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Abstract Radiology and Enterprise Medical Imaging
Extensions (REMIX) is a platform originally designed to both
support the medical imaging-driven clinical and clinical re-
search operational needs of Department of Radiology of The
Ohio State University Wexner Medical Center. REMIX ac-
commodates the storage and handling of Bbig imaging data,^
as needed for large multi-disciplinary cancer-focused pro-
grams. The evolving REMIX platform contains an array of
integrated tools/software packages for the following: (1) serv-
er and storage management; (2) image reconstruction; (3) dig-
ital pathology; (4) de-identification; (5) business intelligence;
(6) texture analysis; and (7) artificial intelligence. These capa-
bilities, along with documentation and guidance, explaining
how to interact with a commercial system (e.g., PACS, EHR,
commercial database) that currently exists in clinical environ-
ments, are to be made freely available.

Keywords Enterprisemedical imaging . Image
reconstruction . Quantitative imaging . Business intelligence .
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Introduction

Within academic medical centers, large sets of data are con-
tinuously processed in clinical workflows. These transactional

data include patient information collected during routine clin-
ical care or clinical research. Such data can be any, or a com-
bination, of the following: (1) structured/categorical data; (2)
semi-structured or unstructured free-text data; or (3) pixel data
from radiologic or visible light-based sources. Depending on
its nature, the collected data can be stored within: (1) hospital
information systems (HIS); (2) radiology information systems
(RIS); (3) picture archival and communication systems
(PACS); (4) Vendor Neutral Archives (VNA); or (5) com-
puters directly attached to imaging systems (e.g., CT scan-
ners). The collected data can be made available for the follow-
ing: (1) real-time access (in most clinical situations); (2) near-
time access (in most operational and administrative instances);
or (3) delayed access (such as for business operations, quality
analysis, research, and education). In most cases, delayed ac-
cess is inherently limited with clinical systems (e.g., HIS,
PACS), which emphasize transactions and facilitate immedi-
ate availability of patient records. While some data are stored
indefinitely for regulatory and legal reasons, most others (es-
pecially image data) are discarded once representative subsets
are extracted. For example, raw image data from a CT exam-
ination are typically discarded once the reconstructions fitting
the clinical indication have been created and stored in PACS.

For the majority of clinical systems, application program
interfaces (APIs) and back-end databases are, in general,
tuned and indexed for real-time access. This is usually done
in order to prevent unnecessary stress on clinical/transactional
system resources from queries for bulk retrievals of any data
type (structured/categorical, free-text, or pixel). Nevertheless,
the need to recall and/or aggregate data from large datasets can
be justified for a variety of important reasons (e.g., Business
Intelligence (BI)). In order to address such growing needs in
our own institution, we introduced hardware/software mod-
ules that have greatly facilitated essential data collection and
processing. This was accomplished by means of a locally
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developed and evolving program referred to as Radiology and
Enterprise Medical Imaging Extensions (REMIX), which was
designed to support the medical imaging-driven clinical and
clinical-research operational needs of The Ohio State
University Wexner Medical Center.

The concept behind REMIX has been to provide a diverse
set of tools which can be mixed and matched in an integrated
service-oriented fashion. The original REMIX modules/
components have been continuously updated based on the
appearance of new applications and technologies, while other
components have been recently introduced in order to provide
distinctly new functionality. While some REMIX components
are founded on open-source platforms and packages, others
are our adaptation of commercially available hardware/
software packages. Our custom code and add-ons made to
the vendor-based software, along with any open-source soft-
ware packages, are being made freely available. This report
outlines how REMIX module/packages were intermixed to
achieve the desired functionalities of our Department of
Radiology, with a focus on quantitative cancer imaging.

Quantitative Cancer Imaging

For many years, clinical imaging with qualitative interpreta-
tion has played a fundamental role in the care of patients with
cancers of the blood or soft tissues, positively influencing
detection/grading, treatment planning, and/or assessment of
therapeutic response on a patient-by-patient basis. From
2000-09, imaging innovation alone is estimated to have re-
duced cancer mortality by 4% [1]. In recent years, increasing
sophistication in earlier and more specific cancer care has
demanded greater precision and reproducibility from imaging
analyses, with growing emphasis on quantitative imaging [2].

Quantitative imaging represents a range of efforts including
the following: (1) standard manual uni-/bi-dimensional mea-
surements of tumor lesion size (e.g., RECIST) on CT or MRI
[3]; (2) multi-dimensional imaging with standard manual
measurements of tumor size: (a) replaced by completely/
semi-automatic volumetric lesion segmentations [4]; (b)
complemented by measures of tumor heterogeneity by addi-
tion of the dimension of regional tissue signal variability [5];
or (c) complemented by measures of tumor vascularity by
addition of the dimension of contrast density/intensity
arterial-phase changes (e.g., Choi criteria) on CT or MRI
[6–8]; and (3) functional imaging with quantitation of tumor
activity based onmetabolic profiling onMR spectroscopy [9],
tumor utilization of injected labeled metabolites (e.g.,
PERSIST) on PET [10], and water molecule composition/
mobility on MRI [11]. New MRI concepts provide the poten-
tial to noninvasively quantify multiple important tissue prop-
erties simultaneously through new approaches (e.g., MR fin-
gerprinting) to data acquisition, post-processing, and

visualization, thus allowing specific characterization of a tar-
get tumor [12].

