm. This assumption is supported by the identification of
the LG-I region from mapping populations derived by crossing
high-/low-protein Glycine max lines (Wilcox and Cavins 1995;
Chung et al. 2003; Fasoula et al. 2004). Although breeders would like
to increase both protein and oil content, the traits exhibit a strong
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negative correlation that has not been possible to decouple (Wilson
2004). Moreover, total yield is often negatively correlated with per-
cent protein, although the correlation is weaker than protein by oil
(Chung et al. 2003). It is possible that the two traits are controlled by
the same causal variant, or that separate causal variants are in very
tight linkage—previously calculated as ,0.67 cM (Chung et al.
2003). Because many legumes do not exhibit such sharp correlations
in protein and oil (Sarvamangala et al. 2011), there is hope that in
soybean the traits can be separated via recombination of the un-
derlying genes. Alternatively, if the traits are determined by a single
variant, it remains of great commercial and biochemical interest how
this gene might be mediating such large-scale effects.

Protein meal is a major source of feed for poultry and swine, which
are unable to synthesize the entire suite of required amino acids and
therefore must derive these nutrients from their diets. It follows that
the value of soybean meal is less a function of its crude protein content
and more a function of its amino acid profile (Friedman and Brandon
2001). While the manipulation of other aspects of seed composition
and processing may improve amino-acid assimilation, increasing the
relative proportion of methionine (Met), lysine (Lys), and threonine
(Thr) has become a goal in soybean breeding (Durham 2003). The
economic benefit of improved essential amino acid content has been
estimated to be �$5 per ton per 10% increase of any of the above
amino acids (Clarke and Wiseman 2000).

Unlike the total protein trait, few studies have attempted to map
protein quality QTL. Generally, there is only a weak correlation between
crude protein content and Met and Cysteine (Cys) levels (Burton et al.
1982; Wilcox and Shibles 2001). Sulfur-containing amino acid compo-
sition does tend to fluctuate depending on the nitrogen source (Paek
et al. 1997) and availability of reduced forms of sulfur (Grabau et al.
1986), thus environmental effects are likely to play a significant role
in phenotypic outcomes. In mapping studies, 100 markers were used
to genotype �100 F6 recombinant inbred lines (RILs) (Panthee et al.
2006a,b). Nearly 10% of RILs had a Met+Cys value exceeding the
United Nations’ Food and Agriculture Organization standards based
on egg protein (Clarke and Wiseman 2000). Moreover, Met concen-
trations in some RILs were 30% higher than the parent values, which
were approximately equivalent, indicating that both parent lines con-
tributed positive alleles (Panthee et al. 2006a). The heritability of these
traits appears to be moderate for Met (0.56) and low for Cys (0.14),
and they are effected by maturity date when grown in the same envi-
ronment (Panthee et al. 2006a).

As described above, nearly all work on mapping seed composition
QTL has focused on family-based populations, either as selfed pop-
ulations or near-isogenic lines. Because of the limited amount of re-
combination that has occurred in these populations, such studies
generally have a limited genetic resolution of the QTL. To improve
resolution, linkage disequilibrium (LD) mapping or population-based
association mapping uses a diverse set of plant accessions, which have
a much lower LD than a family-based population (Myles et al. 2009).
This reduced LD requires much higher marker density than family-
based mapping. Also, population-based mapping is confounded when
sites with divergent allele frequencies across subpopulations of the
panel are mistaken for causal sites because the polygenic background
effect dominates the signal of any one true site (Vilhjálmsson and
Nordborg 2013). Generally, these false positives can be removed by
controlling for relatedness among individuals, which are a proxy and
predictor of the sum of un-modeled genetic effects (Yu et al. 2006;
Segura et al. 2012). Many methods have been developed to account for
these biases, and genome-wide association (GWA) scans have identi-
fied known genes in numerous crops and model organisms, including

maize (Buckler et al. 2009), rice (Atwell et al. 2010; Huang et al. 2010),
Arabidopsis (Atwell et al. 2010), and foxtail millet (Jia et al. 2013).
Although this collection of species has a broad range of mating sys-
tems and population histories, soybean represents an extreme case of
inbreeding (Hyten et al. 2006; Chung et al. 2013). In addition, it has
undergone one or more substantial population bottlenecks during
domestication (Hyten et al. 2006) and, as with other crops, numerous
loci have been under strong artificial selection (Chung et al. 2013).
The performance of available GWA methods has yet to be rigorously
investigated in soybean.

In the following study, we aim to explore the utility of GWA scans
in soybean, to refine QTL for assorted seed composition traits, and to
assess the relationship between population structure and genetic
architecture with regard to these traits.

