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Magnetic resonance imaging (MRI) is a key technology in multimodal animal studies
of brain connectivity and disease pathology. In vivo MRI provides non-invasive, whole
brain macroscopic images containing structural and functional information, thereby
complementing invasive in vivo high-resolution microscopy and ex vivo molecular
techniques. Brain mapping, the correlation of corresponding regions between multiple
brains in a standard brain atlas system, is widely used in human MRI. For small
animal MRI, however, there is no scientific consensus on pre-processing strategies
and atlas-based neuroinformatics. Thus, it remains difficult to compare and validate
results from different pre-clinical studies which were processed using custom-made
code or individual adjustments of clinical MRI software and without a standard brain
reference atlas. Here, we describe AIDAmri, a novel Atlas-based Imaging Data Analysis
pipeline to process structural and functional mouse brain data including anatomical
MRI, fiber tracking using diffusion tensor imaging (DTI) and functional connectivity
analysis using resting-state functional MRI (rs-fMRI). The AIDAmri pipeline includes
automated pre-processing steps, such as raw data conversion, skull-stripping and
bias-field correction as well as image registration with the Allen Mouse Brain Reference
Atlas (ARA). Following a modular structure developed in Python scripting language,
the pipeline integrates established and newly developed algorithms. Each processing
step was optimized for efficient data processing requiring minimal user-input and user
programming skills. The raw data is analyzed and results transferred to the ARA
coordinate system in order to allow an efficient and highly-accurate region-based
analysis. AIDAmri is intended to fill the gap of a missing open-access and cross-platform
toolbox for the most relevant mouse brain MRI sequences thereby facilitating data
processing in large cohorts and multi-center studies.

Keywords: processing pipeline, MRI, atlas registration, stroke, preclinical neuroimaging

Frontiers in Neuroinformatics | www.frontiersin.org 1 June 2019 | Volume 13 | Article 42

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2019.00042
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2019.00042&domain=pdf&date_stamp=2019-06-04
https://creativecommons.org/licenses/by/4.0/
mailto:markus.aswendt@uk-koeln.de
https://doi.org/10.3389/fninf.2019.00042
https://www.frontiersin.org/articles/10.3389/fninf.2019.00042/full
https://loop.frontiersin.org/people/725704/overview
https://loop.frontiersin.org/people/663178/overview
https://loop.frontiersin.org/people/3129/overview
https://loop.frontiersin.org/people/1701/overview
https://loop.frontiersin.org/people/660505/overview
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Pallast et al. AIDAmri

INTRODUCTION

Understanding brain function in health and disease at different
hierarchical levels requires collaborative interdisciplinary efforts
using multiple experimental methods. Neuroimaging, especially
magnetic resonance imaging (MRI), is a critical element of
that approach since the use of MRI preserves the anatomical
morphology of the brain tissue almost perfectly. Conscious of
the high data integrity, large-scale human MRI initiatives are
currently underway to provide standardized sharing repositories
(Hodge et al., 2016; Gorgolewski et al., 2017) and processing
tools (Rex et al., 2003; Jenkinson et al., 2012). In order to be
able to compare information derived from different studies,
images are spatially normalized to a common coordinate system
such as the brain atlas with defined coordinates and assigned
structures from Talairach and Tournoux (Fang et al., 1995) or
the Montreal Neurological Institute/International Consortium
of Brain Mapping (MNI/ICBM; Mazziotta et al., 1995). In
order to achieve similar routine atlas-based neuroinformatics
of mouse brain MRI, several challenges need to be overcome:
(1) the image signal-to-noise ratio (SNR) is dramatically
reduced due to image voxels in mice which are 10–15-fold
smaller in all dimensions (Nieman et al., 2005); (2) scanner
hardware consisting of gradients, coils as well as the animal
fixation and anesthesia need to be miniaturized and adapted
to the mouse body and physiology (Driehuys et al., 2008);
(3) humanMRI processing tools usually do not work with mouse
brain data due to the striking differences in voxel size; and
(4) a common 3D MRI-compatible brain atlas with a detailed
segmentation is needed to facilitate atlas-based neuroinformatics
at different scales. Recent developments in scanner hardware,
e.g., ultra-high-field MRI scanner (>7T) and dedicated ultra-
sensitive coils, enabled in vivo mouse brain MRI with structural
anatomical details at 100 µm in-plane resolution as well as
brain-wide network analysis at the functional and structural level
(Hoehn and Aswendt, 2013). However, there is currently no
standardization or consensus on MRI acquisition, processing,
and atlas-based neuroinformatics. Although several mouse brain
atlases have been developed and applied (Hess et al., 2018),
not all of them are continuously updated and maintained to
be accessible online. The most detailed 3D mouse brain atlas,
the Allen Brain Reference Atlas (ARA), provides more than
1,000 brain structures (Lein et al., 2007; Dong, 2008). However,
the ARA was generated from two-photon microscopy images
with a very low image correlation to MRI (e.g., ventricles appear
black and not white as in T2-weighted MRI). Most labs rely
on custom-made code or adapt their data to the processing
requirements of human imaging toolboxes (van Meer et al.,
2010; Hübner et al., 2017; Green et al., 2018), often with
lack of validation. Existing software pipelines (Supplementary
Table S1) require commercial software, use different MRI atlases
or do not incorporate algorithms for both, structural and
functional MRI (Budin et al., 2013; Koch et al., 2019). The
associated lack of reproducibility and comparability represents
a key drawback for reliable multi-center and translational
animal studies. Therefore, we developed a novel the Atlas-based
Imaging Data Analysis Pipeline, AIDAmri, for structural and