The term Bradiomics^ refers to the high-throughput extrac-
tion and analysis of large amounts of advanced quantitative
imaging parameters from standard-of-care medical images
[13, 14]; radiomics data are in amineable form that can be used
to build descriptive and predictive models relating image fea-
tures to tumor phenotypes or gene-protein signatures [13, 15].

Current and Past Large-Scale Quantitative Cancer
Imaging Projects

The Quantitative Imaging Network (QIN) supported by the
National Cancer Institute (NCI) is designed to promote
radiomics-related research, along with development of quan-
titative imaging methods and candidate biomarkers for mea-
surement of tumor response in clinical trial settings [16, 17].
The QIN has demonstrated, through its leveraging of The
Cancer Imaging Archive (TCIA) [18], that sharing of standard
clinical images across multiple sites for such pursuits is feasi-
ble. In addition to DICOM standard clinical imaging data,
many TCIA databases provide linked clinical, pathology,
and Bground truth^ data. Nevertheless, the operations of
QIN and TCIA are limited by variability in collections of
clinical, imaging, biomarker, and genetic data, as well as reli-
ance on standard-of-care images across its members.

The OPTIMAMMammography Imaging Database (OMI-
DB) contains more than 140,000 breast imaging studies with
annotations [19]. While a potentially valuable data source for
machine-learning algorithm development for breast imaging,
data access is limited by the fact that researchers must follow
an application process and submissions need to be reviewed
by a steering committee.

There have been earlier attempts in building radiomics
hardware/software infrastructures through efforts such cancer
Biomedical Informatics Grid (CaBIG) [20]. While including
support for collecting images through web-service-based ap-
plications, such as caGrid [21], these efforts were eventually
discontinued due to large-scale software development costs
associated with the project.

Informatics for Integrating Biology and the Bedside (i2b2)
[22] is a system allowing institutions can mine their own data
through normalized data models. However, it currently does
not support processing of imaging datasets.

ORIEN Project

Initial design principles for REMIX (core functionalities) were
guided by our original institutional role in addressing the
image-driven needs of the Oncology Research Information
Exchange Network (ORIEN) [23]. REMIX [24], at its core,
is designed to accommodate the storage and handling of Bbig
imaging data,^ for large multi-disciplinary cancer-focused
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programs, including ORIEN and The Cancer Moonshot pro-
ject [25, 26]. To this end, REMIX was originally constructed
of multiple modules (Fig. 1). In order to provide a more user-
friendly and familiar environment, we utilized vendor-based
and FDA-approved tools, where applicable, for compatibility
with clinical research environments in the future. While initial
developments were designed for solving issues related to
ORIEN, modules were added later to support anticipated fu-
ture needs for BI and artificial intelligence (AI) functionalities,
as we experience growing needs within our own local
operations.

The remainder of this report describes the planning and
design of the evolving REMIX platform to this point in time.

Materials and Methods

As one of the more complex clinical data types, imaging-
related data can take many forms. Currently, the handling of
routine transactional data to support regular clinical and
clinical-research operations of our department of radiology is
reasonably well-defined using current data standards (e.g.,
HL7, DICOM, ICD-10). Consequently, we adhered to these
standards, as much as possible, while building our REMIX
modules in order to provide easier integration (Fig. 2). In some
areas (e.g., digital pathology) where there is both considerable
vendor dependency and variability in application of

nonstandard formats, we tried to follow web standards for
displaying and/or managing content for easier integration.

Once deployed and connected, the communication be-
tween modules can now be handled in multiple ways, such
as the following: (1) web services; (2) RESTful API calls; (3)
SQL queries; (4) DICOM; (5) HL7 messages; and (6) custom
Python scripts. These methods will be described further for
each module as they currently exist; as modules are publically
released, further module-specific documentation will cover
details on installation and usage.

At this time, the REMIX platform includes the following
main components:

Server and Storage Components (BREMIX Server^)

Currently, the REMIX Server runs in a VMware 5.5 [27]
environment on a blade with specifications depicted in
Table 1. Depending on usage levels, the storage functionality
of the REMIX Server can support interactions with storage
area network (SAN) and/or cloud-based storage systems.

Based on this configuration, a typical VM module de-
ployed (e.g., REMIX De-ID described next) can have specifi-
cations such as the following: 4 Virtual CPUs, 8GB RAM,
125GB primary disk, 200GB primary, VMXNET3 network
interface and VMware default video interface. When larger
storage resources are needed, storage from our SAN is
mounted. The REMIX Server is managed by our Division of

Fig. 1 Use of REMIX to address core functionality needs of ORIEN. Collecting/serving and processing data within clinical environments with minimal
impact
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Medical Imaging Informatics (DMMI), Department of
Radiology.

Data De-identification Components of REMIX Server
(BREMIX De-ID^)

Based on a Radiological Society of North America
(RSNA) Clinical Trials Processor (CTP) adaptation [28],
REMIX De-ID enables image datasets to be de-identified
and/or anonymized. It is made available through a custom
web interface, allowing data custodians or honest brokers
(HBs) to process large datasets for clinical research studies.
The main enhancements to the RSNA CTP include the
following: (1) Metadata for each examination is extracted

during processing; while main patient identifiers are saved
into structured table fields, the rest of the metadata is saved
as an XML datatype, allowing any post de-identification
annotations or extracted futures to be tied to the clinical
data; (2) image requester information is tracked to enable
custom de-identification templates to be applied in clinical
trials (a patient may simultaneously participate in multiple
trials); (3) a custom web interface to help system adminis-
trators control batch processes and their data-send destina-
tions; and (4) REMIX De-ID access from desktop compo-
nents (e.g., REMIX Desktop described below), within ap-
plication tabs used during data browsing and downloads to
the local system.

