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Abstract

Integrating reference datasets (e.g. from high-throughput experiments) with unstructured

and manually-assembled information (e.g. notes or comments from individual researchers)

has the potential to tailor bioinformatic analyses to specific needs and to lead to new

insights. However, developing bespoke analysis pipelines from scratch is time-consuming,

and general tools for exploring such heterogeneous data are not available. We argue that by

treating all data as text, a knowledge-base can accommodate a range of bioinformatic data

types and applications. We show that a database coupled to nearest-neighbor algorithms

can address common tasks such as gene-set analysis as well as specific tasks such as

ontology translation. We further show that a mathematical transformation motivated by diffu-

sion can be effective for exploration across heterogeneous datasets. Diffusion enables the

knowledge-base to begin with a sparse query, impute more features, and find matches that

would otherwise remain hidden. This can be used, for example, to map multi-modal queries

consisting of gene symbols and phenotypes to descriptions of diseases. Diffusion also

enables user-driven learning: when the knowledge-base cannot provide satisfactory search

results in the first instance, users can improve the results in real-time by adding domain-spe-

cific knowledge. User-driven learning has implications for data management, integration,

and curation.

Author summary

Biological datasets can be too large to unravel without computational tools and, at the

same time, too small to benefit from machine-learning approaches that require large data

volumes to train. Analyses of niche datasets are also hindered by the difficulty of incorpo-

rating knowledge from domain experts into practical algorithms. In this work, we argue

that such challenges may be addressed by data integration platforms that can learn in real-

time from users. We support the argument with an implementation of a practical, gen-

eral-purpose, tool. We show that its search capabilities can solve common bioinformatic

tasks such as gene-set analysis and matching genes and phenotypes to diseases, which are

usually tackled using statistical methods and bespoke algorithms. Importantly, our tool
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leaves domain experts full control to modulate search results in transparent, biologically

meaningful ways. It also allows users to improve search outputs if the default results are

incomplete. These features extend the capabilities of existing knowledge-bases and

empower domain experts to tailor data exploration to their needs.

Introduction

Biological assays measure diverse entities that range from single-molecules to entire ecosys-

tems. This heterogeneity provides opportunities to test hypotheses and to formulate new ones,

but such data can be difficult to navigate and to integrate in practice. Web portals demonstrate

the power of interactive access to complex data [1–3]. However, portals are still unavailable for

most research domains, especially in emerging subjects. Some of the challenges include assem-

bling relevant data in a coherent format and implementing interfaces that are at once powerful,

responsive, and user-friendly [4]. Further complications arise when adapting an existing sys-

tem to incorporate additional data or to fine-tune performance.

Given that maintaining bespoke data portals for individual research projects is impractical,

the alternative may be to utilize general-purpose components instead. Any generalised frame-

work built to support multiple applications will trade decreased performance for increased ver-

satility. A pertinent issue becomes how this balance should be set in the context of biological

data, but two observations point in favor of increased versatility. First, biological datasets often

have limited sizes and lack ground-truth annotations. They are not always suitable for process-

ing with pre-trained machine-learning models and are not sufficient to train new models de-

novo. Facilitating data exploration should thus prioritize transparent approaches that can pro-

vide insight with little preparation. Second, in tasks where multiple methods are available—for

example gene-module detection—systematic evaluations suggest that one method does not

outperform in all situations [5]. This suggests that specialized models, while useful in their

area of applicability, are not sufficient for exploratory analyses; it is beneficial to explore a

range of alternatives. In addition to these data- and application-centric arguments, we also

note that explorative analyses of biological data are performed by expert users with extensive

knowledge. A general-purpose framework may therefore be advantageous if it could incorpo-

rate domain-specific information by learning in real-time from its users.

In this work, we explore the feasibility of a general-purpose knowledge-base for biological

data. To focus the discussion, we set aside rich-media such as images, audio, and video, and

observe that much data in molecular and medical biology can be represented as structured and

quasi-structured text. Examples include abstracts from journal articles, concept definitions

encoded in dictionaries and ontologies, gene sets based on curated resources or from measure-

ment pipelines, and even sequences of nucleic and amino acids. We explore treating such col-

lections of text from a single computational perspective, even if they are distinct in biological

meaning. We investigate to what extent a general approach can reproduce results from special-

ized analyses, facilitate integration of diverse datasets, and adapt in response to feedback from

users.

A key component of text mining is the encoding of text into numeric representations in

order to enable calculations. Encodings based on k-mers, which are simple to implement and

to understand, can capture relatedness between words while tolerating variations in spelling

[6]. K-mers have been used to index biological datasets such as databases of DNA and protein

sequences [7], and such indexing and retrieval strategies can be extended to arbitrary text [8].

More sophisticated encodings have been used to perform computations like composition [9]
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and neural-networks have been trained for text classification [10,11], including using biomedi-

cal corpora as training sets [12,13]. However, neural networks require considerable computa-

tional effort to train and to update, and, even when they perform well in benchmark analyses,

they achieve performance only a few percent higher than simpler k-mer or bag-of-words

approaches. Thus, the simpler approaches based on k-mers offer a solid foundation on which

to construct a framework for general-purpose data exploration.