MATERIALS AND METHODS

Phenotype and genotype data
Phenotypic data for protein and oil were supplied by the Germplasm
Resources Information Network (http://www.ars-grin.gov/cgi-bin/
npgs/html/crop.pl?51) and are designated as IL-1964, IL-1966, MS-
1996, and MS-2000 (Supporting Information, Table S1). IL-1964 in-
cluded data from 619 accessions in maturity groups (MGs) I and II
that were introduced into the United States before 1961, as well as U.S.
varieties released prior to 1965. They were evaluated in Urbana, Illi-
nois, in two replications in 1964 (Bernard et al. 1998). The first
replication was planted on May 14 and the second replication was
planted on June 3. IL-1966 had data from 977 introduced soybeans
and U.S.-released cultivars in MGs III and IV from the same time
period as IL-1964. These lines were evaluated in Urbana, Illinois, in
1965 and 1966, with one replication each year (Bernard et al. 1998).
MS-1996 included 728 accessions in MGs V through IX. These were
accessions introduced into the United States or were released as culti-
vars generally between 1990 and 1994; however, some cultivars and
introduced accessions that predated this time were also included. They
were evaluated at Stoneville, Mississippi, with one replication in 1996
and a second replication in 1997 (Peregrine et al. 2008). MS-2000 had
data from 934 accessions in MGs IV through VI, although almost all
were in MG V. They were accessions introduced into the United
States prior to 1977 as well as selected U.S. cultivars released between
1980 and 1991. These entries were evaluated at Stoneville, Mississippi,
in 1999 and 2001, with one replication grown in each year (Peregrine
et al. 2008). Oil and protein concentrations used in GWA scans were
the average of replicates for a genotype.

For amino acid and sugar composition, lines were grown in Illinois
in 1996 (IL-1996) and in Mississippi in 1997 (MS-1997). Single soybean
samples were analyzed by NIR at the University of Minnesota’s Soy-
bean Breeding Laboratory. Whole soybean samples received from the
USDA Soybean Germplasm Collection were ground and then analyzed
on a FOSS 6500 NIR Instrument. NIR Spectra from the FOSS 6500
were predicted using ISIPredict Software version 1.10.2.4842. Calibra-
tions, provided by FOSS North America, were used to predict soybean
composition from the NIR spectra.

The populations used for the protein and oil GWA scans (Table
S1) do not overlap with one another in terms of genotypes. For
example, a genotype in the MS-2000 population will not also appear
in the IL-1966 population. Similarly, for amino acid GWA scans
(Table S1), genotypes will not overlap between populations. All phe-
notypic data are provided (File S1).

Genotypic data were derived from the large-scale effort to genotype
the USDA Soybean Germplasm Collection using SoySNP50K iSelect
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BeadChips (Song et al. 2013). The data were accessed from http://soybase.
org/data_distribution/soybase_soy50K_snp_all_cultivars_and_snps.
gz on 6 February 2014. Missing data in the total genotyped data set were
imputed using command-line TASSEL 3.0 and default -impute options
(Bradbury et al. 2007). To reduce computation demands, imputation was
performed using 1000 genotypes at a time. For a given trait and popu-
lation, genotypes were filtered from the total data set and markers with
a minor allele frequency of ,0.05 were removed. Generally, filtering
resulted in �32,000 SNP markers per population, although the number
of SNP markers for the MS-2000 population was 28,622 (Table S1).
Physical distances described in this manuscript are based on genome
assembly version Glyma.Wm82.a1 (Gmax1.01); the distances are shifted
in version Glyma.Wm82.a2 (Gmax2.0) (Schmutz et al. 2010).

Kinship
Kinship among lines was calculated in the manner of Vanraden
(2008) using an R implementation (www.R-project.org) available as
part of GAPIT software libraries (Lipka et al. 2012). Using resultant
distances, clustering was performed in R using the internal package
hclust with default parameters.

Simulations
QTL were randomly selected from all available markers within the
MS-2000 population (Figure 2A). Only markers with MAF .0.05
were used. Two types of effect distributions were used: uniform, for
which each QTL has an equal effect (1/n; where n = total QTL), and
linear, for which QTL effects start at [1/(n – ((n – 1)!/n))] and decline
in a linear fashion toward 0, such that the nonzero effects sum to 1,
regardless of the number of loci. In other words, 1 is the maximum
total genotypic effect in any simulation. Phenotypes were simulated by
adding residual effects that were drawn from a normal distribution
with a mean of 0 and dispersion dependent on the defined heritability
(Wimmer et al. 2013). Five replicates per condition (Table 1) were run
as described below.

GWA scans
For compressed mixed linear model (CMLM) analysis (Zhang et al.
2010), GAPIT (Lipka et al. 2012) was used with group size increments
set to 20 (group.by = 20), the number of principal components (PCs)
used set to 3 (PCA.total = 3), and the number of markers sampled to
estimate kinship was set to 80% (SNP.fraction = 0.8). Three PCs were

used because improvements in fit generally diminish after three PCs,
and because the third PC differentiates Japanese from South Korean
germplasm (Figure S4, Figure S5, Figure S6, Figure S7). For the multi-
locus mixed model (MLMM) analysis (Segura et al. 2012), we used the
Python implementation (https://github.com/bvilhjal/mixmogam, ver-
sion 1.0) with minor modifications to support our data formats. Be-
cause the inclusion of heterozygous genotypes dramatically reduces
the number of possible markers used in this implementation, hetero-
zygotes were randomly assigned to be homozygous for an allele based
on total allele frequencies at that SNP marker. This was only with
regard to implementing the MLMM analysis; also, because heterozy-
gous loci are rare in the majority of soybean lines, only �1 in every
1000 SNPs was actually altered, adding minor, nonsystematic noise to
the MLMM analysis. Only markers with a significant association
(p-value ,1024) under both CMLM and MLMM were reported
(Table 2 and Table 3). Heritability, or pseudo-heritability, estimates are
generated by the EMMA algorithm (Kang et al. 2008) that is used to
control for population structure in the MLMM (Table 2 and Table 3).
Allelic effects are estimated in the CMLM model, with the top three PCs
included and population structure accounted for (Table 2 and Table 3).