In its current form, unless requested by a specific IRB,
REMIX De-ID’s default functionality is to remove all second-
ary capture images and/or screenshots (such as radiation dose
pages) from the studies.While it is possible to remove burned-
in identifiers based on image coordinates (e.g., patient identi-
fiers on ultrasound images), this is only available as an option
rather than as part of default functionality; this was an institu-
tional decision to reduce the risk of accidental exposure of
protected health information (PHI) following de-identifica-
tion. Even though potential PHI leakage is rare for this pro-
cess, requested image-sets are manually screened afterward
de-identification.

Physician requests imaging
study

Imaging Exam
Reques�ng

Facility

REMIX Desktop

PACS

Reconstructed images are
searchable, and ready for
advanced Image analysis

All study relevant data,
Images are linkable and
mineable

Clinical
Reasearchers
/ Researchers

REMIX receives and de -iden�fies
image data and related metadata

Scanner

Enterprise Data Warehouse

Pa�ents have already been
Consented based on study
involved

Diagnos�c Worksta�on

EMR\HIS\RISEnterprise Viewer

VNA

REMIX Recon REMIX BIREMIX AI

REMIX Server

Clinical\Opera�onal User
Clinical and Opera�onal
uses are uninterrupted

Fig. 2 REMIX as an enterprise level platform/framework to address imaging related needs for research as well as operations. Red lines operational data
flow and Green lines research data flow

Table 1 Current hardware specifications for REMIX Server

Manufacturer\model HP ProLiant BL 465c G7

CPU cores 24 CPUs × 2.399 GHz

Processor type AMD Opteron™ Processor 6234

Processor slots 2

Cores per socket 12

Logical processors 24

Number of NICs 8
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Currently, REMIX De-ID is used as the institutional image
de-identification tool, processing all institutional clinical trial
image datasets. REMIX De-ID currently processes more than
90 K studies per year for researchers and clinicians. When
metadata related to an imaging study needs to be kept for
future referencing or processing (e.g., during some clinical
trials, institutional review board (IRB)-approved research
studies), REMIX De-ID utilizes REMIX-BI databases (de-
scribed below) for metadata mapping and storage. This func-
tionality allows concurrent data de-identification and delivery
with or without non-image data being part of the delivery. In
the cases where data are to be anonymized, all mappings and
links used for data collection are deleted once the data are
delivered in order to eliminate trails.

Research PACSComponents of REMIX Server (BREMIX
PACS^)

There are twoopen-source systems available forREMIXPACS:
(1) a DCM4CHEE-based module (DBM) [29], where limited
long-term storage space is provided to REMIX De-ID on a
first-in-first-out (FIFO) basis; and (2) an Orthanc-based module
(OBM) [30], which also provides FIFO-limited long-term stor-
age with additional functionalities, such as DICOMWeb [31], a
RESTfulAPI, and plugins forwhole-slide imaging (being tested
but not in use in our environment). DBM’s main function is to
provide back-end support for REMIX De-ID, while OBM is
designed to provide programmatic access, with its REST API,
within our environment. OBM can access de-identified datasets
from DBM through DICOM query span [32] functionalities. In
addition,project-based instancesofOBMcanbemadeavailable,
where access to data stored in our VNA is possible. In this case,
visibility of images made available for the given project is con-
trolled by the VNA’s folder-based access control mechanisms.
OBM already supports active directory-based access control to
its instances [32].

Data Management and Business Intelligence Components
(BREMIX BI^)

REMIX BI is one of the most crucial modules and consists of
multiple components. It helps to maintain and index all
structural/categorical free-text data in our environment, in-
cluding most image metadata. REMIX BI has been built as
an extension to our institutional data warehouse; hence, it has
access to data modeled and gathered frommany disparate data
sources originating from the systems of multiple vendors (e.g.,
GE Centricity [33], Epic Radiant [34], Siemens [35], coPath
[36]). The data extracted, transferred, and loaded (ETL) into
REMIX BI has sources that span more than 20 years (some
pathology reports date back in time by 37 years) and originate
from HIS, RIS, and PACS.

Formulation efforts for our current data model date back to
July 2013, during an 18-month effort to convert between RIS
vendors (from GE Centricity [33] to Epic Radiant [34] in
2014), we analyzed queries possible to both vendor systems for
routine reports and data requests. From review of 486 queries
requested in our former environment, as well as queries that
would become available in our future environment after conver-
sion, we identified three types: (1) type 1: simple, quick reports
needed to run onHIS andRIS to facilitate operational workflow
(e.g., BFind all studies that have not been sent to PACS from the
scanners today^); (2) type2: longer-termreportswhicheitherstill
needed to be accessed from clinical interfaces (e.g., weekly pa-
tient schedules, tracking of various order types and events) or
involved patient tracking as part of the clinical workflow (e.g.,
MQSA reports [37]); and (3) type 3: long-term reportswhere the
query dates spanned months or years (e.g., quality or financial
analyses, research-related queries).