A challenge associated with treating text as a collection of k-mers is that data tends to be

represented as sparse numeric vectors. Sparse data is problematic because it can be difficult to

quantify similarities between vectors when they have few features in common. This issue

appears in applications in genomics such as analyses of somatic mutations in cancer—where

sparsity is a consequence of the relative rarity of somatic events in cancer genomes—and in

single-cell sequencing datasets—where sparsity is a result of the limited number of DNA or

RNA molecules in individual cells. Imputation has proved an effective technique because it

provides additional features that facilitate comparisons between otherwise sparse vectors

[14,15]. A specific approach to imputation is data diffusion, which is inspired by physical diffu-

sion that transfers molecules from regions of high concentration to nearby regions of low con-

centration. Data diffusion instead transfers weight from k-mers observed in real data to other

k-mers that were seen to co-occur in some reference dataset. In addition to being transparent

and biologically interpretable, diffusion processes can also be tuned in a computationally effi-

cient manner. Thus, diffusion can at once help overcome difficulties associated with sparse

data and enable a knowledge-base to absorb feedback from users.

In this work, we demonstrate a practical approach that integrates text-based datasets, pro-

vides querying mechanisms suited to bioinformatic questions, and personalizes results based

on user feedback. We show its utility in two practical bioinformatic applications—gene-set

analysis and ontology mapping. In the process we produce competitive solutions to well-estab-

lished bioinformatic tasks. We then demonstrate possibilities for exploring integrated data in

an interactive manner, including through multi-modal queries.

Results

Nearest-neighbor algorithms augment data stores

With the aim to analyze many types of biomedical data in a range of applications, we set up

software that combines a heterogenous data store with algorithms based on nearest-neighbors

(Methods). Our approach starts by parsing a collection of text data into individual records and

subsequently into k-mers (Fig 1A). K-merization is a step that splits long words into their con-

stituent parts, e.g. parsing the word ‘vascular’ into 6-mers ‘vascul’, ‘ascula’, and ‘scular’. We

store data items in their original form (as text) in a database and also as sparse vectors of k-

mers in a separate nearest-neighbor (NN) index [16]. Two primary mechanisms for querying

the data are provided: search and decomposition. Both accept text as input, utilize the NN

index, and return records from the data store. Search is a straightforward lookup of data items

in the NN index. It ranks items that are most similar to the user query and thus often returns

several hits that are similar to each other (Fig 1B). Decomposition, in contrast, is a custom iter-

ative algorithm (Methods). It reports a combination of records from the database that,

together, cover the features present in the input (Fig 1C).

A key feature of our approach is its ability to tune the behavior of the knowledge-base at

run-time and in real-time. This is motivated by real-world situations where a user might

observe that the default results are not well-adapted to a specific task. In such cases, our system

can accept new data items from the user and incorporate them into the data store (Fig 1D).

The internal architecture separates original and added data items in a strict manner. This
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helps preserve integrity of original data and also allows the data store to perform updates

almost instantaneously. Adding new data into a database is not remarkable in itself, but

becomes a key ingredient to our approach when coupled with data imputation (Methods, Fig

1E). We implement an algorithm that we call data diffusion due to its similarity to physical dif-

fusion, i.e. the motion of particles from regions of high concentration to regions of low con-

centration. The algorithm considers k-mers in a user query and shifts some of their weight

toward other k-mers that co-occured in reference datasets. Diffusion can be set to employ only

original data, only user-specific data, or a weighted combination. Passing the augmented

query to search and decomposition can result in different hits. Thus, because diffusion can

incorporate information from recently added data, users can immediately observe changes in

search and decomposition outcomes as a result of training.

Importantly, the data store and our algorithms only process text. This design choice fore-

goes optimizations that might be possible were the software restricted to, for example, genes or

other entities from fixed vocabularies. However, text offers users the flexibility to prepare data

in a text editor for batch processing or in a text box in a graphical user interface. K-merization

makes the algorithms naturally resistant to spelling errors. Moreover, the algorithms are not

tied to any specific data type and do not utilize sophisticated natural-language processing.

They can thus be used in a range of applications. For illustration, we performed calculations

using gene sets, ontologies, and disease annotations.

Decomposition of gene sets extracts distinct concepts

One of the bioinformatic applications that relies on search is gene-set analysis. Given genes

observed in an experiment, gene-set analysis quantifies similarities of the hits against a collec-

tion of other sets. Many methods have been developed for this task, including some specific to

transcriptomics [17,18]. To understand to what extent a general-purpose tool can be used for

gene set analysis, we set up benchmarking calculations based on the Gene Ontology (GO) [19].

We created synthetic gene sets through three distinct strategies (Fig 2A). One strategy com-

bined genes from multiple GO sets into a single benchmark (number of components from one

to four). This simulates data from systems characterized by more than one aberration or acti-

vated process. Another strategy modulated the proportion of genes that were transferred from

the GO annotations into synthetic benchmarks (coverage from 25% to 100%). A third strategy

supplemented GO-based gene sets with randomly-picked genes (signal from 25% to 100%). By

considering 1000 examples for each combination of these effects, we created 64,000 synthetic

Fig 1. Knowledge-base setup and user interactions. (A) A collection of data is parsed into data items, which are split into k-mers. Data items

are then inserted into a database and indexed. User queries are also parsed into k-mers and then processed using search and decomposition

algorithms. (B) Schematic of a search query in a feature space. A user query, q, is compared to a collection of items (circles). The search

algorithm reports a number of items that are closest to the query (blue circles). (C) Schematic of query decomposition, which returns distinct

data items that, together, can reproduce the query. (D) New data items are inserted into the database in a way that preserves their status as

user-specific. (E) A diffusion process augments user queries with imputed features, including features based on user-specific data, and provides

a mechanism to personalize outcomes.

https://doi.org/10.1371/journal.pcbi.1009283.g001
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sets. We then matched them against the original GO collection and assessed to what extent

outputs matched the true constituents.

