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Abstract

The mammalian circadian clock relies on the transcription factor CLOCK:BMAL1 to coordi-

nate the rhythmic expression of 15% of the transcriptome and control the daily regulation of

biological functions. The recent characterization of CLOCK:BMAL1 cistrome revealed that

although CLOCK:BMAL1 binds synchronously to all of its target genes, its transcriptional

output is highly heterogeneous. By performing a meta-analysis of several independent

genome-wide datasets, we found that the binding of other transcription factors at CLOCK:

BMAL1 enhancers likely contribute to the heterogeneity of CLOCK:BMAL1 transcriptional

output. While CLOCK:BMAL1 rhythmic DNA binding promotes rhythmic nucleosome

removal, it is not sufficient to generate transcriptionally active enhancers as assessed by

H3K27ac signal, RNA Polymerase II recruitment, and eRNA expression. Instead, the tran-

scriptional activity of CLOCK:BMAL1 enhancers appears to rely on the activity of ubiqui-

tously expressed transcription factors, and not tissue-specific transcription factors, recruited

at nearby binding sites. The contribution of other transcription factors is exemplified by how

fasting, which effects several transcription factors but not CLOCK:BMAL1, either decreases

or increases the amplitude of many rhythmically expressed CLOCK:BMAL1 target genes.

Together, our analysis suggests that CLOCK:BMAL1 promotes a transcriptionally permis-

sive chromatin landscape that primes its target genes for transcription activation rather than

directly activating transcription, and provides a new framework to explain how environmen-

tal or pathological conditions can reprogram the rhythmic expression of clock-controlled

genes.

Author summary

Circadian clocks in mammals rely on the heterodimeric transcription factor CLOCK:

BMAL1 to drive rhythmic gene expression and allow biological functions to perform best

at the most appropriate time of the day. Investigation of the mechanisms by which

CLOCK:BMAL1 regulates its target genes transcription has led to the paradoxical obser-

vation that while CLOCK:BMAL1 DNA binding is rhythmic and occurs during the day

for all target genes, its transcriptional output is highly heterogeneous. To address this

issue, we analyzed independent genome-wide datasets and found that CLOCK:BMAL1
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DNA binding during the day is associated with a reorganization of the chromatin that is

favorable to transcription activation for all target genes. However, this diurnal CLOCK:

BMAL1 DNA binding and chromatin remodeling is not sufficient to promote a transcrip-

tionally active enhancer, therefore suggesting that CLOCK:BMAL1 cooperates with other

factors to control the transcription of most of its target genes. This hypothesis is supported

by our finding that ubiquitous transcription factors, but not tissue-specific transcription

factors, are differentially recruited at CLOCK:BMAL1 enhancers. Altogether, our data

highlight the critical role of transcription factors recruited at CLOCK:BMAL1 enhancers

in regulating transcription, and present a new mechanistic framework to understand how

changes in the environment can reprogram circadian transcriptional programs.

Introduction

Virtually every mammalian cell harbors a circadian clock that regulates rhythmic gene expres-

sion to enable biological functions to occur at the most appropriate time of day. Circadian

clocks rely on transcriptional feedback loops which are initiated in mammals by the heterodi-

meric transcription factor CLOCK:BMAL1 [for review, 1]. CLOCK:BMAL1 rhythmically

binds to DNA to activate the rhythmic transcription of the core clock genes Period (Per1, Per2,

Per3), Cryptochrome (Cry1 and Cry2), Rev-erb (Rev-erbα and Rev-erbβ) and Ror (Rorα, Rorβ
and Rorγ). Upon expression and maturation, PERs and CRYs form a repressive complex that

rhythmically inhibits CLOCK:BMAL1-mediated transcription first on-DNA and then off-

DNA [2–5]. Furthermore, REV-ERBs and RORs rhythmically regulate Bmal1 expression by

repressing or activating its transcription, which promotes robustness of circadian oscillations

[6, 7]. In addition to activating the rhythmic transcription of core clock components, CLOCK:

BMAL1 also regulates rhythmic expression of thousands of clock-controlled genes to generate

oscillations in biochemistry, physiology and behavior, and thus control the rhythmic organiza-

tion of most biological functions [8–10].