functional MRI of the mouse brain using the ARA coordinate
system. AIDAmri provides an automated, efficient and highly
accurate region-based analysis of multi-parametric MRI, such as
anatomical T2-weighted MRI, diffusion tensor imaging (DTI)
and resting-state functional MRI (rs-fMRI). The modular and
open-source concept was developed in Python 3.6 for cross-
platform use. That allows the critical comparison of different
imaging methods and studies. Each processing step of the
pipeline was validated with qualitative and quantitative measures
on mouse brain MRI data acquired at 7.0, 9.4 and 11.7T
using different mouse strains and experimental stroke models.
Stroke was chosen as an example, as lesions result in dynamic
brain deformations due to tissue swelling and atrophy, which
presents a major challenge for all automated processing and atlas
registration algorithms.

MATERIALS AND METHODS

Pipeline Overview
The AIDAmri pipeline enables the processing and analysis of
both structural and functional mouse brainMRI through distinct
modules which can also be used separately. In the following, we
provide a detailed explanation of the processing steps (Figure 1).
The software pipeline is freely available on Github1. For a
detailed how-to and installation instructions see the manual
(Supplementary Material, Manual). The AIDAmri interface
(GUI) is available for executing the main functions.

A reference adult mouse T2-weighted (T2-w), DTI
and rs-fMRI data set acquired at 9.4T is available for
testing purposes2. Image processing is performed in the
Allen Mouse Common Coordinate Framework (CCF v3)
using the Allen Mouse Brain Reference Atlas, ARA3.
It is possible to use manually drawn regions-of-interest
(ROIs) or other brain atlases as well. Here, the ARA was
implemented as it is the most advanced brain atlas to-date
(Supplementary Figure S1 and Supplementary Table S2).
To describe the following complex morphological operators
(e.g., the image registration), we chose the commonly used
mathematical model to describe the image with the given
image function I(x) where x describes all voxel positions
with x = {

−→x ,−→y ,−→z }. Based on that model, the given
functions transfer voxels of one subset X into another subset
Y with f (x) = {x ∈ X | f (x) ∈ Y} in the three-dimensional
image space.

We have included algorithms for the most widely used and
most relevant MRI sequences assessing structural and functional
connectivity changes using MRI which are not available in other
pipelines (see Supplementary Table S1, for a selection of other
mouse brain imaging pipelines):

(1) T2-weighted MRI (acquired with Turbo spin echo (TSE) or
Rapid Acquisition with Refocused Echoes (RARE) sequences)
for high-contrast and high spatial resolution imaging of brain

1https://github.com/maswendt/AIDAmri
2https://doi.org/10.12751/g-node.70e11f
3http://mouse.brain-map.org/static/atlas

Frontiers in Neuroinformatics | www.frontiersin.org 2 June 2019 | Volume 13 | Article 42

https://github.com/maswendt/AIDAmri
https://doi.org/10.12751/g-node.70e11f
http://mouse.brain-map.org/static/atlas
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Pallast et al. AIDAmri

FIGURE 1 | Schematic overview of AIDAmri processing modules and subsequent computational steps for anatomical data (T2-weighted and T2 map), structural
(diffusion tensor imaging, DTI) and functional data (resting-state functional magnetic resonance imaging, rs-fMRI). The given image function I(x) represents the 3D
MRI image space and describes all intensities at the position x = {−→x ,−→y ,−→z }. All data types are pre-processed using a re-orientation f re(x), bias correction fbc(x) and
brain extraction fex(x). The user has the opportunity to define individual regions of interest (ROIs), e.g., a lesion mask, to compare particular areas over different
measurements by generating an incidence map. The combined transformation f of the affine fA and non-linear transformation fNL is applied to MRI template MTPL
IT(x) and subsequently the ARA IA(x) with the pre-processed data set IT2(x). DTI IDTI (x) and rs-fMRI IfMRI(x) processing steps were implemented based on established
protocols (Budde and Song, 2010; Kim et al., 2012; Gorges et al., 2017). AIDAmri generates a variety of outputs such as the connectivity matrices which can be
used for further atlas-based connectivity analysis. Icons designed by Smashicons from www.flaticon.com.