We analyzed the benchmark sets using three distinct methods. The Fisher exact test served

as a baseline because it is the most suited statistical test for the task and because it underlies

many existing gene-set analysis software packages [20]. We also performed nearest-neighbor

search and nearest-neighbor decomposition. All three approaches were set to report at most

five hits in ranked order and we quantified performance by computing the Jaccard Indexes of

the top-ranked hits against the ground truth (Methods). When a benchmark set consisted of

more than one constituent, we computed the sum of Jaccard Indexes against each constituent.

(Methods). With this strategy, the lower bound of our score is zero and occurs when none of

the the top hits match the description of the benchmark. The score is bounded from above by

Fig 2. Applications of search and decomposition algorithms on gene sets. (A) Schematic of synthetic gene sets for

benchmarking calculations. The gene pool contains all human genes and sets are based on GO annotations.

Benchmarking datasets are generated by randomly selecting genes from one or more sets. Generation strategies

include components (taking genes from one or more GO set), coverage (taking all genes from a set, or fractions

thereof), signal (augmenting genes from GO sets with randomly selected genes). (B-D) Results of benchmarking

calculations performed using three computational methods—the Fisher statistical test, and search and decomposition

powered by nearest-neighbor searches. Vertical axes show sums of Jaccard Indexes between reported and expected

gene sets. This score counts the number of correctly identified components. (E) Visualization of differentially-

expressed genes in the eHAP cell line along one of the chromosomes. (F) Output of hypeR gene set enrichment

analysis, comparing DE genes with a collection of sets that contain genes from genomic regions of various sizes. (G)

Output from gene set search. (H) Output from gene set decomposition.

https://doi.org/10.1371/journal.pcbi.1009283.g002
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the number of underlying constituents. Effectively, the score counts the number of correct

matches.

Evaluations of the benchmark data revealed strengths and weaknesses of the three methods

under different scenarios (Figs 2B–2D and S1). For benchmark sets that consisted of genes

from a single GO set with 50% coverage and 50% signal (Fig 2B), the Fisher method achieved a

score of 1. This result corresponds to the best possible performance for this class of bench-

marks, and search and decomposition matched it. We next performed evaluations on bench-

marks sets consisting of more GO components. With four components, the Fisher test

achieved a median score of two, meaning that it placed two of the components among the top-

ranked outputs. This demonstrates that while the Fisher approach is reliable in matching

inputs to a small number of constituents, it systematically omits parts of the signal (within the

top-ranked outputs). The NN search method showed similar performance to the Fisher

method. In contrast, the NN decomposition algorithm achieved twice the median score on

complex benchmarks. In particular, the decomposition approach was able to place all the con-

stituents of four-component benchmarks among the top five outputs. This demonstrates that

the algorithm avoids reporting redundant outputs and deconvolutes complex signals into their

constituents.

The search and decomposition approaches also performed well in other scenarios. In par-

ticular, decomposition consistently outperformed the Fisher test in benchmarks with multiple

components, including in cases with low coverage (Fig 2C) and low signal-to-noise ratios (Fig

2D). Overall, these results indicate that nearest-neighbor based approaches are a reasonable

approximation to the statistical method under the studied conditions.

To investigate performance of our knowledge-base and algorithms with real genesets, we

turned to expression data from two human cell lines, eHAP and HAP. The genomes of these

cells differ by a structural deletion of around 30 Mbp on chromosome 15 [21], which is known

to drive differential expression (Fig 2E). The set of differentially expressed (DE) genes can

therefore be thought of as a superposition of one component formed by genes on chromosome

15, plus potentially other components describing any other aberrations or expression noise.

To study this system, we created a collection of gene sets grouping genes based on genomic

windows of various widths, from 1 Mbp to 100 Mbp (Methods). We then studied how various

computational approaches may describe the DE gene sets.

We performed a canonical gene-set enrichment analysis using hypeR, a modern software

package [22]. The output of this method is a list of gene sets ranked by p-values, computed

using hypergeometric tests (Fig 2F). The top hit was a gene set describing the region with coor-

dinates 60M-100M on chromosome 15. This is indeed the gene set in the collection that best

describes the two cell lines. In addition to this hit, many other sets also appeared with high lev-

els of significance. Some corresponded to small regions within the 60M-100M interval. Such

small gene sets are redundant given the first hit, but also harmless. However, within the top 10

results, there also appeared a gene set comprising all genes from chromosome 15. This result

was significant from a statistical point of view, but may be potentially misleading from a geno-

mics point of view.

Following the canonical analysis, we next applied nearest-neighbor search and decomposi-

tion. The search algorithm produced similar results to the statistical approach (Fig 2G). The

top hit was again the 60M-100M region on chromosome 15, and other hits also matched out-

puts from hypeR. The ranking was not exactly the same as for the statistical test, and this is

expected due to the technical search criteria. The hit list was capped to a small number by

default. This setting for reporting only a small number of results contributed to better run-

time performance as fewer overall comparisons were necessary to produce the output. The hit

list also did not include statistical metrics such as a p-value, which should be computed in
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post-processing. This is a tradeoff between speed and completeness, but can be very attractive

for data exploration. In contrast to search, the decomposition algorithm only produced a single

result (Fig 2H). It thus summarized that after taking the abnormal 60M-100M region into

account, the remaining DE genes do not strongly match to any other genomic region.

It should be mentioned that while this example displays opportunities for using DE gene

sets to understand chromosomal aberrations, this approach is not a substitute for specialized

copy-number analysis. In particular, this approach does not pinpoint the precise breakpoints

for the structural rearrangement. Nonetheless, the results validate our algorithms using real

data and demonstrate that fast algorithms can produce biologically interpretable outputs.