RESULTS AND DISCUSSION

Population structure and protein/oil traits
Using phenotypic data accumulated through the USDA Germplasm
Resources Information Network, we initially focused on the two major
constituents of soybean seed—protein and oil. Phenotypic data are
either the average of multi-year trials, as in the MS-2000 population,
or the result of a single season trial, as in the IL-1966 (Table S1). As
known from numerous previous studies, there is a strong negative
correlation between protein and oil content. Across the entire data
set, which represents a range of environments and maturity groups,
protein data used in this study have a 20.65 correlation coefficient
with oil (Figure 1A). Even when limiting the analysis to specific envi-
ronments and maturity groups, the inverse relationship still exists
(Figure 1, B and C). As noted previously, Southern lines (MG V,
Figure 1B), as a group, have greater phenotypic variation toward
the high end of protein content, whereas Northern germplasm is
missing high-protein lines. Additionally, the correlation between pro-
tein and oil in Northern lines is approximately two-fold weaker than
Southern lines, although it is still present (Figure 1C).

n Table 1 Simulation results using MS-2000 population

#QTL 4 20 200

Effect Distr. Linear Uniform Linear Uniform Linear

H2 0.95 0.5 0.95 0.5 0.95 0.5 0.95 0.5 0.95 0.5

False (2)d 0.1b (0.1c) 0.35 (0.25) 0 (0) 0.1 (0) 0.5 (0.41) 0.69 (0.63) 0.3 (0.19) 0.68 (0.53) 0.96 (0.93) 0.99 (0.99)
(total)

False (2) 0 (0) 0 (0) NAa NA 0.04 (0.04) 0.24 (0.12) NA NA 0.87 (0.78) 0.98 (0.97)
(top 1/4)a

False (2) 0 (0) 0.13 (0.13) NA NA 0.33 (0.23) 0.59 (0.51) NA NA 0.94 (0.91) 0.99 (0.99)
(top 3/4)a

False (+) 2.0E24
(3.5E24)

4.2E25
(4.2E25)

3.5E25
(4.9E25)

4.9E25
(6.3E25)

3.6E24
(8.5E24)

8.4E25
(1.0E24)

2.9E23
(4.8E23)

8.4E25
(2.0E24)

2.8E25
(1.9E24)

1.4E25
(4.2E25)

Each value is the mean of five separate replicates under the given combination of variables.
a

“Top 1/4” indicates that only the top quartile of loci with the strongest effects were evaluated in terms of type II errors. Similarly, “Top 3/4” refers to the top 3
quartiles. Because these categories cannot apply to uniform effect distributions, applicable cells are given “NA” values.

b
p-value threshold , 1025.

c
Parenthetical values for p-value threshold ,1024.

d
False (2) indicates the fraction of true positives that were missed; false (+) indicates the fraction of tests that identified untrue associations.

Volume 4 November 2014 | Genetic Architecture of Soybean Seed Composition | 2285

http://soybase.org/data_distribution/soybase_soy50K_snp_all_cultivars_and_snps.gz
http://soybase.org/data_distribution/soybase_soy50K_snp_all_cultivars_and_snps.gz
http://soybase.org/data_distribution/soybase_soy50K_snp_all_cultivars_and_snps.gz
http://www.g3journal.org/content/suppl/2014/09/22/g3.114.013433.DC1/TableS1.pdf
http://www.R-project.org
http://www.g3journal.org/content/suppl/2014/09/22/g3.114.013433.DC1/FigureS4.pdf
http://www.g3journal.org/content/suppl/2014/09/22/g3.114.013433.DC1/FigureS5.pdf
http://www.g3journal.org/content/suppl/2014/09/22/g3.114.013433.DC1/FigureS6.pdf
http://www.g3journal.org/content/suppl/2014/09/22/g3.114.013433.DC1/FigureS7.pdf
https://github.com/bvilhjal/mixmogam
http://www.g3journal.org/content/suppl/2014/09/22/g3.114.013433.DC1/TableS1.pdf


We explored the genetic architecture of these traits further with
regard to the relatedness structure within each population. All soybean
accessions in the USDA Soybean Germplasm Collection have been
genotyped with Soy50K SNP Infinium Chips (Song et al. 2013), which
contain �50,000 markers based on population-wide single-nucleotide
polymorphisms (SNPs). Extracting phenotyped lines from this data-
set, we calculated kinship matrices for both MS-2000 and IL-1966
populations. Lines within each population were then clustered based
on their identity by descent estimation (represented as dendrograms
in Figure 2). The MS-2000 population primarily comprises germplasm
with South Korean origins (Figure 2A). There is clear distinction
between the South Korean germplasm and Chinese germplasm,
whereas Japanese germplasm clusters more closely with the South
Korean population (Figure 2, A and B, and Figure S5). There also
appears to be a subpopulation of the South Korean germplasm that is
quite distinct from both Japanese and other South Korean sources.
Because populations comprise lines from similar maturity groups, we
see very little clustering based on this factor. These results are char-
acteristic of all populations analyzed and supported by principal com-
ponent analysis (Figure S4, Figure S5, Figure S6, Figure S7).