anatomy and pathophysiology (e.g., hyperintense signal for
segmentation of stroke lesions),

(2) Quantitative T2-mapping (measured for example by
multi slice multi echo, MSME, sequences), e.g., for
longitudinal monitoring of contrast agent accumulation
or lesion development,

(3) DTI, which maps the diffusion process of the water
molecules in biological tissues (acquired with diffusion-
sensitized sequences such as echoplanar imaging, EPI, along at
least 6 directions). DTI is used to derive quantitative measures

such as Fractional Anisotropy (FA), Mean Diffusivity (MD),
Radial Diffusivity (RD), and Axial Diffusivity (AD). These
measures relate to biological differences and are used
for clinical diagnosis (Bihan et al., 2001). Furthermore,
MRI-based tractography using DTI, provides non-destructive,
3D, brain-wide connectivity maps, which are used in animal
and human studies too (Budde and Song, 2010),

(4) Resting state functional MRI (rs-fMRI), which provides
functional data on temporal correlation of spontaneous blood-
oxygenation level-dependent (BOLD) changes at rest that
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reflect regional interactions between two particular brain
regions in task-negative state. Functional connectivity derived
from rs-fMRI is used in preclinical and clinical studies
(Grefkes and Fink, 2014; Gorges et al., 2017).

MRI Data Acquisition
The MRI data was acquired at the Max Planck Institute for
Metabolism Research, Cologne, using a 94/20USR BioSpec
Bruker system (Bruker, BioSpin, Ettlingen, Germany)
equipped with a cryo-coil and operated with ParaVision
(v6.0.1). The mice were anesthetized initially with Isoflurane
(2%–3% in 70/30 N2/O2) and head-fixed in an animal
carrier using tooth and ear bars. Fixation and anesthesia
are necessary to minimize movement artifacts. Respiration,
and body temperature were noninvasively monitored using an
MR-compatible monitoring system (Small Animal Instruments
Inc., New York, NY, USA) and displayed and recorded using
a custom-made data acquisition system based on DASYLab
(measX, Mönchengladbach, Germany). To maintain body
temperature at 37◦C, a feedback-controlled water circulation
system (medres, Cologne, Germany) was used. T2-weighted,
rs-fMRI and DTI scans (Table 1) were sequentially acquired
using n = 22 C57BL6/J mice which received photothrombotic
stroke in contrast to sham surgery as described previously (Toda
et al., 2014). The animal experimental data were collected and
managed using a custom-made and cloud-based relational
animal database4 described in detail elsewhere (Pallast et al.,
2018). Also, NT = 40 test data sets linked to previously published
(Aswendt et al., 2012; Green et al., 2018) or unpublished
(provided by Mathias Hoehn) projects. The data sets were
acquired at different field strengths and with animals of
different strains.

The pipeline AIDAmri processes DTI and rs-fMRI data
independently, but it is necessary to acquire an anatomical
reference image in the same measurement, such as a
T2-weighted image.

Step 1–Data Conversion and Signal-to-Noise
Calculation
In the first step, Bruker raw data are converted to the commonly
used format of the Neuroimaging Informatics Technology
Initiative (NIfTI; Cox et al., 2004). Other imaging formats,
such as DICOM, need to be converted including all header
information (e.g., using the software MRIcron5 or the Python
package dicom2nifti6). The AIDAmri converter algorithm
automatically detects the type of performed measurement and
applies conversion in the correct order by reading the respective
image header. According to that information, the converted
NIfTI-files are sorted in related folders. The anatomical dataset
is used to calculate the nonlinear registration which is later
applied to the structural and functional data. AIDAmri not
only transforms T2-weighted images from the raw data but

4https://github.com/maswendt/AIDAdb
5https://www.nitrc.org/projects/mricron
6https://pypi.org/project/dicom2nifti/

also calculates the exponential decay over the echo time from
multi-echo sequences to calculate quantitative T2 maps.

Automated quality control is included based on SNR
calculations based on the automatic noise variance estimation
which was chosen proven to be more precise in human MRI
(Brummer et al., 1993). Furthermore, that method is less
error-prone as the common approach to calculate the SNR
(Henkelman, 1985), by placing a ROI inside anatomical regions
and another ROI in the noise, and calculate the ratio of the mean
signal and the standard-deviation as SNR (Levenberg, 1944).

Step 2–Pre-processing
Image Re-orientation
All subsequent steps, especially the atlas registration, depend on
a defined image orientation of the input data. According to the
common three-dimensional coordinate systemwith three planes,
we decided to implement the right-hand ‘‘neurological’’ RAS
system. In our setting, the mouse lies prone and is inserted with
the head-first into the scanner. Images were acquired selecting
‘‘head-supine’’ in ParaVision. Hence, a transformation f re(x)
is necessary to re-orientate the images in standard space. This
results in images viewed from feet-to-head direction and the right
side of the mouse is on the right side of the image.