User-driven learning incorporates domain knowledge to improve search

outcomes

Our search and decomposition algorithms process text and are not specific to gene sets, so

they can be applied to diverse data types. To demonstrate this versatility, we applied our

approach to phenomics, specifically to the problem of mapping phenotypes across species. The

mammalian phenotype (MP) and human phenotype (HP) ontologies provide vocabularies for

abnormalities that can occur at the organism level [23,24]. They are used in knowledge-bases

about animal models and human diseases [25,26], and translations between the two ontologies

are essential ingredients to calculations that assess the relevance of animal models to human

diseases [27,28]. Phenotype definitions can be treated as text and we set out to translate human

annotations to the mammalian ontology.

We prepared collections containing phenotype definitions from the MP and HP ontologies

(Methods). We loaded the MP terms into a data store and performed searches using HP terms

as queries. As an example, a query comprising the definition of ‘prostatitis’ from the human

ontology was mapped to ‘prostate gland inflammation’ from the MP ontology (Fig 3A). This

corresponds to a translation provided by an established algorithm that relies on ontology-

based reasoning [29] and demonstrates that nearest-neighbor search can provide translations

even when the terms are not literal analogs. However, other cases were not as concordant (Fig

3A). Averaged over all the terms in the HP ontology, the proportion of empirical results that

exactly match expected outputs was 29% for the first-ranked search output and rose to 51%

when using any one of the top five search results (Fig 3B). Given the relatively low apparent

performance, we quantified errors in more detail using the path distance between our search

results and the expected terms in the MP ontology graph. With this metric, path lengths

between exact matches are zero, between child or parent terms are equal to one, between

grandparents and siblings are two, and so on. The mean path length for first-ranked search

results was 2.5, falling to 1.4 when considering any one of the top-five search results (Fig 3C).

The distribution of path lengths had a large skew and 77% of outputs had path length at most

equal to two (Fig 3D). This reveals that the majority of translations actually corresponded to

similar concepts in the phenotypic space.

Stratification of HP terms revealed that items that have similar titles to MP terms achieve

very high precision and low errors (S2 Fig). This suggests that HP queries might not map to

expected MP terms because they encode information in different feature sets, for example,

using human-centric terminology like ‘arm’ as opposed to mammalian ‘limb’, or using syno-

nyms such as ‘elevated’ and ‘heightened’. We thus investigated data diffusion as a mechanism

to alleviate such discrepancies. Data diffusion uses an ensemble of data to estimate co-occur-

rence of features, and then imputes missing features (Methods). After calibrating the strength

of diffusion for the HP-MP translation (S3 Fig), overall precision increased to 31% and 53% as

measured by the first-ranked and best-of-five results, respectively. This indicates that diffusion
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is constructive, but the modest improvement suggests that the corpus we used to inform the

diffusion process is incomplete or insufficient to bridge the ontologies.

One of the key capabilities of our application is to accept additional data items at run-time

in order to tune search results. To demonstrate this, we investigated HP terms that achieved a

path-length error of at least 8 in our previous attempts. We inspected these candidates to

ensure that the expected mammalian MP-terms indeed corresponded to the definitions of the

human HP-terms. As an example, one of these terms was ‘paroxysmal drowsiness’, a pheno-

type of the nervous system, which was by default mapped to ‘abnormal nervous system devel-

opment’ instead of the expected behavior phenotype ‘lethargy’, leading to a high path-length

error of 9. To adjust such mappings, we manually reviewed each case and inserted new text

snippets into the data store using an interactive graphical user interface. Each snippet consisted

of a small number of words indicating similarity or dissimilarity (Fig 3E) and was chosen to

drive diffusion in an appropriate direction (S3 Fig). After incorporating the new data items

into the diffusion process, we observed substantial effects on the outputs. 23% of all HP queries

were mapped to a different top hit in the MP ontology, and 85% resulted in a different set of

top-five hits (Fig 3F). The impact on overall precision was small (top 5 precision increased

from 53% to 55%), but the distribution of path lengths among the targeted queries displayed a

pronounced shift toward lower values (Fig 3G). Among the changed mappings was ‘paroxys-

mal drowsiness’, which was remapped to ‘abnormal alertness’ as the top hit and ‘lethargy’

among the top five (S1 Table). This shows that users can add domain-specific knowledge and

improve search results.

Understanding why individual mappings are imperfect and what adjustments are required

to improve them requires manual investigation effort. In the case of translating between HP

and MP ontology terms, this effort can form the beginning of an interaction with ontology

curation teams to clarify or to disambiguate certain term definitions. Irrespective of changes to

the underlying data sources, user-driven learning empowers users to adapt the knowledge-

base to suit specific needs in real-time, without the need to retrain or rebuild a complex model.

Data items added at run-time can be reused or shared amongst community members.

Fig 3. Application to ontology translation. (A) Examples of translations between human and mammalian phenotype ontology terms. Queries

are from the HP ontology; expected outputs are MP terms suggested by an ontology-aware translation algorithm; empirical outputs are from

nearest-neighbor searches. Note that while HP and MP terms are summarized by their name only, calculations rely on full term definitions. (B)

Summary of translation precision compared with the expected mapping. Bars represent means over all HP terms, whiskers represent 25%-75%

quantile ranges. (C) Summary of translation performance in terms of the ontology-graph distance between expected and output terms. (D)

Distribution of path length errors. (E) Examples of annotations added through a graphical-user interface. (F) Impact of manual training items

on the translation of all HP terms. (G) Impact of user-driven learning (UDL) on the HP terms that were targeted for training.

https://doi.org/10.1371/journal.pcbi.1009283.g003
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Multi-modal queries combine structured and unstructured information

Beyond applications that rely on a single type of data, our software can serve as a general-pur-

pose data integration platform. To investigate this context and demonstrate multi-modal que-

ries, we loaded a new data store with data on gene sets, phenotypes, and human genetic

diseases (ORPHANET). We then searched this knowledge-base with basic queries and then

with customized configurations, including diffusion processes powered by signaling pathway

annotations and protein-protein interactions. All actions were performed using a graphical

user interface and thus represent queries that can be carried out interactively (Methods).