The inverse relationship between protein and oil is reflected in
Figure 2 (e.g., if oil is red, then protein is green). Within both pop-
ulations, very closely related accessions tend to share similar protein/
oil levels, although the observation is less pronounced in the IL-1966
population, where less structure is present. Protein levels are generally
not related to maturity group (MG in Figure 2). Thus, the traits appear
to have a strong genetic basis. We further interrogated the genetic
architecture of seed composition using GWA scans.

Detection success of GWA studies in
soybean populations
Although there have been GWA studies performed in soybean, these
have generally relied on between 500 and 1500 SNP markers
(Mamidi et al. 2011; Hao et al. 2012). Even though soybean popu-
lations generally have very high LD, such sparse marker density will
often fail to identify significant associations in a panel because re-
combination has physically and statistically decoupled a causal var-
iant from nearby markers. Although higher-density marker studies
have improved this aspect of GWA scans (Hwang et al. 2014), these
have relied on preexisting models and algorithms, namely the com-
pressed mixed model (Yu et al. 2006; Zhang et al. 2010). To test the
utility of preexisting GWA tools on actual soybean association pan-
els, we simulated hypothetical phenotypes under a range of genetic
architectures using the MS-2000 population of genotypes described
above (Figure 2 and Table S1).

We generated five replicates for each combination of parameters
defined in Table 1 (e.g., for the combination with 20 QTL, a linear
effect distribution, and a H2 of 0.5, five separate simulations were
performed in which a new set of QTL positions were randomly se-
lected). Generally, the heritability of protein and oil content is
expected to lie within the simulated range (Chung et al. 2003). We
used only additive models; heterozygous genotypes, though few, were
calculated as exactly intermediate between homozygous genotypes. In
each simulation, we randomly selected polymorphisms from the en-
tire set of SNP markers in the MS-2000 populations. We only required
that markers had a minor allele frequency (MAF) .0.05. It should be
noted that we are modeling the randomly chosen marker as the causal
polymorphism, whereas, as discussed above, in real GWA scans the
marker is not always in perfect LD with the polymorphism.

For each simulation, we used both compressed mixed linear model
(CMLM) and a multi-locus mixed model (MLMM) to identifyn
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significantly associated markers. CMLM approach corrects for geno-
typic background by incorporating pairwise kinship information and
major principal components derived from a principal component
analysis of the SNP information (Zhang et al. 2010). In addition to
correcting for genetic background, the MLMM approach also includes
markers discovered in initial cycles of the algorithm as co-factors in
further iterations (Segura et al. 2012). We have found these ap-
proaches to be complementary in that MLMM effectively hides the
LD between causal variants and distant markers; false positives in
Figure 3 are effectively removed. Yet, to do this, the MLMM often
must arbitrarily choose one marker from a broad peak of significance
(Figure 3B). CMLM, however, retains this information; many markers
have a significant association merely because they are in high LD with
the causal variant. This information is useful when the LD is a result
of physical linkage. For example, the variants with the top two stron-
gest effects (“1” and “2”) in Figure 3B are not identified because others
variants in linkage are selected by MLMM and included as covariates.
It is clearer from the CMLM analysis that these loci have extensive LD.
In this regard, rigorous evaluation of the success of an algorithm is
difficult: MLMM can identify a neighboring marker instead of the
causal polymorphism (“1” and “2” in Figure 3B), whereas CMLM will
identify numerous markers around the causal polymorphism, compli-
cating an assessment of false discovery rate. Any causal variant that
was not significant at the given threshold in the CMLM model was

considered a false negative (Table 1). Any marker that was not a causal
variant but was deemed significant by both MLMM and CMLM was
considered a false positive (Table 1). This evaluation strategy reflects
the use of both statistical significance and visual analysis to determine
true associations in real GWA scans.

Under the uniform effects distribution, each effect is simulated as
the reciprocal of the number of QTL. Likewise, linear effects are, on
average, smaller for traits under the control of a larger number of QTL.
As expected, heritability plays a large role in detection success; in every
condition, the statistical power declines with reduced heritability (Table
1). This is particularly important when variation in a trait is effected by
a moderate number of variants. For linear effect distributions, the
variants with the top quartile of effect sizes were, as expected, detected
at much higher frequencies than the collection of all variants.