Characterizing the mechanisms through which CLOCK:BMAL1 regulates expression of its

target genes has largely been carried out by determining how CLOCK:BMAL1 regulates the

transcription of core clock genes (Per, Cry and Rev-erb), and target genes (e.g.,Dbp, named for

D site of albumin promoter binding protein). Results from many laboratories show that the rhyth-

mic binding of CLOCK:BMAL1 to e-boxes located in core clock gene promoters is necessary

and sufficient for rhythmic transcription [4, 5, 11–13]. Upon DNA binding during the light

phase, CLOCK:BMAL1 promotes chromatin modifications by recruiting histone-modifying

enzymes to core clock gene promoters and enhancers. These enzymes include the histone acetyl-

transferases p300 and CBP, which mediate the acetylation of H3K9 and H3K27, and the histone

methyltransferases MLL1 and MLL3 (Myeloid/Lymphoid Or Mixed-Lineage Leukemia 1 and

3), which promote the tri-methylation of H3K4 [3, 14–19]. CLOCK:BMAL1 rhythmic DNA

binding was also recently shown to promote rhythmic nucleosome removal, thereby generating

a chromatin landscape that is favorable for the binding of other transcription factors at its

enhancers [20]. Finally, CLOCK:BMAL1 recruits transcriptional co-activators, including com-

ponents of the mediator complex and RNA Polymerase II (Pol II) to initiate core clock gene

transcription [3, 21, 22]. During the repression phase in the early night, binding of the PER/

CRY complex to DNA-bound CLOCK:BMAL1 is accompanied by the co-recruitment of his-

tone deacetylases and demethylases and the removal of the H3K9ac, H3K27ac and H3K4me3

marks [19, 23–27]. While these mechanisms are required for CLOCK:BMAL1-mediated
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transcription activation of core clock genes, it still remains unclear if the same mechanisms reg-

ulate the rhythmic expression of clock-controlled genes.

The recent characterization of CLOCK and BMAL1 mouse liver cistromes revealed that

although CLOCK:BMAL1 binds synchronously during the middle of the day to thousands of

enhancers and promoters, the transcription of its target genes is highly heterogeneous [3, 28–

30]. Indeed, not all CLOCK:BMAL1 target genes are rhythmically expressed, and a large frac-

tion of the rhythmically expressed target genes are transcribed at night, in antiphase to maxi-

mal CLOCK:BMAL1 DNA binding [28]. These data therefore suggest that the mechanisms by

which CLOCK:BMAL1 regulates transcription of core clock genes differs from the regulation

of other clock-controlled genes, and that additional mechanisms account for the activation of

rhythmic gene expression by the circadian clock.

To uncover these mechanisms and to delineate the transcriptional logic underlying

CLOCK:BMAL1 heterogeneous transcriptional output, we performed a meta-analysis of

genome-wide datasets investigating the molecular events occurring at CLOCK:BMAL1 DNA

binding sites, including CLOCK:BMAL1 rhythmic DNA binding, epigenetic modifications

and transcription activation. Our analysis reveals that while CLOCK:BMAL1 DNA binding is

sufficient to decondense the chromatin and prime its enhancers for transcriptional activation,

it is not sufficient to generate transcriptionally active enhancers. Our results also indicate that

many transcription factors bind to CLOCK:BMAL1 enhancers, and their recruitment likely

contributes to CLOCK:BMAL1 clock-controlled transcriptional output. Altogether, our data

support that CLOCK:BMAL1 regulation of clock-controlled gene expression relies on the

cooperation between CLOCK:BMAL1 and other transcription factors. Furthermore, our data

also suggest that a major role of CLOCK:BMAL1 is to generate a permissive chromatin land-

scape to rhythmically prime its enhancers for the recruitment of other transcription factors,

rather than directly promoting transcription activation.

Results

CLOCK:BMAL1 transcriptional output is heterogeneous

To characterize the mechanisms by which CLOCK:BMAL1 regulates the transcriptional activ-

ity of its target genes at the genome-wide level in the mouse liver, we first generated a list of

high-confidence CLOCK:BMAL1 DNA binding sites by determining the overlap between

CLOCK and BMAL1 ChIP-Seq peaks in the mouse liver [3]. This analysis resulted in a list of

3217 CLOCK:BMAL1 binding sites, of which 2458 peaks can be assigned to a direct target

gene (i.e., a CLOCK:BMAL1 peak located between -10kb of a target gene transcription start

site and +1kb of a target gene transcription termination site; see S1 Fig, S1 Table, and methods

section for details). To determine the extent to which rhythmic CLOCK:BMAL1 DNA binding

contributes to rhythmic transcription activation at the genome-wide level, we used a public

mouse liver Nascent-Seq dataset that characterized the levels of nascent RNA expression over

the course of a 24-hr day [28]. A Nascent-Seq dataset was preferred over RNA-Seq because

nascent RNA expression directly reflects transcription activation, and is unaffected by the

post-transcriptional regulations that contribute to rhythmic mRNA expression in the mouse

liver [3, 28, 31]. We found that only a small fraction of CLOCK:BMAL1 target genes are rhyth-

mically transcribed (~26%; S1 Fig). Noticeably, not all rhythmic target genes are transcribed

during the day, i.e., coincidently with rhythmic CLOCK:BMAL1 DNA binding (ZT02-ZT12).