Bias-Field Correction and Brain Extraction
In case of surface coils, there is a strong bias field on the MR
image (Figure 2A). AIDAmri contains an automated bias-field
correction f bc(x). We implemented the multiplicative intrinsic
component optimization (MICO) which was previously used
only in human MRI (Li et al., 2014). We compared MICO to
the widely-used N4 bias-field correction (Tustison et al., 2010).
A total of n = 22 T2-weighted (T2-w) data sets and 10 DTI
data sets were compared using the coefficient of variations
(CV) metric (see ‘‘Results’’ section) leading to full integration
of MICO. The corrected images (Figure 2B) are used to apply
the brain extraction (skull stripping). AIDAmri runs the FMRIB
Software Library (FSL) tool BET with the options -r set to the
brain radius in mm and -R for an ‘‘robust’’ iterative estimation of
the brain center. Thus,MR images with variable center-of-gravity
from animals positioned slightly different between scans will not
affect the skull stripping accuracy (Figure 2C; Smith, 2002). To
allow FSL to process the data, the data dimension of need to be
scaled by a factor of 10 to simulate human-similar voxel sizes.
In order to avoid image interpolation, up- and downscaling is
carried out automatically only for the related NIfTI header file,
whereas the voxel size of the raw image remains the same.

Region-of-Interest Segmentation
The user then has the option to define ROIs. We use that option
to delineate the ischemic stroke lesion on T2-weighted images
using the 3D snake evolution tool of ITK-SNAP7 (Yushkevich
et al., 2006). The resulting segmentation is used to evaluate
specific areas separately by generating a list of regions that are
overlaid with the segmented area of the brain, e.g., to proof
the position of an electrode. If several segmented ROIs are
provided, a color-coded incidence map can be created, e.g., to

7www.itksnap.org
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TABLE 1 | Characteristics of the performed 9.4 T MRT measurements.

Scan type TR
4 (ms) TE

5 (ms) Acq. time (s) Matrix size Resolution (mm) FOV6 (mm) Flip angle

T2w1 5,500 32.5 352 256 × 256 × 48 0.068 × 0.068 × 0.3 17.5 × 17.5 90◦

rs-fMRI2 1,420 18 149 128 × 128 × 20 0.141 × 0.141 × 0.4 18.0 × 18.0 90◦

DTI3 3,000 17.5 840 128 × 128 × 20 0.141 × 0.141 × 0.4 18.0 × 18.0 90◦

Over 100 data sets with the given properties were used to test AIDAmri. Abbreviations: 1T2-weighted MRI, 2resting-state functional MRI, 3Diffusion Tensor Imaging, 4repetition time,
5echo time, 6field of view.

FIGURE 2 | Visualization of step 2—pre-processing for a representative T2-weighted data set. The raw data set IT 2(x) (A) underwent a re-orientation f re(x) and bias
field correction using multiplicative intrinsic component optimization (MICO) fbc(x) to reduce inhomogeneities (B). The subsequent registration is done on a brain
extracted volume IT2

ex (x) (C) by deforming the MTPL IT(x) (D) with affine fA(x) and non-linear fNL(x) transformation.

highlight how many mice had a certain brain area affected
by the stroke.

Mouse Brain Atlas and MRI Template
We developed an in-house MRI template (MTPL) IT(x) with
strong correlation to the T2 raw images IT2 (see Supplementary
Figure S2) by using N = 30 randomly chosen data sets of
healthy C57BL6 mice of similar age. The mean of all voxels
described in the gray matter (GM), white matter (WM) and
cerebrospinal fluid (CSF) were calculated over all N, and the
resulting template was associated with the original ARA (Allen
Brain Reference Atlas, CCF v3, 50 µm isotropic resolution;
Figures 3A,B). To obtain a complete overview of the ARA
label IDs, we transferred the available information about label
IDs, acronyms and names to a custom-made relational database
(https://github.com/maswendt/AIDAdb; to access the file, a
www.ninoxdb.de account is required). The database lists all brain
regions according to the atlas ontology and provides simple
access to associated parent and child labels. Using that database,
we selected hierarchical lower regions of interest and defined
the related parent labels (Figure 3C) to build a parental atlas

IA↑(x). This results in a reduction from >1,000 regions in
IA(x) to 49 regions in IA↑(x). In order to compare regions
of the left vs. right hemisphere, the original ARA and the
custom parental ARA were we splitted along the sagittal
plane (Figure 3D).