The number of false positives does not fluctuate substantially ac-
ross scenarios, although it is slightly higher under 20 QTL conditions.
At an average frequency of �1024 (ignoring the 2.3E23 value, see
below), one would expect one false positive per 10,000 markers tested
at a threshold of p-value, 1025. This value represents a ceiling on the
false-positive frequency, because LD is still inflating our estimate. The
outlying false-positive rate associated with the “20-QTL, uniform dis-
tribution, high-heritability” scenario appears to be the result of QTL
being selected from a very large linkage block in two of the simula-
tions (not shown). In our experience, visual selection of peaks using

n Table 3 GWA scan results for selected essential amino-acid profiles

IL-1996 (900)a MS-1997 (978)

SNP -log (p-value)b Allelic Effect Estimate SNP -log (p-value)b Allelic Effect Estimate

Cysteine (1.47 [1.50])c ; H2 = 0.60 (IL-1996), 0.59 (MS-1997)

8_8462762d,e,f 5.39 (5.01) 0.06 8_8462762 12.33 (12.06) 0.06
6_18690983 9.87 (8.6) 0.04
6_17674401 4.33 (5.01) 0.03

Lysine (6.41 [6.47]); H2 = 0.61 (IL-1996), 0.66 (MS-1997)

8_8462762 11.1 (10.97) 0.28 8_8577294 11.01 (9.55) 0.11
17_39726391 6.96 (6.52) 0.14 12_14812823 8.87 (6.04) 0.1
1_52249479 6.16 (4.79) 0.08 9_41819055 6.25 (6.36) 0.14
16_28941919 4.46 (5.31) 0.13 17_270328 6.32 (5.46) 0.1

15_23117810 5.29 (4.62) 0.07
19_41918030 4.92 (4.72) 0.09

Methionine (1.43 [1.40]); H2 = 0.75 (IL-1996), 0.73 (MS-1997)

11_1657825 11.47 (13.47) 0.08 1_52263952 7.46 (6.6) 0.03
20_694345 8.73 (8.86) 0.1 5_29970914 6.19 (5.28) 0.04
3_3936105 7.5 (6.78) 0.06 2_51258638 5.03 (4.51) 0.04
1_52253980 4.88 (5.26) 0.04 20_43025938 4.12 (6.42) 0.04
16_36220954 4.91 (4.88) 0.05 8_8577294 6.48 (4.03) 0.03
3_40763529 4.39 (5.26) 0.05 10_40692799 4.21 (4.42) 0.03

Threonine (3.57 [3.60]); H2 = 0.56 (IL-1996), 0.65 (MS-1997)

8_8627848 6.93 (5.51) 0.08 1_52253980 10.71 (11.68) 0.06
4_6897543 4.21 (4.17) 0.04

Sucrose (4.00 [3.83]); H2 = 0.66 (IL-1996), 0.50 (MS-1997)

18_59597832 5.19 (4.67) 0.38 5_38495217 5.05 (4.99) 0.35
15_12181005 4.43 (5.05) 0.29

Stachyose (2.89 [2.76]); H2 = 0.27 (IL-1996), 0.40 (MS-1997)

9_2007514 5.21 (5.58) 0.17 20_2219331 4.05 (4.06) 0.14

Associated Manhattan plots are given in Figure S1 and Figure S2.
a

Population used; value in parentheses is the number of genotypes used.
b

Value from MLMM; parenthetical value from CMLM.
c

Mean values for combined populations are in parentheses, with median values in brackets (% protein by dry weight).
d

Bold font indicates that the marker (or a marker within 200 Kbp) was associated with the trait in two or more environment–population datasets.
e

Italic font indicates that the marker (or a marker within 200 Kbp) was also associated with another trait in the study.
f

For simplicity, marker names are reduced to their chromosome position form, e.g., BARC1.01Gm08_8462762 appears as 8_8462762.
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aggregate Manhattan plots (Figure 4) reduces the effective false-positive
frequency to ,1 per 30,000 markers.

As expected, in many tested scenarios the false-negative frequency
declines with a reduced p-value threshold (Table 1). The compensa-
tory increase in false-positive frequencies is often relatively small.
Generally, increasing the threshold from 1025 to 1024 would add
approximately three true positives per four false positive. For some
studies or breeding objectives, this trade-off may be beneficial.

Refining the protein and oil QTL using GWA scans
Applying insights from the simulation studies, we attempted to map
QTL underlying protein and oil using GWA scans within both
MS-2000 and IL-1966 populations discussed above, as well as two
additional populations, IL-1964 and MS-1996 (Table S1). For the
MS-2000 population, with mostly MG V accessions, we found a strik-
ing association between protein content and the 1-Mbp genomic re-
gion between 30,930,931 and 31,972,955 bp on chromosome (chr-) 20,
with the greatest effect associated with the SNP marker at position
31,972,955 (Figure 4A). As discussed below, this marker is covered by
the confirmed protein QTL region. Interestingly, the association on
chr-20 is entirely absent when limiting the analysis to MG-III-IV lines

grown in Illinois in 1966 (IL-1966) (Figure 4B), as well as MS-1996
and IL-1964 (Table 2).

Using family-based mapping, Bolon et al. (2010) narrowed the
major protein QTL to an �8.5-Mbp region on chr-20 (Figure 4C).
A recent study indicated that the known chr-20 protein QTL is located
in the large LD block under this interval (Figure 4C). This region is
approximately 1 Mbp upstream of the region that we identified. Using
phenotypic data released as part of that study as well as 66% of the
genotypes used therein (the remainder were unavailable), we ran
a GWA scan and, as with the MS-2000 population, found that SNP
marker BARC1.01Gm20_31610452 has the strongest association with
protein content (Table 2).