A common use-case for disease knowledge-bases is to search for single gene symbols in

order to retrieve diseases associated with defects in those genes. To illustrate this behavior, we

searched for ATM—a gene named Ataxia Telangiectasia Mutated. This query returned four

genetic diseases, including Ataxia Telangiectasia, a neurodegenerative disease after which the

gene is named (Fig 4A). While this result can be obtained from canonical knowledge-bases, we

then performed a related query using the same gene, but activating a diffusion process using

pathway annotations. The modified query returned many more disorders (Fig 4A), including

cancers that are not explicitly associated with ATM. This is consistent with the known roles of

ATM in regulating the cell cycle and responding to DNA-damage. This demonstrates that dif-

fusion can extend search results in biologically meaningful ways.

As a second example, we constructed a multi-modal query (Fig 4B). Our query included a

skin, skeletal, and immunological phenotype, and two gene symbols. We set diffusion by sig-

naling pathways and protein-protein interactions. The top hit was an immunodeficiency dis-

ease caused by PLCG2, phospholipase C gamma 2, a gene coding for a transmembrane

signaling enzyme. This disease was among the top hits when searching only for the pheno-

types. Interestingly, the match was based on a free-text description of the disease rather than a

curated list with phenotype ontology codes. The disease was then ranked first after including

SYK and PIK3R1, two genes that interact with PLCG1. Thus, the search mechanism was able to

utilize pathway information to modulate the results ranking.

These case studies can be contrasted with the capabilities of existing knowledge-bases and

web-search engines. Knowledge-bases excel at extracting diseases based on short queries such

as gene symbols [3]. However, they do not provide control over how to broaden the scope of

search to imperfect matches, which is important for explorative research. Their focus on out-

putting high-fidelity matches also implies that long queries can produce no hits at all; this

occurs for our multi-modal example involving phenotypes and genes [3,30]. Web-search

Fig 4. Examples of queries against a disease knowledge-base. (A) Results from a single-gene query with two diffusion settings. Hits are

presented in ranked order. (B) Results from a multi-modal query with multiple phenotypes and genes.

https://doi.org/10.1371/journal.pcbi.1009283.g004
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engines are popular tools because they can retrieve imperfect matches, even with very long

queries. However, they do not allow users to limit search to particular datasets or to search pri-

vate datasets. Similarly to knowledge-bases, they do not provide explicit mechanisms to modu-

late rankings, correct errors, or suggest improvements. Overall, our search approach that

combines general-purpose search, diffusion, and user-driven learning thus extends the capa-

bilities that are currently available to researchers.

Discussion

This work investigated the utility of general-purpose tools for studying heterogeneous data.

The motivation for using a simple tool for several applications, bypassing the benefits of

domain-specific optimization, is that this strategy may encourage more versatile data integra-

tion and software re-use across many datasets. We focused on text-based data and the need, on

the one hand, to perform calculations in a transparent manner, and, on the other hand, to

adapt results given expert knowledge. We presented a practical implementation of a tool that

addresses these criteria.

The software relies on well-known components—a database and a nearest-neighbor index.

Two calculations demonstrate that these components can yield competitive results compared

to established, domain-specific methods. We showed that nearest-neighbor search can match

sets of genes to GO processes with comparable precision to accepted analysis methods, and

that an iterative decomposition can outperform in certain biologically-relevant scenarios that

do not satisfy the assumptions underlying the Fisher test. We also showed that the same soft-

ware can map phenotypes across two ontologies and yield results that are close to translations

produced by a specialized algorithm. These calculations suggest that a single framework can

indeed form the backbone for nontrivial data exploration.

While our requirement to use a single framework constrains opportunities to hard-code

domain-specific optimizations, it also creates an automatic mechanism to integrate distinct data

collections. By treating all data as text, our search and decomposition algorithms can process not

only gene sets or phenotype descriptions, but any combinations thereof. We demonstrated the

possibilities for multi-modal queries in the context of matching genetic and phenotypic data to

disease descriptions. The flexibility of text queries encourages interactive data exploration. This is

in contrast to simple search engines that can only accept short query text, or with sophisticated

knowledge-bases that require keywords, ontology identifiers, or careful query syntax.

Using a single framework for many datasets also opens opportunities to repurpose algo-

rithms from one domain to another. Diffusion processes are used in gene-bases analyses, for

example to prioritize disease-causing genes [31], and to overcome challenges with data sparsity

in single-cell transcriptomics [14,32,33]. We adapted a diffusion algorithm for k-merized text

and showed that this interpretable process can change rankings in nearest-neighbor searches.

Importantly, we demonstrated that it is possible for expert knowledge to modulate diffusion to

improve search results. To our knowledge, this is the first example of a bioinformatic tool that

can learn from its users in real-time and personalize its results. The framework satisfies criteria

of interpretability [34], including the ability to correct erroneous outcomes. As such, it is suited

to curating biological data and enabling human-machine cooperation [35].