Registration
We decided to use a specific multi-step registration scheme
(Figure 4). The initial assumption of AIDAmri is that all given
information of the ARA IA(x) is represented in the reference
image space X. The assignment of this information to the
individual MRI measurements IT2(x), IDTI(x) and IfMRI(x) is
achieved by a suitable transformation f which transforms X in
the acquisition image space Y, such that

f : X→ Y

Each individual transformation f is a combination of an
affine f A(x) and non-linear fNL(x) transformation computed
using NiftyReg (Centre of Medical Image Computing, University
College London, UK). NiftyReg was chosen based on a direct
comparison (see Figure 2D and Supplementary Figure S2) of
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FIGURE 3 | 3D cut-outs of the (A) Allen Brain Reference Atlas (ARA) and (B) the in-house developed MRI template (MTPL). The annotations of the ARA IA(x) and the
related ARA template (A) are overlaid with the MTPL IT(x) consisting of N = 30 T2w. Parental ARA labels IA↑(x) (C) and detailed ARA labels with hemisphere split (D).

registration accuracy with the developed MTPL IT(x) to FSL
(Jenkinson et al., 2012), Advanced Normalization Tools (ANTs;
Avants et al., 2008) and elastiX (Klein et al., 2010). Consequently,
for linear affine registration the symmetric global blockmatching
approach was implemented [NiftyReg, reg_aladin (Modat et al.,
2014) with 6 degrees-of-freedom (DOF)]. To describe non-linear
deformations, landmark points are placed on the reference image
and iteratively deformed [NiftyReg, reg_f3d (Modat et al., 2010),
with 12 DOF]. The non-linear transformation fNL(x) describes
subcortical brain changes, such as a baseline shift. The multi-step
registration requires the different scans to be orientated the same,
which can be achieved by copying the orientation from the
first to the subsequent scan(s). In that scenario, the non-linear
deformations do not change significantly over different scans
of one imaging session. Hence, the quantification of fNL(x) is
only necessary once and the relative change can be applied
to all data sets that are acquired in one session (Figure 4).
The differences between each data set in one section can
be adequately described by an affine f A(x) transformation
which includes scaling, rotation, translation, compression and
shearing. The registration procedure exclusively serves the
purpose to transfer data of ARA to the related MRI data sets
and to correlate functional and structural data. The processing
steps to extract the connectivity information from DTI and
activity information from rs-fMRI are conducted with the
unmodified raw-data.

The deformation f between IT2(x) and IT(x) is quantified
minimizing the Kullback–Leibler divergence (Figure 4; Kullback
and Leibler, 1951). The combined transformation f of the
affine f A(x) and non-linear transformation fNL(x) are applied
to the MTPL IT(x) and subsequently the ARA IA(x) with the
pre-processed data set IT2(x). Both, the affine transformation
f A(x) and the non-linear transformation fNL(x) are stored
for each processed data set separately. As an important
factor influencing registration precision, we set the Jacobian
determinate penalty to 0.3 where the user can increase
the minimum deformation field from 1 mm to 5 mm
depending on the strength of the required deformation. The
affine transformation f A(x) is quantified by minimizing the
Kullback–Leibler divergence between the current DTI or fMRI
measurement and the related T2 measurement IT2(x). At this
processing step, we have an ARA for all assumed data sets
IT2(x), IDTI(x) and IfMRI(x), which lies in the same image
space and is completely superimposed with the respective data.
All subsequent fully automatic analysis steps of functional and
structural data are based on a quantification that are provided by
the anatomical regions of the associated ARA.

In order to validate the performance of the automated
registration, we compared the automatically transformed ARA
template ofNT = 40 test data sets (Table 2) with an ARA template
that was semi-automatically registered by two independent
observers O1 and O2 using a previously described landmark-
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FIGURE 4 | Schematic overview of the multi-step registration procedure for the T2-weighted, DTI and rs-fMRI data [IT 2(x), IDTI (x) and IfMRI(x)]. The affine fA and
non-linear transformation fNL is applied to MRI template (MTPL) IT(x) and subsequently the ARA IA(x) with the pre-processed data set IT 2(x). The non-linear
deformation fNL between MTPL and the T2w/T2m is calculated only once and then linked to the respective affine transformation to pre-processed data of DTI IDTI (x)
and rs-fMRI IfMRI(x).

TABLE 2 | Data overview of NT = 40 data used to validate the registration.

Name Scanner (T) Scans (Σ) Type Matrix size Resolution (mm) Animals

Data set 1 11.7 14 T2m 256 × 256 × 16 0.068 × 0.068 × 0.6 Nu/Nu Adult nude mice
Data set 2 11.7 5 T2m 256 × 256 × 12 0.068 × 0.068 × 0.6 DCX-Luc Adult transgenic DCX-Luc mice
Data set 3 9.4 10 T2w 256 × 256 × 48 0.068 × 0.068 × 0.6 C57BL6/N Adult wildtype mice
Data set 4 7.0 11 T2w 128 × 128 × 30 0.109 × 0.109 × 0.5 C57BL6/N Adult wildtype mice with stroke