Indeed, 38% of the rhythmic CLOCK:BMAL1 target genes exhibit a peak of transcription

between ZT12 and ZT02, out-of-phase with the rhythmic DNA binding of CLOCK:BMAL1

(n = 124 CLOCK:BMAL1 peaks) (Fig 1A–1C; S1 Fig). Importantly, our analysis also reveals

that the majority of CLOCK:BMAL1 direct target genes are either arrhythmically transcribed
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Fig 1. Mouse liver CLOCK:BMAL1 transcriptional output is heterogeneous. A, B. Mouse liver BMAL1 (blue, A) and

CLOCK (green, B) ChIP-Seq peaks from Koike et al., 2012 were mapped to their target genes and parsed based on their

transcriptional output (Nascent-Seq from Menet et al., 2012, C). Each dot represents the phase of maximal DNA

binding, and the ChIP-Seq signal is displayed using different shades of color to illustrate differences in binding

intensity. C. Heatmap representation of the Nascent-Seq signal of direct CLOCK:BMAL1 target genes classified based

on their transcriptional output in the mouse liver. Each lane represents the Nascent-Seq signal of a gene corresponding
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(AR; n = 654 CLOCK:BMAL1 peaks) or not expressed (NE; n = 291 CLOCK:BMAL1 peaks)

(Fig 1A–1D; S1 Fig). To determine if this result may be due to comparing samples collected in

constant darkness (ChIP-Seq) and in a light:dark (LD) cycle (Nascent-Seq), we also analyzed a

mouse liver BMAL1 ChIP-Seq rhythm performed under LD condition [29]. BMAL1 binding

phase and ChIP-Seq signal under LD condition both exhibit a remarkably high level of similar-

ity to those under DD conditions, and this even for the AR or NE target genes (S2 Fig). This

therefore suggests that the large number of arrhythmically transcribed or not expressed

CLOCK:BMAL1 target genes is not a consequence of using datasets generated under different

lighting conditions. Taken together, these results indicate that the mechanisms underlying

CLOCK:BMAL1-mediated rhythmic transcription of core clock genes (i.e., Per1, Per2, Per3,

Cry1,Cry2, Rev-erbα, Rev-erbβ and Dbp) are not prevalent at the genome-wide level. They also

suggest that the rhythmic recruitment of CLOCK:BMAL1 at its target gene promoters and

enhancers is not sufficient to activate transcription for the majority of its target genes.

CLOCK:BMAL1 heterogeneous transcriptional output is not mediated by

differences in CLOCK:BMAL1 DNA binding

To investigate the mechanisms underlying CLOCK:BMAL1 heterogeneous transcriptional

output, we first examined if differences in the phase, intensity or location of CLOCK:BMAL1

DNA binding might explain the differences in transcription activation. The phase of CLOCK:

BMAL1 DNA binding was found to be indistinguishable between all four transcriptional out-

put categories, as both CLOCK and BMAL1 rhythmically bind to DNA with a peak between

ZT3 and ZT9 for almost all target genes (Fig 1A, 1B and 1E). We then used CLOCK and

BMAL1 ChIP-Seq signal as a readout to determine DNA binding intensity, and found that

both CLOCK and BMAL1 ChIP-Seq signals are significantly higher at DNA binding sites tar-

geting the in-phase transcriptional cyclers (Rinφ) when compared to peaks targeting the 3

other groups (out-of phase cyclers, arrhythmically expressed and non-expressed target genes)

(Fig 1A, 1B and 1F; Kruskal-Wallis test, p< 0.05). Remarkably, the binding intensity of

CLOCK and BMAL1 at non-expressed target genes (NE) is similar to the binding intensity

observed at the out-of-phase transcriptional cyclers (Ro/φ) and arrhythmically transcribed