Methods

Data store with nearest-neighbors index

Our framework is implemented as a data store coupled to nearest-neighbor index (Fig 1). An

instance is built by transferring one or more data collections into a mongoDB database [36]

and nmslib data indices [16]. The build process consists of three stages.
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A first scan splits text into words separated by spaces, and then into overlapping strings of

length at most equal to an integer k. These strings are interchangeably called k-mers and fea-

tures. The first pass through the data estimates the frequency of all k-mers across all docu-

ments. Each k-mer is assigned a weight w = c0−c1log10(n/N), where n is the number of objects

containing the k-mer, N is the total number of objects, and c0 and c1 are user-specified con-

stants. This approach is compatible with treating all features with equal importance (c1 = 0,

suited to process unweighted gene sets) and inverse frequency (c0 = 0, suited to process natural

language text that contain frequent uninformative words such as ‘the’ or ‘a’).

A second pass of the build process transfers raw data into a database in its original format

as well as in a numeric encoding using sparse vectors. Words in data items that are shorter

than k—equivalent to k-mers—are weighted by their log-frequency in the data item and by the

k-mer weight. Words that are longer than k are additionally weighted to account for the fact

that overlapping k-mers share content. Exact details are available in the software implementa-

tion. After k-merization and weighting, data items are normalized to unit norm before storing

in the database. Importantly, during this stage of the build process, data can be pooled

together, or arranged into distinct collections.

The final stage of the build process uses the sparse vectors to construct auxiliary data struc-

tures. One of these is an approximate nearest-neighbor index [16]. A separate data structure

tracks co-occurrence of k-mers within documents. Conceptually, this structure is a square

matrix C with elements cij that track co-occurrence of k-mers with indexes i and j. In the data-

base, the information is stored row-wise in sparse vectors. The structure can be incremented

as data items are inserted into the database. The increment is weighted by the inverse length of

the data items. Thus, co-occurrence of two k-mers in a short data item is recorded with higher

weight than the co-occurrence of the same two k-mers in a data item that also has many other

k-mers.

The build process can be tuned by adjusting the k-mer length, total number of k-mer fea-

tures, and other settings. All are described in the online software documentation.

User-driven learning

After a knowledge-base is built, new data can be inserted to enable user-driven learning. All

new data are stored in separate collections and indexes, automatically separating original- and

user-level contributions. This is useful to track data provenance. It also guarantees that indexes

for large data collections generated during the build process do not need to be re-generated.

Data inserted at run-time are copied into three locations. First, the data in unprocessed

form are inserted into the mongoDB database. The insert operation takes constant time. Sec-

ond, new data are used to increment the co-occurrence data structures. This operation

requires read and update operations; the running time is proportional to the length of the new

data. Third, new data are inserted into a nearest-neighbors index. In the current implementa-

tion, this requires re-generating the index. This is not problematic for small user collections,

including all examples described in this work, but this step is slower-than-linear in the total

number of items and can become a limiting factor if user-driven collections grow to thousands

of items. However, if user-collections were restricted to drive diffusion and not for searching,

this step could be eliminated altogether.

Data diffusion

Because most user queries are expected to turn into sparse vectors, it is possible that they may

not have many features in common with data items in the database, which consist of sparse

vectors themselves. Data imputation can be beneficial in such situations because it can suggest
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non-zero weights for missing features and thus help search algorithms produce nontrivial

rankings. A canonical approach to imputation would suggest values for all missing features,

thus turning a sparse vector into a dense vector. Data diffusion, in contrast, is an approach that

preserves sparsity by imputing only a subset of features.

Our algorithm acts on text from user queries and imputes features that have previously co-

occurred with that input. Intuitively, a feature (k-mer) absent in a user’s query is assigned a

high value if it co-occurred with text from the query, and is kept at zero if it has not co-

occurred at all. As a result, a sparse vector representing a user’s query is kept sparse after diffu-

sion. In practice, the implementation of data diffusion contains some subtleties. One is related

to the diverse weights (importance) assigned to individual features. Our knowledge base allows

common k-mers like ‘the’ to have lower importance than a rarely-used feature like ‘atrophy’.

The diffusion algorithm prevents un-informative features from distorting the imputed feature

by using harmonic scaling. Another detail pertains to negative weights. Whereas physical dif-

fusion that motivates the algorithm only considers positive concentrations, our data diffusion

algorithm accepts data vectors with both positive and negative values.

More technically, diffusion can be formulated as a matrix D with elements defined as

Dij ¼ ĉij
2wiwj

wi þ wj

Here, ĉij is a normalized entry from the co-occurrence matrix C. The normalization is car-

ried out row-wise and ensures that diagonal entries in the co-occurence are set at unity. The

ratio defines a harmonic mean of k-mer weights, which ensures that informative k-mers par-

ticipate more in diffusion than non-informative k-mers, and that diffusion from informative

k-mers does not inflate values associated with non-informative k-mers. A diffusion transfor-

mation on a query vector q can be formulated as

q! qþ sDq

where s is a user-specified scalar interpreted as the strength of diffusion. This formulation

automatically accommodates queries and diffusion matrices with negative entries.

In practice, the diffusion process is implemented in terms of sparse vectors instead of matri-

ces. When the database manages multiple datasets, the diffusion transformation is extended

with additional terms, i.e. with a separate user-specified strength scalar and a diffusion matrix

based on co-occurrence patterns in each dataset. In order to allow interactions across datasets,

the transformations are applied in two passes. When calculations are performed in sequence,

the sources of diffusion are restricted to those k-mers that are present in the original query.

Thus, features imputed due to diffusion based on one dataset are not used to source diffusion

based on a second dataset. This restriction is sometimes termed as 1-step diffusion [14,33].

This restriction is implemented for computational efficiency and to avoid over-smoothing

associated with multi-step diffusion [33].

Search and decomposition

The primary algorithms for querying the data store are search and decomposition. Both accept

inputs as strings of free text and can be augmented by data diffusion.