All data were acquired on scanners with different characteristics or different image geometries. The registration of the listed data was compared with a manually slice-wise registration
performed by two independent observers.

based registration approach with the help of the software
3DSlicer8 (Kikinis et al., 2014; Ito et al., 2018). The error
range between the transformations of both observers was set
as a reference. We calculated the distance between IA(x) and
the ARA templates of both approaches to find out where a
high agreement exists. The Euclidian distance or L2-Norm were
used as one of the most common mathematical quantity of the
distance between two-dimensional image functions. However, a
slight shift or a rotation would hardly change the appearance
of the image and possibly not be detectable by the human
viewer at all. To avoid any dependency on changes in intensity
the normalized cross-correlation (CrC) has been established
(Avants et al., 2008). Since, the correlation between image fidelity
and image quality is in some cases insufficient (Silverstein and
Farrell, 1996), we also applied the Structural Similarity Index
(SSIM; Wang et al., 2004) to end up with a satisfactory quality
description. The idea of structural information is that pixels
have strong interdependencies especially if they are spatially
close. With these three metrices, we quantified the overall

8https://www.slicer.org/

characteristic of the human perception to detect distortion
between two images.

Step 3–DTI and rs-fMRI Processing
Pre-processing and Registration
To correlate all given information of the anatomical information
of the IT2(x) to its related DTI IDTI(x,t) or fMRI IfMRI(x,t)
measurements, some additional pre-processing steps are
necessary. First, the dimension of the data must be reduced
from 4D to 3D from I(x,t) to I(x). For this purpose and to
minimize the noise and reduce artifacts, a minimum filter is
applied over time and then the resulting three-dimensional
data set is filtered with a Gaussian kernel. These filters
preserve structures necessary for a sufficient registration
whereas image noise is suppressed. Based on the previously
mentioned assumption, for the registration of IDTI(x) or fMRI
IfMRI(x) only an affine transformation f A(x) is performed
and the non-linear transformation fNL(x) is applied from
the previous T2 calculation (Figure 4). Subsequent DTI
and rs-fMRI processing steps were implemented based
on established protocols, which led to valid results in
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FIGURE 5 | Quantitative and qualitative comparison of MICO and N4 bias-field correction. The calculation of the degree of homogeneity revealed lower coefficient
of variations (CV) for MICO compared to N4 for 22 T2w and 10 DTI measurements (A,B). Representative MR images comparing MICO (C,D) and N4 (E,F) bias-field
corrected images for T2w and DTI, respectively.

FIGURE 6 | Registration results. Representative transformed ARA annotations (A) that are registered on an T2w data set (B) with detailed views shown as
overlay (C).
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previous studies (Budde and Song, 2010; Kim et al., 2012;
Gorges et al., 2017).

DTI—Structural Connectivity
Motion artifacts in diffusion imaging mostly origin from subtle
head movements due to the fast breathing rhythm, which results
in repetitive voxel displacements in the x-y plane. To quantify
and spatially correct anatomical dissimilarities with 6 degrees of
freedom (DOF), we apply a slice-wise motion correction using
FSLMCFLIRT (Jenkinson et al., 2002). Unfortunately,MCFLIRT
co-registers every volume in a time series to the one volume in the
midst of the series to detect slow physical movement. By adapting
the correction from a volume based to a slice-based mode of
operation, AIDAmri splits each data set into slices, correcting
them separately and merging the motion corrected slice series
back into one 4D data set. The motion-corrected data are then
fed into DSI-Studio (Yeh et al., 2013). The non-brain tissue was
discarded by applying a binarymask of the brain extraction to the
original DTI data set IDTI(x, t). The data are reconstructed within
DSI-Studio, based on an electrostatically optimized protocol of
Jones30 (Skare et al., 2000) with 30 gradient directions. The
reconstructed diffusion images are used to perform fiber tracking
and analyze the data with respect to the associated regions of the
ARA. All reconstructed data sets, AD, radial (RD), MD and the
fraction anisotropy (FA) are being exported separately.

The whole brain tractography is conducted with the
deterministic streamline propagation using Euler’s methods
(Basser et al., 2000) and terminates if a total fiber number of
one million fibers is reached. The tracking starts from a random
voxel position and propagated with a step size of 0.5 mm.
All fibers shorter than 0.5 mm or longer than 12 mm were
discarded, whereas the tracking is terminated if the angle between
two consecutive directions exceeds 55◦. The fiber termination
criteria were previously tested on several data sets with healthy
animals for best parameter settings, concerning true and false
fiber generation. The analysis provides connectivity matrices, in
which the rows and columns of the matrices represent a region
of the ARA and the entries display the connectivity strength
between two particular regions.