On further analysis, we noted that in the MS-2000 population, all
markers in moderate LD with BARC1.01Gm20_31972955 had very
low minor allele frequencies; within the IL-1966 population, many
of these markers are monomorphic. Using all monomorphic and
polymorphic markers in the MS-2000 germplasm, we conducted
a diversity analysis across this region (Figure 4C). Generally, a negative
value of Tajima’s D is an indicator of purifying selection, whereas
positive values are indicators of population bottlenecks (or diversify-
ing selection). Soybean is known to have undergone a severe

Figure 1 Protein and oil phenotypic variation and covariance within
populations. (A) All lines across all populations for which protein and oil
were measured. (B and C) Lines for a specific population assayed in
a particular environment. IL, Illinois; MS, Mississippi. Year of growth is
given adjacent to location and maturity group is given below the
location and date. In all graphs, percent dry-weight protein and oil are
plotted on the x-axis and y-axis, respectively.

Figure 2 Attributes of populations used in GWA scans for protein and oil. Genotypes were clustered based on genetic distance. Each genotype
used in the study represents a leaf in the dendrogram at the top of each panel. Country of origin and maturity group (“MG”) are color-coded.
Protein and oil are represented as a heat map, with red being the highest value within that population and green being the lowest. Values in
parentheses indicate the number of lines within a given category. (A) MS-2000 population. (B) IL-1966 population. Note that color-coding can be
different for the same category in different populations.
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population bottleneck. In addition, ascertainment bias associated with
our genotyping platform will result in higher values. Thus, the nega-
tive Tajima’s D values observed for this region occur against a back-
ground of higher than expected Tajima’s D values. Supporting this
result, in a recent study that compared a Glycine soja population with
a G. max population, Chung et al. (2013) identified the 30.5-to 32.3-
Mbp region on chr-20 as being under selection related to domes-
tication. It is possible that the low diversity of this region, which
makes it very sensitive to MAF thresholds, caused it to be missed
in previously published GWA scans (Huang et al. 2010).

GWA algorithms to control for population structure are less
effective when the trait undergoing study has been under distinct

modes of selection in distinct environments; flowering time is a classic
example that has been notoriously difficult to map using population-
based methods (Larsson et al. 2013). Such selection reduces the ability
of gross genetic relatedness to predict the polygenic background effect
(see Introduction). Because it is negatively correlated with oil and
yield, selective pressure on protein content has probably been uni-
formly selected against, but there may have been conditions or envi-
ronments in which protein content was favored (e.g., for culinary
reasons). By including a more accurate model of the background ge-
netic effects of a trait in additional GWA scan iterations, the MLMM
algorithm begins to address such issues (Segura et al. 2012), and
generally the corroboration between CMLM and MLMM

Figure 3 Significance scores of simulated genetic architectures in the MS-2000 soybean population using CMLM and MLMM methods. Each
marker is plotted with its -log(p-val) on the y-axis and physical position is plotted on the x-axis. Chromosomes are indicated by alternating black
and gray coloration and are plotted in order, 1 through 20. Magenta markers indicate the polymorphisms associated with a simulated effect. A
significance threshold of p-value , 1025 is indicated by a dotted line. (A) Four QTL with uniform effect sizes and a heritability of 0.5. (B) Twenty
QTL sampled from linear effect sizes with a heritability of 0.5. Rank of the allelic effect is given above the marker, with “1” being the largest effect.
(C) Two hundred QTL, a linear effect distribution, and a heritability of 0.95. Only MLMM method is shown.
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algorithms for this trait (Figure 4, A and B) suggests that selection is
not confounding.

For both MS-2000 and IL-1966 populations, we closely in-
spected the distribution of alleles residing at BARC1.01Gm
20_31972955, at BARC1.01Gm 20_31610452, which had a compa-
rably low p-value, and also at BARC1.01Gm20_29395999, which is

a marker that was identified previously (Hwang et al. 2014). The
BARC1.01Gm 20_31972955-A allele clearly correlates with protein
levels (Figure 5). Yet, with rare exceptions in the IL-1966 popula-
tion, BARC1.01Gm 20_31972955-A is in complete LD with the
BARC1.01Gm20_31610452-C allele. These exceptions, although
few, suggest that BARC1.01Gm20_31610452 is more closely linked