(AR) target genes, suggesting that CLOCK:BMAL1 DNA binding alone does not directly acti-

vate transcription at most of its target genes (e.g., comparisons between Fig 1D and 1F). To

verify that these results are not due to the cut-offs we used to partition CLOCK:BMAL1 tran-

scriptional output, we performed similar analyses using direct correlations between BMAL1 or

to the CLOCK and BMAL1 peaks in A and B. Nascent-Seq signal was ordered based on the phase of nascent RNA

oscillations for the in-phase and out-of-phase transcriptional cyclers. Ordering of arrhythmically transcribed genes is

based on the peak time of maximal expression; the lack of a distinctive 24-hr rhythm profile of nascent RNA expression

over the 48-hr time-scale is indicative of arrhythmic transcription. No heatmap could be generated for the non-

expressed genes because of the lack of nascent RNA expression. D. Nascent RNA expression, calculated as reads/bp, for

each of the 4 CLOCK:BMAL1 transcriptional output group (Rinφ: in-phase transcriptional cyclers; Ro/φ: out-of-phase

transcriptional cyclers; AR: arrhythmically transcribed target genes; NE: non-expressed target genes). Groups with

different letters are significantly different (Kruskal-Wallis test; p< 0.05). E. Phase of maximal BMAL1 (left) and

CLOCK (right) rhythmic DNA binding for each of the 4 CLOCK:BMAL1 transcriptional output categories. Groups

with different letters are significantly different (Kruskal-Wallis test; p< 0.05). F. BMAL1 (top) and CLOCK (bottom)

ChIP-Seq signal for each of the 4 CLOCK:BMAL1 transcriptional output groups. Signal is also displayed for the Rinφ
and Ro/φ groups after removal of the ChIP-Seq signal at peaks targeting core clock genes. Groups with different letters

are significantly different (Kruskal-Wallis test; p< 0.05). G. Location of CLOCK:BMAL1 peaks within gene loci for

each of the 4 CLOCK:BMAL1 transcriptional output groups. TSS (transcriptional start site; +/- 1kb from annotated

TSS); Gene body: + 1kb from TSS to + 1kb from transcription termination site; Extended promoter: - 10 kb to—1 kb

from the annotated TSS. Numbers correspond to the percentage and numbers of peaks (outside and inside the pie

chart, respectively) within each location for each group. � denotes a significant difference in the distribution of peaks

between the AR and NE groups (chi square test; p< 0.05).

https://doi.org/10.1371/journal.pgen.1007156.g001
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CLOCK ChIP-Seq signal and the phase of rhythmic transcription, as well as by partitioning

rhythmic target genes in five groups of equal sizes. These analyses confirmed our results (S3

and S4 Figs). While rhythmically transcribed target genes peaking from ZT5 to ZT13 exhibit

higher BMAL1 and CLOCK ChIP-Seq signal, no differences in DNA binding signal were

observed between the rhythmically expressed targets peaking from ZT13 to ZT5 and the AR

and NE groups (S3 Fig). In addition, we did not find any significant correlation between either

CLOCK or BMAL1 ChIP-Seq signals and the phase of DNA binding or the phase of rhythmic

transcription (S4 Fig). Because CLOCK:BMAL1 peaks targeting core clock genes are enriched

in the Rinφ and Ro/φ groups and exhibit higher ChIP-Seq signal than clock-controlled (out-

put) genes, we also compared CLOCK and BMAL1 ChIP-Seq signals between groups after

removing peaks targeting the core clock genes (i.e., comparing clock-controlled genes only).

Whereas BMAL1 ChIP-Seq signal intensity was still significantly higher at the Rinφ target

genes compared to the three other groups, CLOCK DNA binding intensity was similar

between all 4 groups (Fig 1F). Our data therefore indicate that while higher BMAL1 DNA

binding signal may contribute to Rinφ transcription, the different transcriptional output of

CLOCK:BMAL1 target genes cannot be explained solely by differences in CLOCK:BMAL1

DNA binding intensity.

We also examined if differences in the location of CLOCK:BMAL1 DNA binding sites are

associated with differences in transcriptional output by mapping CLOCK:BMAL1 peaks to

either the transcription start site (TSS), gene body or extended promoter (-10 kb to -1 kb from

the TSS) of their target genes. While the AR and NE groups were found to be statistically differ-

ent (chi square test; p< 0.05), we did not observe any differences between the rhythmic target

groups (Rinφ and Ro/φ) and the arrhythmically or not expressed groups (Fig 1G). The vast

majority of CLOCK:BMAL1 peaks were located within enhancers (i.e., gene body or extended

promoter), and only ~10–19% of CLOCK:BMAL1 peaks were mapped to TSS. Finally, we exam-

ined if differences in the number of genes targeted by multiple CLOCK:BMAL1 peaks were asso-

ciated with differences in transcriptional output. We found that in-phase transcriptional cyclers

were more frequently targeted by multiple CLOCK:BMAL1 peaks, and that conversely, non-

expressed target genes were less frequently targeted by multiple peaks (S5 Fig). However, the

lack of differences between the Ro/φ and AR groups indicates that the presence of multiple

ChIP-Seq peaks does not directly influence the rhythmicity of CLOCK:BMAL1 target genes.