Traditional Data Warehouse Component (of REMIX BI)

With the implementation of our new RIS platform in 2014, we
made type1and type2queries available to end-users ofHIS/RIS
as part of the clinical and operational environment. Alongwith a
one-time historical data ETL, we moved all data collected up to
that point into a dimensional data model [38] accommodating
both old and new data. This new dimensional model also facili-
tated the aforementioned three query typeswith a 1-day lag time
(ETL to this dimensionalmodel runs daily, butwith the schedule
modifiable if more or less frequent updates are needed). This
approach also enabled tracking of all events during our RIS ex-
change andpreventedmanymistakes during systemconversion.

This component of the REMIX BI runs on Oracle Business
Intelligence Enterprise Edition (OBIEE) [39], and it is
accessed on a daily basis by radiologists, lead technologists,
and administrators within our healthcare system. For example,
this module can be used by the following: (1) a radiologist in
order to track his/her own productivity (e.g., total wRVUs,
average reporting turn-around times) on a near-real time basis;
(2) a lead technologist in order to track and report on various
quality and safety metrics; or (3) an administrator in order to
track revenue generation. Having the associated data model in
sync with other existing data models (e.g., regarding patients,
medications, procedures, surgeries) at an encounter and/or
order-detail level allows us to also respond to most clinical
research-related queries very quickly. For example, it requires
less than 10 s to identify a cohort such as Ball patients who
were diagnosed with lung cancer, and all their non-contrast
Chest CT’s from a given scanner.^

In-Memory, Data-Discovery Component (of REMIX BI)

While the OBIEE-based traditional data warehouse (TDW)
component addresses most user queries, it relies on daily
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ETL processes. In order to give greater flexibility in terms of
query types and sources, we have also introduced an in-mem-
ory, data-discovery component for queries based on Tableau
software [40]. With this enhancement, users can utilize as data
sources either the TDW or data sources/tables which are not
part of the daily ETL. This allows us to address less-common
ad-hoc queries. In addition, if a given query is servingmultiple
users with similar needs, its sources can be added to ETL of
the TDW (for OBIEE access) as well.

REMIX BI (Fig. 3) allows users to interface with the entire
system using the following: (1) specific modules (e.g.,
REMIX Desktop described next) from clinical connection
points, including the PACS Client and the Electronic Health
Record (EHR) and (2) REMIX Web portal (from within
REMIX Server). In order to provide data security, concurren-
cy, and continuity within and across institutions, the data man-
agement component also provides HIPAA and local IRB-
compliant de-identification services. User- and project-based
access to folders and views available through REMIX BI is
governed by our institutional HB operations committee and
the departmental radiology data governance committee.

Imaging Component (REMIX Desktop)

The REMIX Desktop component (Fig. 4) provides all neces-
sary functionalities for meeting imaging needs, including the
following: (1) image storage (through VNA, network storage,
and/or local storage capabilities); (2) image segmentation and
registration; (3) image viewing; and (4) image processing,
including segmentations, histogram-based analysis, and
texture-based quantitation. The main functionalities of
REMIX Desktop are built upon the MeVisLab programming
environment [41], which allows for custom programs/

packages to be executed from a single interface. As a result,
various custom modules developed as part of REMIX
Desktop now include tools for measuring and evaluating lung
cancer [42] and interstitial lung diseases [43].

All image-analysis results can be saved into spreadsheets
and/or databases for future statistical comparisons or data min-
ing within REMIX BI; such saving to spreadsheets and com-
municating with commercial databases are functionalities
written as custom packages in Python language [44, 45].
Custom SQL queries and database connection capabilities
are configuration points within these custom packages.
These functionalities enable quantitative image analysis to
be linked with patient digital pathology data or genomic data
for radiomics- or radiogenomics-based comparisons.

REMIX Desktop also provides a connectivity tab (web
interface accessible in an image-browser tab) to REMIX BI
and/or REMIX Pathology (described next). Using REMIXBI,
databases can be searched for patient cohorts and imaging
studies which can be imported for local analysis on REMIX
Desktop. Any data de-identification needed at this stage for a
research study is provided by REMIX De-ID (web interface
accessible in an image browser tab).

Digital Pathology Component (REMIX Pathology)

REMIX Pathology is a web-based interface allowing digital
pathology images for a given patient to be browsed and
displayed that is based on OpenSlide [46]. REMIX
Pathology can be used as a stand-alone viewer and/or can be
called from modules, such as REMIX Desktop, for viewing
relevant pathology whole slides. For example, if users were to
investigate an image set for a case of adenocarcinoma of the
lung, available digital pathology slides from the biopsy can be

Fig. 3 REMIX Business Intelligence (REMIX BI) enables searches on institutional data warehouses as well as custom databases
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viewed concurrently utilizing REMIX Pathology. In its cur-
rent form, REMIX Pathology (Fig. 5) only serves as a whole-
slide viewing component; image processing on digital pathol-
ogy slides has not yet been included as a functionality of the
REMIX platform.