The search algorithm parses a query into k-mers, encodes them into a numeric vector using

feature weights, and performs a lookup of nearest-neighbors. If the data store was built by sep-

arating data into separate collections, search can use any one of these collections.

The decomposition algorithm provides an alternative view of the data. It parses a query and

encodes it into a numeric vector, but it then returns a small set of data items that can be used,
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in a linear combination, to approximately reconstruct the input. Decomposition is not a core

feature of the nearest-neighbor data index and is implemented via an iterative algorithm. First,

a simple search is used to find the item in the data store that best matches a query. Second, a

residual vector is computed by subtracting the search result from the data query. Third, the

residual vector is used to search for another item in the data store. The algorithm then iterates

through this cycle, each time using a residual vector computed from a linear combination of

data vectors found in previous steps. The procedure stops when the required number of out-

puts is obtained, or when the coefficients in the linear combination reach zero. The solution

produced by the greedy algorithm is not unique and cannot be considered to be an optimal

decomposition, but the running time is asymptotically comparable to that for a single search.

Software implementation

The software is available as a python application called ‘crossmap’. The software includes a

utility ‘crossprep’ to prepare data files starting from several input data formats, for example

gene sets and ontology definitions.

The software includes a graphical user interface in a chat format accessible through a web

browser. The interface enables users to carry out search and decomposition queries, as well as

tune the diffusion process. Additional features include previewing data stored in the database,

exploring how diffusion imputes new features for any input query, adding new data items, and

explaining why queries map to the provided hits and not to another target.

Example: benchmarking with gene sets

For benchmarking calculations, gene sets were downloaded from the Gene Ontology consor-

tium. Gene sets were excluded if they were not reported under the biological process branch of

the ontology, or if they contained fewer than five or more than 100 genes. One data store was

loaded with gene sets using k = 6 as the length of k-mers and using uniform weighting

(Table 1). Another data store was prepared with the same data using information-content

weighting for comparison.

Synthetic gene sets to be used for benchmarking were generated by picking genes from the

GO sets according to a combination of recipes (Fig 2A). One recipe varied the number of GO

sets used to source the gene set. A second recipe varied the proportion of genes transferred

from the GO sets into the synthetic sets. The last recipe supplemented each synthetic set with

varying amounts of randomly-selected genes. Each synthetic set was used as a query for search

and decomposition. Each set was also compared against the database using the Fisher test. The

top five results from each query were recorded.

Results from search, decomposition, and the Fisher test were evaluated using a score based

on the Jaccard similarity. For queries where the synthetic set was drawn from one GO set, the

first score was defined as the Jaccard index between the first-ranked result and the ground

Table 1. Characteristics of crossmap instances. Build times are approximate measures obtained on a quad-core laptop with 2.7Ghz processor and 8 GB of RAM. Peak

memory use are approximate measures observed during the build process; subsequent run-time memory use is typically far lower. Number of items count total data items

inserted into the database. Number of features refers to the distinct k-mers. (�) For the instance with MP phenotypes, the number of items excludes any items inserted at

run-time as part of user-driven learning. The number of features is exactly 200,000 as this is a default cutoff, which can be changed when needed.

Example Build time Peak memory use Num. items Num. features

GO gene sets 1 min 0.7 GB 7,227 22,147

Genes inc. GENCODE 10 min 4.2 GB 79,344 34,455

MP phenotypes� 4 min 1.3 GB 12,838 200,000

Genes and diseases 13 min 2.4 GB 90,887 469,298

https://doi.org/10.1371/journal.pcbi.1009283.t001
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truth. For queries where the synthetic query was drawn from more than one GO set, the score

was generalized as the sum of Jaccard indexes against the expected GO sets: the first-ranked

hit was compared to one set in the ground-truth, the second-ranked hit was compared to the

next component in the ground-truth, and so on for all the components in the ground truth.

Overall, the score can be interpreted as the number of hits at the top of a ranked list of results.

Non-integer scores are possible when the reported hits have nontrivial Jaccard overlap with

the ground truth.

Example: identification of genomic regions through gene sets

For analyses of genomic regions, gene annotations were downloaded from the GENCODE

consortium [37]. Genes were partitioned into gene sets using overlapping genomic titles of

sizes ranging from half a megabase to 50 megabases. The resulting gene sets acquired varying

numbers of genes depending on the tile size and the density of genes along the chromosomes.

Gene sets were loaded into a data store using k = 6 as the k-mer length and using uniform fea-

ture weighting (Table 1).

Example: translation of phenotypes

For calculations involving ontology terms translations, ontology definitions were obtained

from the OBO foundry (www.obofoundry.org). Data collections were prepared by parsing

ontology obo files and extracting term titles, definitions, comments, synonyms, titles of parent

terms, and the title of the top ancestor term. These components associate each term to infor-

mation about its meaning and to its position in the ontology structure. Scripts to prepare such

data collections from OBO ontology files are available alongside the primary crossmap

software.

In order to capture the relative frequency of k-mers in natural language, another auxiliary

dataset was prepared using word definitions from the wiktionary (www.wiktionary.org).

Scripts to prepare data collections from the wiktionary are also available with the crossmap

software.

A crossmap data store was created by loading the MP ontology and wiktionary datasets.

The k-mer length was set at k = 6 and feature weighting, unlike in the examples with gene sets,

was set to use information-content scaling (Table 1). Calculations were performed by using

HP data items as queries. Search results were compared against a dataset of HP-MP term

translations produced by owltools [29] and using the graph of hierarchical relations in the MP

ontology.