rs-fMRI—Functional Connectivity
Before the regional characteristics can be evaluated by means
of rs-fMRI, some optimizations need to be implemented. The
mouse in our setup is fixed with ear bars and a tooth bar
minimizing head movements during acquisition. Nevertheless,
spontaneous excitement due to fluctuations in anesthesia phases
and respiratory motion may affect image stability. Therefore,
we recorded the breathing during the measurement to identify
regressors describing respiratory artifacts. The physiological
data were sampled during EPI data acquisition, indicated by
overlaid trigger pulses. The pre-processing of the breathing
signal included the detection of inspiration peaks and baseline
correction using the median values. Additionally, slice-wise
motion correction is applied to the raw rs-fMRI IfMRI(x,t) by
the same approach as for DTI. This additional correction is
necessary to detect additional displacement between slices or fast
respiratory rhythms. Since for many scientific applications, such
as event-triggered fMRI, a slice time correction is essential, it is

possible to switch on that function in AIDAmri and perform a
correction with FSL SliceTimer (Jenkinson et al., 2002).

Completed by the pre-processed physiological recording, all
of this data has been merged into a single multichannel file.
The following processing steps were implemented based on the
processing steps in FSL FEAT (Woolrich et al., 2001) with some
modifications. For example, the smoothing was adapted with a
spatial filter. Due to anisotropy of the voxels in z-direction, the
spatial filter is applied in the x- and y-plane and not over the
whole volume as in FSL FEAT. In our case, the spatial filter
smooths the data with FWHM of 3.0 mm and a high-pass filter
with a cut-off frequency of 0.01 Hz that reduces additional noise
sources. The registered ARA is used to extract the regions in
the functional domain generating a 4D file (x, y, slices, region
masks) in NIfTI format. That file includes all transformed ARA
regions, whereas each three-dimensional region is defined by a
binary mask. Among all repetitions of the resting state fMRI
data, the mean of the intensities of the voxels of a region is
calculated and this average constitutes the averaged time series
of the specific region.

RESULTS

Bias-Field Correction
Magnetic field inhomogeneities induced by insufficient
shimming, imperfect coil placement and susceptibility artifacts
at tissue borders directly relate to image quality. To measure
the bias-field, we tested the N4 against the MICO algorithm
(Figure 5). MICO has so far only been tested for human MRI.
The comparison was conducted on 22 T2w data sets and 10 DTI
data sets with the CV as metric. For both data sets, MICO-based
bias-field correction resulted in lower CV values compared
to the N4 algorithms (p < 0.001) and better corrections of
the bias-field.

Registration
The results of the multi-step registration for a representative
mouse brain with large stroke-related deformations are shown
in Figure 6. The stroke lesion is distinguishable in the anterior
slides of T2w data set as the hyperintense regions. Even
strong deformations of the anatomical structure are realistically
contoured by the algorithm, such that the ARA is precisely
overlaid with the T2w data set. In addition to the qualitative
assessment, we applied a quantitative quality control (Figure 7)
using a slice-wise comparison of NT = 40 MR images selected
from four different MRI datasets (Table 2). Two experienced
observers used a semi-manually landmark-based approach to
overlay the atlas.

For each data set the error range between the transformations
made by observer 1 and 2 I01/I02 was used as reference. Due
to the different imaging properties and the subjective landmark
placing there was a large variability in the median between
both observers. In comparison to the automatic registration of
AIDAmri the deviation to the ground truth defined by both
observers, minimal and not statistically significantly differences
for all quantitative measurements (L2, SSMI, CrC). For example,
for data set 3 in Figure 7, the median of the SSMI between both
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FIGURE 7 | Quantitative registration quality control using a slice-wise comparison of NT = 40 imaging data grouped in four sets with three metrics [L2-Norm,
Structural Similarity Index (SSIM), Cross-Correlation (CrC)] between AIDAmri IA and two observers I01 and I02. The different properties of each data sets are listed in
Table 2 and one example slice is shown above each evaluation. Whereas, the ground-truth was determined with the error range of I01/I02, the average error between
the automated approach of AIDAmri and the observer-dependent approach IA/I01 and IA/I02 showed no significant differences in all three metrices.

observers I01/I02 is 0.878. Compared to that reference value the
median of AIDAmri to both Observes is 0.870 for IA/I01 and
0.880 for IA/I02. In conclusion, the deviation varies only between
0.81 and 0.92 in the SSIM for all evaluated data sets and shows
comparable error values for the CrC.

After successful processing with AIDAmri, the results
offer various possibilities for further data analysis (Figure 8).
Depending on the field of research, users have the opportunity
to evaluate their data quantitatively and qualitatively. AIDAmri
includes plot functions to visualize structural and functional
information of DTI (Figure 8A) and rs-fMRI (Figure 8B) as
adjacency matrices. To achieve a more detailed quantitative
evaluation a variety of possibilities are freely available and can
be used regardless of the processing pipeline. For example,
predefined regions can be examined in regard of their structural
and functional properties9. Relationships between the ARA
regions can also be visualized in a circular Graph10. The
Brain Connectivity Toolbox (Rubinov and Sporns, 2010) can

9https://de.mathworks.com/matlabcentral/fileexchange/27983-slicer
10https://github.com/paul-kassebaum-mathworks/circularGraph

be used for a quantitative evaluation of the DTI data based
on graph theory. Likewise, rs-fMRI data can be evaluated with
FSLNETS11. In each case, no further pre-processing steps are
necessary and the output of AIDAmri can be directly fed into
the established tools.