Image Reconstruction Component (REMIX Recon)

REMIX Recon enables raw image files from the scanners to
be reconstructed using varying specifications (Fig. 6). In its
current form, REMIX Recon is based on Siemens Recon CT
software packages (version 13.8.5.0; Siemens Healthcare,
Forchheim, Germany, made available only to our
Department of Radiology through a master research agree-
ment with Siemens Healthcare). Images can be produced
using the following: (1) different reconstruction algorithms
(e.g., filtered-back projection [47] vs. iterative reconstruction
methods [48, 49]); (2) various slice-thicknesses; and/or (3)
dose-reduction simulations [50–52]. Manipulations can then
be performed to identify optimal reconstruction schemes for a
given task; this can be a computer-aided diagnosis or AI pro-
cess. REMIX Desktop can be utilized to assess the influence
of these modifications on shape (segmentation), color (gray
level), and/or texture.

This module currently processes only CT images; however,
source scanners can directly save raw image data into this
module’s shared storage. Different reconstructions can be cre-
ated in batch mode utilizing our custom Python packages, and
the resulting reconstructions can be fetched directly into other
REMIX Desktop and REMIX AI environments using direct
file copies. Developed extensions to the standard RECON CT
software include control components (enabling batch modes
of the software to be managed, configured, and executed) and
other file management properties (enabling interoperability
between REMIX Recon and other modules).

Artificial Intelligence Component (REMIX AI)

REMIX AI enables various machine-learning/deep-learning
algorithms [53–55] to be executed on image datasets (Fig.
7). Datasets collected and/or generated through REMIX BI,
REMIX Desktop, and/or REMIX Recon can be saved into
shared drives; these 2D or 3D image datasets can serve as
training cases, test cases, and/or data augmentation cases with-
in REMIX AI. Input/output parameters can be manipulated
through a web interface, and the results/progress can be
tracked in real-time. The trained neural networks are deliver-
able to other systems (with similar neural network settings),
while maintaining reproducibility [56].

Fig. 4 REMIX Desktop for quantitative imaging allows image processing algorithms to be tested and executed on various image types
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Unlikemostof the earlier componentswhichcanbedeployed
asvirtualmachines,REMIXAIisadedicatedhardware/software
solution that is built as an NVIDIADigits reference system run-
ningonLinuxUbuntu 14.04.Table 2 shows specifications of the
dedicated-machine learning system.

While AI algorithms, such as GoogLeNet [57] or
convolutional neural network frameworks running on Caffe
[58], are already available as part of NVIDIA Digits distribu-
tions, REMIX AI includes additional libraries, such as
PyDICOM [59], NumPy [60], or custom libraries developed
for REMIX integration. These Python-based software librar-
ies are for converting inputs from DICOM images to other
formats, such as JPEG for color images and/or numerical ar-
rays to be executed on back-end environments like Caffe or
Torch [61]. Currently, within NVIDIA Digits-based plat-
forms, image data first needs to be placed into folders for
subsequent referencing by respective AI algorithms.
Currently, we have three ways for users to load images into
REMIX AI by utilizing the following: (1) REMIX AI web
interface, allowing users to upload their data into the system;
(2) REMIX Desktop, permitting users to directly save their

image data into shared disk drives of REMIX AI; or (3)
Python-based client libraries, so that users can make
RESTful API [62] calls to REMIX PACS.

Results

The REMIX platform has already had a direct positive impact
on streamlining our departmental operations. In this section,
we provide some examples of initial use cases along with
system performance measurements, where applicable.

Example 1

This multi-step example shows how the REMIX platform can
be utilized for image texture analysis of a case of adenocarci-
noma of the lung, as a test of both reproducibility (relative to
an earlier study [38]) and improved functionality with this
newly developed platform. In the earlier study, lung nodules
from 62 non-contrast CT studies were analyzed with
Haralick’s textures, and promising results regarding the

Fig. 6 REMIX Recon enables multiple alternative reconstructions to be generated in batch mode

Fig. 5 REMIX Desktop for texture analysis and digital pathology
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relationship between texture and malignancy type were re-
ported [38]. Using REMIX capabilities, our aim was to repeat
the previousmanual processes and to complement themwith a
more comprehensive analysis in terms of additional texture
algorithms accompanied by additional quantitative image
reconstructions.

Step 1: For formulating a cohort utilizing REMIX BI,
three queries were applied to form an inner-join dataset
(Fig. 3): Query (1) Search for detection of all patients
with diagnosis of adenocarcinoma of the lung based on

ICD9 and ICD10 diagnosis codes was performed in 2.7 s;
Query (2) search for biopsy confirmation of adenocarci-
noma from the pathology reports (with free-text searches)
was performed in 3.8 s; accompanied with EGFR gene
mutation data (Exon 19, 21 mutations, and Wild-Type
data); Query (3) search for non-contrast chest CTs prior
to biopsy was performed in 2.6 s.
Step 2: Transfer accession numbers from REMIX BI
module to the REMIX De-ID module to facilitate the
bulk download, de-identification, and saving of DICOM
images to their corresponding destination folders. A total
of 66 non-contrast CT image sets, along with associated
markers (25 Exon 21, 21 Exon 19, and 20 Wild Type),
were identified by step 1. REMIX De-ID was monitored
by our DMMI personnel; the download and verification/
QA processes required 2 h.
Step 3: Utilizing REMIX Desktop (installed on desktop
system with Intel Xeon E3-1270 v5@ 3.60GHz, 4 Cores
CPU, 32GB system memory, and NVIDIA Quadro
K1200 GPU with 4GB graphics memory), DICOM im-
ages were processed (Fig. 4). This is an interactive step,
where users can browse through volumes. Once a nodule
is selected, users can determine the bounding box (region
of interest (ROI) size to be included during analysis); for
correspondence with the earlier work [38], a 5-cm
bounding box was selected. With the earlier work indi-
cating that image futures surrounding the nodule can be
utilized during the classification of tumors, REMIX
Desktop provided assessments on the following ROI sub-
sections (ROIS): (1) solid components of tumors; (2)
nodule and surrounding tissue; (3) surrounding tissue
alone; (4) all other tissue within the ROI; and (5) entire
ROI, including the nodule and its surroundings. Once
selections were made by the end-user, statistics from the
different components of the ROI (Fig. 8) were saved into
a database or a MS Excel spreadsheet for further analysis.
Once trained on the software, it took a radiologist on
average 8–20 s to locate the nodule in volume, execute
texture analysis within the ROI, and save the results.
Step 4: Utilizing REMIX Pathology, digital whole slides
can be displayed from/within REMIX Desktop (Fig. 5).
This is a manual step, where pathology slides from the
nodules need to be pre-uploaded to the respective folders.