Example: exploration of diseases

For demonstrations of multi-modal queries, a single knowledge base was constructed holding

GO gene sets, pathway gene sets from REACTOME [38], gene-interaction gene set from

STRING [39], gene function annotations from GO [19], phenotypes from HP [23], disease

annotations from ORPHANET (www.orpha.net), and word definitions from the wiktionary

(www.wiktionary.org) in order to learn relative word frequencies. The knowledge base was

built using k = 8 as the length of k-mers and using feature scaling based on information con-

tent (Table 1). This knowledge-base was used for interactive data exploration.

Supporting information

S1 Fig. Benchmarking search and decomposition on synthetic gene sets. (A) Schematic of

the procedure for the generation of synthetic gene sets. Starting from a pool of genes (dots)
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and a set of curated gene sets (color boundaries), the procedure entails three distinct strategies.

One strategy picks genes from between one and four curated gene sets (top). Another strategy

modulates the proportion of genes that are transferred from the curated sets into the synthetic

sets (middle). The last strategy supplements each synthetic set with genes picked from the pool

at random, modulating the signal-to-noise signal (bottom). The schematic is an exact repeat of

a figure panel in the main manuscript. (B) Summary of performance of Fisher, search, and

decomposition algorithms on an ensemble of 64,000 synthetic gene sets generated according

to the schematic in (A). The evaluation metric is the sum of Jaccard Index (JI): for a bench-

mark set made up of n components, this metric takes the n top-ranked hits from each method,

evaluates the JI between the hits and the true curated sets, and reports the sum of the JI values.

Effectively, the total JI counts the number of expected sets found. Box plot bounds, center line,

and whiskers represent 25%-75%, 50%, and 5%-95% quantiles. Boxes contain results from all

benchmark sets generated according to a mixture of strategies. Rows stratify the data accord-

ing to number of components, coverage, and signal. Columns show results computed using

crossmap instances using uniform feature weighting and feature weighting based on informa-

tion content (IC). In the latter, genes that appear in many gene sets are down-weighted as

non-informative. The Fisher method does not utilize weighting, so Fisher results are exactly

the same in the two columns. (C) Effect of diffusion on search and decomposition perfor-

mance. In these calculations, diffusion appears to lower performance slightly.

(TIF)

S2 Fig. Stratification of HP-MP phenotype translation. (A) Examples of human phenotype

(HP) terms (column ‘Query‘) and expected mammalian phenotype (MP) translations (column

‘Expected’) for which the phenotype titles are exact lexical matches. (B) Precision and path-

length metrics for search-based phenotype translation on the subset of HP terms for which

phenotype titles have exact lexical matches to MP terms. Both metrics are evaluated using the

top search result and using the best choice out of the top 5 search results. Precision is not per-

fect (below unity) because the automated translation is based on the full phenotype descrip-

tion, including synonyms and comments, which are not lexically similar to MP terms. Error

bars represent 5%-95% quantiles. (C) Distribution of path lengths for translations of HP terms

that have exact lexical matches to MP terms. The distribution is dominated by exactly-correct

translations with path-length of zero. (D-F) Analogous to (A-C), but using the subset of HP

terms that do not have exact lexical matches to MP terms based on phenotype title. Panel (D)

illustrates that ‘expected’ MP translations do not always capture the full meaning of the human

phenotypes. Panel (F) shows that search nonetheless produces translations that match the

expected results for almost half the queries. The long tail contributes to lower precision and

high path-length scores for this group of HP terms.

(TIF)

S3 Fig. Diffusion processes for human-to-mouse phenotype translation. (A) Top features

imputed by a diffusion process starting from a query with text ‘activity’. Diffusion transfers

weight from k-mers present in the query to other k-mers associated with enzymes. (k-mers

within the query retain large weights, but are omitted from the figure to emphasize the ranking

of the newly-imputed features.) (B) Calibration of the strength of diffusion for HP-MP transla-

tion. Queries from the HP ontology were diffused with different strengths, and then mapped

to MP terms using the search algorithm. Precision was measured against mappings produced

by owlsim. The shaded area of the graph is reproduced with a zoomed scale on top. (C) Analo-

gous to (B), but measuring the effect of diffusion in terms of path length. (D) Top features

imputed for the query ‘activity’ as in (A), but comparing weights obtained with plain diffusion

and diffusion driven by manual annotations. The effect of manual annotations is to change the
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weights for the imputed features, including the introduction features associated with locomo-

tor movement. (E,F) Examples of diffusion on terms that are present only in a small number

of manual annotations. Some features can appear with negative values when manual annota-

tions specify negative weights. (G) Example of diffusion of an HP term titled ‘paroxysmal

drowsiness’, consisting of many words. (H) Calibration of strengths of diffusion in terms of

precision, using diffusion driven by the MP ontology and manual annotations. (I) Analogous

to (H), but measuring the impact of diffusion in terms of path length.

(TIF)

S1 Table. Complete set of HP-MP translations and evaluation metrics. Columns ‘id’ and

‘name’ refer to queries from the HP ontology. Columns ‘expected’ and ‘expected_name’ denote

MP terms produced by an ontology-aware translation algorithm, owlsim. Columns ‘target’

and ‘target_name’ refer to translations produced by the search algorithm. Column ‘target_N’

lists the top 5 search results. Column ‘method’ indicates the level of data diffusion: ‘plain’ for

search without diffusion, ‘diffused’ for diffusion using co-occurrence within the HP ontology,

and ‘best’ for the best diffusion configuration using both MP and a manual dataset. Columns

‘precision’ and ‘pathlen’ quantify the presence of a match and the extent of disagreement

between expected and target results. Columns ‘precision_bestN’ and ‘pathlen_bestN’ are anal-

ogous fields, but using the best results out of the top 5 search results.

(CSV)
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