DISCUSSION

Currently, a variety of tools are available for human imaging
studies, offering either a full evaluation (Cui et al., 2013) and/or
step-by-step workflow (Rubinov and Sporns, 2010). In the
pre-clinical environment, standardization of MRI acquisition,
processing and sharing standards still need major development.
Therefore, the unique translational advantage of MRI, e.g., to
directly probe novel scan protocols and biomarker findings
from bench to bedside awaits exploitation (Jaiswal, 2015).
Here, we present a novel Atlas-based Imaging Data Analysis
Pipeline (AIDAmri) for structural and functional MRI of
the mouse brain. AIDAmri represents the first region-based

11www.fmrib.ox.ac.uk/fsl
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FIGURE 8 | AIDAmri output. Structural and functional information of DTI (A) and fMRI (B) can be represented as adjacency matrices by using the plot function. The
entries in the matrices represent the number of tracks passing or ending in the ARA regions of the DTI and activity pattern of rs-fMRI among all ARA regions to
evaluate the results using graph theoretical approaches. Other ways to visualize connectivity patterns (plot function not included in AIDAmri): the circular
representation of a row or column vector (C) where thicker lines relate to higher matrix values (C) and 3D visualization of connectivity in the anatomical context, here
the registered atlas (D).

processing pipeline, that extracts the structural and functional
information from T2w, DTI and rs-fMRI data, and which
enables a region-by-region analysis of preclinical MRI data
based on the Allen Brain Reference Atlas (ARA). Importantly,
the developed MRI template facilitates co-registration of MRI
data with the ARA, which would be impossible by a direct
registration. Since the template is co-registered with the ARA
in the original image space, research groups of other labs can
customize the ARA in higher hierarchical levels to map their
individual regions-of-interest without the need to downscale
the information. For example, we provide both a (hemisphere-
splitted) detailed as well as custom-made parental atlas. The
parental atlas is particularly useful for the analysis of DTI

and rs-fMRI with have intrinsically lower image resolution
and are stronger affected by susceptibility artifacts. Although
we carefully validated the registration, the striking differences
in original image size and resolution between the atlas and
the DTI/rs-fMRI can result in pixel interpolations and region-
mismatches, e.g for small thalamic nuclei or single cortical
layers. In that case, we recommend the parental atlas, with
larger brain regions, where interpolations have negligible effects.
In comparison to other atlases, the ARA provides not only
the most-detailed structural 3D atlas but also access to the
Allen Institute cell type, transcriptomics and brain connectivity
database (Lein et al., 2007; Oh et al., 2014). AIDAmri
was written in Python 3.6 using freely available algorithm
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tools. The modular structure enables efficient processing and
the possibility to modify or add modules. To enhance the
comparability to other fields of research and to ensure its
applicability to a variety of neurological questions, AIDAmri
has been comprehensively tested and optimized by following
steps. First, we implemented a novel SNR measurement,
which has been shown to outperform manual or other
semi-automatic measurements (Sijbers et al., 2007). Second, to
prepare the data for registration with the ARA, pre-processing
steps including re-orientation, bias-field correction, and brain
extraction were implemented. We successfully implemented
the MICO bias-field correction, which was applied before
only on human data (Li et al., 2014). We could show, that
MICO generates significantly better data even in the pre-clinical
environment than the well-known N4 algorithm. Finally, we
applied a quantitative quality control to verify that the developed
multi-step registration process works robustly. In a statistical
analysis, the results achieved by two-independent and trained
observers were found to be not different from the automated
registration for various mouse strains. Registration accuracy was
also valid for pathologies such as stroke with significant brain
deformation due to, e.g., oedema or necrosis. The AIDAmri
output contains functional and structural connectivity matrices
for all (selected) ARA regions. These matrices can be used
to analyze differences in the brain network between health
and disease. For the first time, AIDAmri provides in one
common processing pipeline and one common atlas system
quantitative structure-function relationships, which are known
to be crucial to understand the structural underpinnings of
brain function and brain plasticity (Straathof et al., 2019).
Future studies may focus on the integration of other imaging
modalities, e.g., single photon emission computed tomography
(SPECT) or positron emission tomography (PET), to the
ARA. AIDAmri contributes to the awareness-raising effort
of the scientific community to standardize diverse datatypes
and analyses across species (Sejnowski et al., 2014) and

will facilitate data processing in large cohorts and multi-
center studies.
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