Fig. 7 REMIX AI enables multiple deep-leaning algorithms to be exe-
cuted on image-data collections

Table 2 REMIX AI hardware specifications

Processor 1 × Intel Core i7-5930 K Processor (15 M Cache, 3.50 GHz)

Memory 64GB DDR4

GPUs 4 × NVIDIA GeForce GTX Titan X GPUs (7 Teraflops of single precision, 336.5GB/s of memory
bandwidth, 12GB memory per GPU)

Operating system (OS) Ubuntu 14.04

Storage 2 × 256GB SSD disk for OS and software libraries and 3x3TB standard disk on RAID 5 for data storage
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At this stage, REMIX Pathology is utilized only for view-
ing purposes.

Validating Results and Beyond

After running this dataset and extracting the statistics on tex-
tural analysis, the new results were compared with those from
our earlier work with the same dataset [38]. The results were
in concordance when comparisons were made metric-by-
metric (Haralick’s texture scores of angular second moment,
contrast, inverse difference moment, correlation and entropy)
[63]. Correlations among the genotypes of nodules and the
textures were also demonstrated. For example, Haralick’s con-
trast was able to differentiate both exon 19 (p = 0.00028) and
exon 21 (p = 0.00001) from the wild type, or inverse differ-
ence moment differentiated Exon 19 mutants from Exon 21
mutants (p = 0.018).

Utilizing all available metrics within REMIX Desktop with
utilization of ROIS (Fig. 8) also enhances our results. For
example, applying a Sequential Minimal Optimization [64]
classifier (since many more metrics are evaluated), separation
of Exon 19 and Exon 21 mutations with 90% (89.5–90.5%,
respectively) average accuracy was achieved.

Step 5: Initial sample sets from the earlier studies were
gathered from retrospective data searches and were saved
in PACS as 5-mm thick CT images. These results raised
the issue of whether thinner slices and/or better control of
scanning/reconstruction would improve the accuracy. As
mentioned previously, because raw scan files are routine-
ly discarded after a short period of time, a query was
formulated using REMIX BI to find all lung cancer pa-
tients who were scheduled for non-contrast CTscans on a
subset of scanners in our system, where the scanners were
already connected with REMIX Recon. On these scan-
ners after a scan is performed, the technologist can direct-
ly save a copy of the raw files to REMIX Recon in less
than 10 s, without interruption of the daily workflow.
Step 6: This step is demonstrated on a single case to
illustrate how additional reconstructions can be obtained.
Utilizing both REMIX Recon and REMIX Desktop, a
raw image-file from a non-contrast Chest CTexamination
demonstrating a lung nodule (Fig. 7) was downloaded in
order to assess the impact of varying reconstruction spec-
ifications on the produced images. Multiple (N = 128)
reconstruction versions of each basic image represented
permutations in (1) reconstruction algorithm/kernel (fil-
tered back projection/B31, B40, B50, B70; iterative re-
construction/I31, I40, I50, and I70) (N = 8); (2) recon-
structed thickness (1, 2, 4, and 8 mm) (N = 4); and (3)
noise level simulating different dose intensity (original
scan dose at 100, 50, 25, and 12.5%) (N = 4).

Using REMIX Desktop, each version of image reconstruc-
tion delineated by a ROI surrounding the lung nodule was
subjected to the same analysis. For each ROI, the variation
(e.g., mean, median, maximum, standard deviation) in 31 dif-
ferent texture metrics (e.g., GLCM [63], contrast [65]) were
monitored. Ultimately, 211 statistical values for five different
areas within the ROI (e.g., solid component of nodule, peri-
nodule surrounding tissues) were measured; a total of 1055
(i.e., 211 × 5) measurements per reconstruction version were
then recorded into both REMIX BI and Excel spreadsheets.
This process required approximately 1 min per reconstruction;
for this example, the entire duration was 128 min.

Early reports of 27 cases with analysis on image recon-
structions using REMIXRecon as described in Step 6 indicate
potential for significant change in size, gray level, and texture
due to differences in reconstruction techniques that could be
chosen clinically. Figure 9 shows an example of the effects of
varying reconstruction specifications on a given texture met-
ric. Once fully evaluated and verified by a larger number of
cases, these results will be separately reported in greater detail.