Figure 4 Percent protein and
oil GWA scan. For population
MS-2000 (A) and IL-1966 (B),
each marker is plotted with
its -log(p-val), as assessed using
the CMLM method, on the y-axis
and its physical position is plot-
ted on the x-axis. Orange color
indicates markers also identified
by the MLMM method; their dis-
covery order and -log(p-val) are
also indicated in adjacent orange
font. Chromosomes are indicated
by alternating black and gray and
are plotted in order, 1 through
20. A significance threshold of
p-value , 1025 is indicated by
a dotted line. (C) Using MS-2000
population, LD plot for the re-
gion around the protein/oil QTL
identified in this study and others.
The total physical distance shown
is �8 MB. R2 and D9’measures of
LD are given above and below
the diagonal, respectively; both
values range from 0 to 1. Brackets
indicate the physical range previ-
ously found to associate with pro-
tein and oil content. The bar
graph to the right of the LD plot
is scaled approximately to the
physical position along the LD
plot, as indicated, and plots the
Tajima’s D metric for sliding win-
dows 20 markers wide with an
overlap of 10 markers. Both mono-
morphic and polymorphic markers
were included in the Tajima’s D
calculation, whereas only polymor-
phic (MAF. 0.05) sites are shown
in the LD plot.
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to the causative allele. Interestingly, the left branch of the MS-2000
population, although absent of both BARC1.01Gm 20_31972955-A
and BARC1.01Gm20_31610452-C, has consistently higher than aver-
age protein levels (Figure 5A). This branch represents a fairly large
group of genetically similar individuals; therefore, although the
BARC1.01Gm20_29395999 allele appears to correlate broadly with
protein levels, fine-scale analysis of more divergent individuals shows
a more striking relationship between BARC1.01Gm20_31610452 and
a line’s protein level. This relationship is reflected in the much lower
p-value for BARC1.01Gm20_31610452 observed across multiple pop-
ulations and algorithms (Table 2 and Figure 4).

In an attempt to further refine the interval identified above, we
mined all genotyped accessions for which protein data were available,
regardless of maturity group or environment. One-hundred ninety-two
genotypes with the high protein marker, BARC1.01Gm20_31610452-C,
were retained; an equal number of lines containing the major al-
lele were randomly selected from the entire set. This enrichment
yielded numerous examples of lines in which the linkage between
BARC1.01Gm20_31610452-C and BARC1.01Gm 20_31972955-A
is broken. There is a very distinct subpopulation that has BARC1.
01Gm20_31610452-C, lacks BARC1.01Gm 20_31972955-A, and
yet retains high protein levels (Figure 5C). Although BARC1.
01Gm20_31610452-C is in high LD with BARC1.01Gm20_29395999-C,
there are multiple examples where this linkage is broken; in those
cases, protein levels still appear to be retained when BARC1.
01Gm20_31610452-C is present (Figure 5C). Based on these results,
BARC1.01Gm20_31610452 is the most precise marker for protein
content yet to be identified.

As described above, oil and protein are highly correlated. It is still
unknown if two QTL on chr-20 have close physical linkage or if a single

QTL controls both phenotypes. In the oil GWA scan, the markers with
the lowest significant p-values reside in the 31150270–31640038 bp
linkage block, which supports the hypothesis that the same causal
variant is controlling the strong negative correlation between traits.
Yet, unlike the protein GWA scan, there appears to be multiple
significant oil QTL. In addition to the chr-20 QTL, we also identified
markers on chr-15, chr-5, and chr-6 in the MS-2000 population
(Figure 4A). These same markers (or adjacent markers) also appear
in two separate populations phenotyped in different environments
(Table 2). The additional markers, although not as striking in effect
as the chr-20 marker, may be a means to begin uncoupling protein
and oil levels in soybean through the inclusion of positive effect oil
markers in the presence of the high-protein chr-20 QTL. These markers
overlap known QTL as reported in SoyBase (www.soybase.org, and
references therein), specifically: BARC1.01Gm15_3919945 overlaps QTL
Seed_Oil_32-1; BARC1.01Gm05_38495217 overlaps QTL Seed_Oil_30-1;
and BARC1.01Gm6_42907701 overlaps QTL Seed_Oil_23_1 (QTL
names are based on SoyBase indexing). It should be noted that 178 seed
oil QTL are defined in SoyBase (May 22, 2014), and their summed
intervals cover approximately one-eighth of the entire genome. Thus,
for some traits, the coincidence between GWA scans and prior mapping
results, although validating, are not definitive.

Genes underlying protein quality
As described in the Introduction, the value of protein meal could be
dramatically improved by increasing its essential amino acid content,
particularly with regard to methionine. Using a distinct set of germplasm
that has been phenotyped for assorted sugars and amino acids (Table S1
and Figure 6), we investigated the genetic architecture underlying pro-
tein quality traits in soybean.

Figure 5 Allele distribution as it relates to population structure and protein levels. Genotypes were clustered based on genetic distance across all
markers (not just those depicted here). Each genotype used in the study represents a leaf in the dendrogram at the top of each panel. Percent
protein is represented as a heat map, with red being the highest value within a population and green being the lowest. For a given marker,
a genotype is color-coded according to the nucleotide for which it is homozygous; heterozygotes are shown as brown. Marker names are
abbreviated to exclude "BARC1.01." (A) MS-2000 population. (B) IL-1966 population. (C) Population created by enriching BARC1.01Gm20_31610452-C
to a frequency of 0.5, regardless of the environment in which a line was phenotype.
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Both populations support the clustering of South Korean and
Japanese germplasm relative to the more diverse Chinese germplasm
(Figure 6), as seen with protein–oil populations above (Figure 2).
Likewise, maturity group and genetic relatedness have a much weaker
but still discernible relationship. For the IL-1996 population, Cys, Thr,
and Lys traits have a mild correlation with one another. Additionally,
these traits show a mild to weak negative correlation with Met.