Example 2

Utilizing multiple modules, Fig. 10 depicts the utilization of
the REMIX platform for AI algorithm training and validation.
In this example, we have simulated the steps needed to iden-
tify the cohort, collect the appropriate images, and process the
dataset for classification of non-contrast head CTs in Bcritical^
versus Bnoncritical^ cases. The results shown here are in con-
trast to a previously performed manual approach that took
several days to be completed, demonstrating the advantage
of the integrated REMIX environment. The scientific discus-
sions on the example used here for verification purposes are
reported elsewhere [66].

�Fig. 8 Once an ROI is selected, areas surrounding the nodule can be
further sub-segmented: (I) original image; (II) image after normalization
by histogram equalization; (III) ROI selected; (IV) image subsections.
Then for each section, various texture features can be calculated. For
this example, we are showing results on the following: original (1); sim-
ple average (2); simple contrast (3); simple deviation (4); skewness (5);
kurtosis (6); co-occurrence matrix (CCM)-based Homogeneity (7);
CCM-based contrast (8); CCM-based correlation (9); CCM-based vari-
ance (10); CCM-based inverse difference moment (11); CCM-based sum
average (12); CCM-based sum entropy (13); CCM-based sum variance
(14); CCM-based entropy (15); CCM-based difference variance (16);
CCM-based difference entropy (17); CCM-based measures of correlation
1 (18); CCM-based measures of correlation 2 (19); run-length matrices
(RLM)-based short runs emphasis (20); RLM-based long-run emphasis
(21); RLM-based gray level non-uniformity (22); RLM-based run-length
non-uniformity (23); RLM-based run percentage (24); neighboring gray-
level dependence matrix (NGLDM)-based small number emphasis (25);
NGLDM-based large number emphasis (26); NGLDM-based secondmo-
ment (27); neighborhood gray tone difference matrix (NGTDM)-based
coarseness (28); NGTDM-based complexity (29); NGTDM-based tex-
ture strength (30)
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Step 1: In order to collect the necessary datasets, several
queries were executed in REMIX BI to identify the ac-
cession numbers for images to be downloaded and de-
identified: Query 1: Find all Bnon-contrast head CT
exams^ where patients have been associated with
Bcritical findings^ (e.g., hemorrhage, mass effect, and
hydrocephalus) for a given month; Query 2: Find all
Bnon-contrast Head CTexams^ where patients have been
associated with BStroke^. During these initial data dis-
covery steps, we utilized OBIEE interfaces of REMIX

BI, with each query returning results under 12 s (Query
1: 11 s and Query 2: 8 s).
Step 2: Accession numbers were transferred from the
REMIX BI module to the REMIX De-ID module to fa-
cilitate the bulk download, de-identification, and saving
of DICOM images to their respective destination folders
(other options included sending to a DICOM AE Title or
burning to a DVD); a total of 2583 images were proc-
essed for Query 1 and 646 images for Query 2. During
this stage, REMIX De-ID was monitored by our DMMI

Fig. 9 Heat map shows potential effects of varying reconstruction
specifications on texture analysis. Changes in a gray-level co-occurrence
metric, angular second moment, is given as an example for an ROI

containing a lung nodule. The normalized color scale depicts no change
in a given metric values as dark blue (0), while the maximum change is
shown in dark red (1)
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personnel; the download and verification/QA processes
took a total of 19 h.
Step 3: Utilizing REMIX Desktop, DICOM images were
converted into color JPEG images using color lookup
tables for each respective window and level. During col-
oring of images originating from Query 1, a BBrain
Window^ setting was utilized, while coloring images
from Query 2 utilized a BStroke Window’ setting. The
results were written into shared folders where they could
be accessed by the REMIX AI module. The entire pro-
cess took 243 min.
Step 4: In this final step, images were converted using
REMIX AI to 256 × 256 matrices and processed with
GoogLeNet [57] as the convolutional network running on
Caffe [58]. A total of 60 training epochs were used (solver
typewasNesterov’s accelerated gradient). The total process-
ing time for model creation with the first dataset (from
Query 1, with 2583 images) was 6 min and 19 s, with all
fourGPUs utilized; formodel creation for the second dataset
(fromQuery 2, with 646 images), total processing took 97 s.
Once image classificationmodels were created, batch image
classifications were completed at a rate of approximately 25
images per second.

REMIX, Pre-REMIX Time Savings

Savings on Searches

With a BI-based search model, in which underlying table joins
are already verified and optimized, search times for cohorts
decrease from units of days or weeks to seconds. For the
original study relating to example 1 [38], it required institu-
tional data warehouse programmers several days to construct
SQL queries (processed as research data requests) to identify

the patient cohorts. While the actual developer workload was
under 8 h (one work day), the validation steps prolonged the
query finalization to 3 weeks. However, during the other orig-
inal study related to example 2 [66], REMIX BI was already
operational, saving several weeks for query construction and
data searches.

Savings on Image Downloads

For both the original studies related to example 1 and example
2, the manual downloading of images required several days.
While the RSNACTP [24] (providing the underlying DICOM
functionality for REMIX ID) does not provide any additional
efficiencies for image downloading (using DICOM C-Query,
DICOM C-Move), REMIX De-ID required only confirming
that downloads completed rather than the manual initiation
and completion of downloading.

Savings on Image Reconstructions

As mentioned in example 1, it required approximately
1 min for each reconstruction to be performed. While a
single additional custom reconstruction may not take much
of a technologist’s time, reconstructing 128 or 256 recon-
structions would consume more than 128 to 256 min of
personnel and scanner software time. Hence, rather than
spending 128 to 256 min per imaging study, a technolo-
gist can forward a copy of raw data in less than a minute
to REMIX Recon, saving valuable resources, since
REMIX Recon can run in batch mode on its separate
software/hardware resource.

Savings on Research

Both original research studies related to the aforementioned
validation examples relied of retrospective data searches.

REMIX BI

REMIX De-ID
REMIX AI

VNA

Detected

REMIX Desktop

Fig. 10 An example AI algorithm deployment strategy within REMIX environment
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While example 1 extends several years back in time, example
2 uses 1 month of data (in two separate queries); in both
examples, datasets are identified within seconds. It would
have taken months and years to collect such data manually if
the research studies were carried out prospectively.

In addition, prospective parts of research initiated follow-
ing example 1, where we look for lung nodules to reconstruct,
are also accelerated by looking into patients’ schedules for
upcoming chest CT examinations where the patients were al-
ready diagnosed with lung cancer. Hence, the search for po-
tential nodules to reconstruct is shortened.

Discussion

Content-based data mining is of growing interest due to the lim-
itless possibilities to exploit alreadyacquireddigital information,
such as imaging data, for cancer care. Generation of a common
multi-institutional shared imaging (reconstructed and raw)-data
repository could support content-basedmining for multiple pur-
poses, including the following: (1) promotion of the concept of
non-invasive Bimaging biopsy^ alternatives to invasive tissue
sampling based on detection of specific advanced quantifiable
image features (from accumulated knowledge and computer-
aided diagnosis/AI) of each histologically and genetically pro-
filed tumor type; (2) design of more focused, shorter-duration,
and cost-effective prospective studies relying on fully-
characterized already available imaging data; and (3) develop-
ment and testing of new concepts in image reconstruction and
quantitative analysis drawing on either reconstructed or raw im-
aging data. The REMIX platform described in this report sup-
ports these needs in an integrated fashion.

Despite the robust technical capabilities of the REMIX
platform, there are many data and information security
aspects, as well as HIPAA and local IRB regulations,
which would need to be considered by an adopting insti-
tution. To that end, the following have been locally imple-
mented: (1) institutional HB system exploited by most
REMIX components; (2) data-use agreements signed by
investigators to ensure adherence with HIPAA and IRB
rules supporting PHI security; and (3) trained personnel
to continuously monitor and support quality assurance of
systems and their outputs.

For organizations seeking to mine their own data, REMIX
providesmanysupportmechanisms thatarenotcurrentlyoffered
by other tools. In addition, it does not impose any specific tech-
nology or infrastructure needs such as grid/web services (e.g.,
caGrid) [20, 21] and allows a modular, standards-based (e.g.,
DICOM,RESTful services, etc.) deployment.While online data
sources such as TCIA [18] and OMI-DB [19] can serve as very
valuable, well-curated public data sources, institutions can have
access to much larger sets of clinical data if they mine their own
data. For example, within our intuition, current annual exam

volume is around 600,000 studies, and REMIX BI can search
data going back 14 years. This means that a query going back
3 years can already produce a dataset (152,000 mammography
studies) comparable to OMI-DB.

There are challenges associated with building large online
image databases and/or pulling data from them including the
following: (1) The amount of storage needed if all images are
to be stored online, and (2) high network traffic, which would
potentially be costly. Based on our local cost estimations (for
the State of Ohio), this would be a minimum of four to five
million dollars of initial setup cost followed by one to 1.5
million dollars per year to host and maintain such datasets.
This is based on estimated service for three to four large health
systems in the state (estimations were based on two petabyte
initial load with half a petabyte increase per year). Unless this
was the actual clinical/operational environment (not just for
research), it would be hard to justify such expense. This leaves
the option to extract such datasets as requested from the clin-
ical systems as efficiently as possible with minimal or no
impact on daily clinical operations. As mentioned previously,
clinical systems are usually transactional systems; hence, it is
crucial to first identify data to be pulled from them and later to
pull the data as efficiently as possible (e.g., clinical systems
are organized by accession numbers, where REMIX BI can be
organized by any order desired).

While the foundation of REMIX is largely open-source in
origin, customization has been needed to improve functional-
ity; such enhancements will be made freely available although
cannot be distributed along with software packages being sold
commercially by a third party. Thus, end-users would need to
acquire certain tools (e.g., Tableau, OBIEE) due to the ab-
sence of pre-existing special partnerships between our group
and such vendors. The advantages of working with commer-
cially available vendor-based tools are that as follows: (1) In
general, they are well documented; (2) being commercially
available, it is less likely that they will be discontinued; (3)
support contracts are usually available; and (4) many are al-
ready purchased and are available within medical intuitions.

Conclusion

We believe that the integrated capabilities developed as part of
the REMIX platform will assist many clinicians, researchers,
and administrators in optimizing fundamental imaging-related
operations. While online sources for radiological data are
available for research, for many institutions, datasets that are
much larger exist within their own medical records. Whether
data are extracted for institutional uses (e.g., quality assess-
ment, education, or research), or whether datasets are to be
extracted for multi-institutional or national projects, robust
and flexible data management capabilities are essential.
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