Using GWA scans as above, we identified QTL that appear to
be affecting protein quality. There is a strong association between
Met levels and three separate loci within the IL-1996 popu-
lation: BARC1.01Gm11_1657825; BARC1.01Gm20_694345; and
BARC1.01Gm3_3936105 (Table 3 and Figure S1). All three of these
markers fall below MAF thresholds in the MS-1997 population (Fig-
ure S3). Excluding these markers, the marker with the lowest p-value
in IL-1996, BARC1.01Gm01_52253980, is adjacent to marker
BARC1.01Gm01_52263952, which has the lowest p-value in 1997-
MS. Within the IL-1996 population, there is a group of closely re-
lated individuals that share very high Met levels (Figure 6), and we
were concerned that even after accounting for the effect of popula-
tion structure, this subpopulation was confounding GWA results.
Removing all but one representative from this subpopulation and
rerunning the analysis gave comparable results, although the p-values
were higher for each marker, and BARC1.01Gm20_694345 was
removed because of low MAF (data not shown). Multiple closely

spaced markers on chr-8 associate with Cys, Lys, and Thr, and
these relationships hold across populations (Table 3 and Figure S1).
Likewise, BARC1.01Gm01_52253980 and adjacent markers have pan-
trait, pan-population significance (Table 3 and Figure S1). Thus, there
is clearly genetic overlap between essential amino acid traits, as ex-
pected when compounds are synthesized by shared biochemical path-
ways, and it remains a challenge to understand the molecular details of
this overlap. The identification of high-resolution Met-specific QTL
(Table 3) holds promise for fine-mapping genes responsible for relative
amino acid content.

The effect of maturity date on Met-Cys profiles has been observed
in biparental mapping populations (see Introduction), and we see
a minor effect of maturity group on amino acid composition. In part,
this is due to a weak relationship between maturity group and
population structure, particularly in IL-1996 (Figure 6), and should be
accounted for in both MLMM and CMLM approaches. Results are
comparable when limiting our GWA scans to only those genotypes
within the most abundant maturity group of a given population—IV
for IL-1996 and VI for MS-1997—particularly with regard to markers
that are identified across populations (not shown). Those markers that
are missed when limiting to specific maturity groups are generally
missed because they fall below the specified MAF threshold.

Sucrose and stachyose exhibit low heritability relative to other seed
quality traits (Table 3) as observed in biparental mapping studies

Figure 6 Attributes of populations used in GWA scans for seed quality traits. Genotypes were clustered based on genetic distance. Each
genotype used in the study represents a leaf in the dendrogram at the top of each panel. Country of origin and maturity group (“MG”) are color-
coded. Traits are represented as a heat map, with red being the highest value within a population and green being the lowest. Values in
parentheses indicate the number of lines within a given category. (A) MS-1997 population. (B) IL-1996 population. Note that color-coding can
be different for the same category in different populations.
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(Wang et al. 2014), although estimates can vary dramatically (Kim
et al. 2006). Although large-effect QTL have been identified in such
crosses (Kim et al. 2005), GWA scans were unable to uncover such
QTL (Table 3 and Figure S2). It can be difficult to identify sucrose
QTL across biparental crosses even when the same parent is used
(Kim et al. 2005, 2006). Thus, sugar traits appear to be resistant to
GWA scans, either because large-effect alleles are rare or because
strong genotype-by-environment effects confound results.

Family-based mapping studies of Met and Cys content only
identified two QTL with an additive effect .0.1. Markers for these
QTL were located on chr-13 and chr-18 (Panthee et al. 2006a). We
did not find a significant association between either trait and any
marker on chr-13. Met has a weak association with a SNP on chr-
18, and this overlaps the interval of the previously discovered marker,
Satt564. It is common for family-based studies to have distinct results
from GWA scans. Population-based studies, such as GWA, will miss
rare alleles, whereas these alleles will be enriched, at least theoretically,
to 50% in family-based, bi-parental crosses. Alternatively, many alleles
in a population that influence a trait may be missing in family-based
studies and therefore cannot be identified. Nested-association map-
ping (NAM) populations in soybean will likely address some of these
issues, although these populations will likely have reduced resolution
and allelic diversity relative to GWA scans using large, heterogeneous
panels, such as those described here.

CONCLUSIONS
Modern soybean breeders are presented with a range of crop im-
provement techniques, such as marker-assisted selection (Xu and
Crouch 2008), genomic selection (Heffner et al. 2009), and novel
engineering strategies (Lusser et al. 2012), among others. The genetic
architecture of the trait of interest heavily influences which breeding
strategy will be most effective. Additionally, the more precisely the
physical position of a gene can be determined, the more efficient the
chosen strategy will be. Enabled by high-density marker develop-
ment, GWA scans offer a genetic resolution limited only by the LD
of the worldwide germplasm. In this study, GWA scans have allowed
us to identify soybean seed composition markers with ,1 Mbp
resolution. In addition, we can differentiate those markers whose
effects are shared between distinct germplasm pools. Taking these
characteristics together, these markers should be of great utility
across the diverse range of current breeding programs.
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