Taken together, our analysis indicates that CLOCK:BMAL1 heterogeneous transcriptional

output can not be simply attributed to differences in the phase, intensity or location of

CLOCK and BMAL1 binding to the DNA. While stronger DNA binding intensity may con-

tribute to rhythmic transcription during the light phase, additional mechanisms are likely to

contribute to CLOCK:BMAL1 transcriptional output heterogeneity.

Recruitment of PERs and CRYs at CLOCK:BMAL1 DNA binding sites does

not contribute to the heterogeneous CLOCK:BMAL1 transcriptional output

Circadian repression in mammals is initiated at the beginning of the night by the recruitment

of the PER/CRY repressive complex and its associated histone deacetylases and methyltrans-

ferases to CLOCK:BMAL1 on DNA [23–25, 27, 32]. Because a differential recruitment of PERs

and CRYs at CLOCK:BMAL1 DNA binding sites could lead to differences in CLOCK:

BMAL1-mediated transcriptional output (e.g., decreased recruitment at arrhythmically tran-

scribed target genes, delayed recruitment of out-of-phase transcriptional cyclers, etc.), we

investigated the DNA binding profile of PER1, PER2, CRY1 and CRY2 at CLOCK:BMAL1

DNA binding sites for each of the four transcriptional output groups using publically available

ChIP-Seq datasets [3].
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Our analysis shows that PER1, PER2 and CRY2 are rhythmically recruited at CLOCK:

BMAL1 DNA binding sites with little difference between the four transcriptional output

groups (S6 Fig). Maximal DNA binding for PER1, PER2 and CRY2 occur at CT12-16 for all

groups, and differences were mostly observed for CRY2, where higher ChIP-Seq signal was

found for rhythmically expressed target genes (S6 Fig). On the other hand, analysis of CRY1

recruitment to CLOCK:BMAL1-bound enhancers revealed more pronounced differences

between all four groups. CRY1 is a potent circadian repressor that is preferentially recruited at

the beginning of the light phase just prior CLOCK:BMAL1 transcription activation (i.e., CT0-

4), a mechanism proposed to poise CLOCK:BMAL1 for transcription activation [3]. We found

that CRY1 recruitment at CT4 is significantly higher for rhythmically transcribed target genes

(both Rinφ and Ro/φ) than for arrhythmically transcribed and non-expressed genes (S6 Fig).

In addition, CRY1 recruitment was significantly decreased in non-expressed CLOCK:BMAL1

target genes than arrhythmic genes at CT4. These data thus suggest that CRY1 recruitment to

CLOCK:BMAL1 DNA binding sites is, in addition to its well-characterized repressive effect,

linked to rhythmic transcription activation. Consistent with this hypothesis are the higher lev-

els for Ro/φ at CT12 compared to Rinφ (S6 Fig).

REV-ERBα and REV-ERBβ ChIP-Seq signal is higher at CLOCK:BMAL1

peaks targeting genes transcribed at night

Based on the mechanisms mediating the delayed transcription of the CLOCK:BMAL1 target

gene Cry1 [33], a model incorporating the nuclear receptors Rev-erb (repressor) and Ror (activa-

tor), and the D-box transcriptional factors E4bp4 (also calledNfil3; repressor), Dbp,Hlf and Tef
(activators) has been proposed to explain the different phases of rhythmic gene expression in the

mouse liver [33, 34]. In this model, co-binding of D-box transcription factors with CLOCK:

BMAL1 is proposed to delay the phase of CLOCK:BMAL1 target genes from the morning to the

afternoon (i.e., from ~ZT6 to ~ZT12), and additional binding of REV-ERBs and RORs would

further delay the phase of transcription to the night (e.g., ~ZT18). To test if the binding of

REV-ERBs and D-box transcription factors contribute to the delay of the out-of-phase CLOCK:

BMAL1 target genes, we used publicly available ChIP-Seq datasets to determine REV-ERBα,

REV-ERBβ [35], and E4BP4 [36] DNA binding intensity at CLOCK:BMAL1 enhancers. We

find that REV-ERBα and REV-ERBβ DNA binding, which peaks at ZT10 for all target genes

[35], is significantly higher at CLOCK:BMAL1 peaks targeting genes transcribed during the

night [consistent with the model proposed based on Cry1 expression; 33, 34], and no differences

were observed between Rinφ, AR and NE target genes (Fig 2A and 2B; Kruskal-Wallis test,

p< 0.05). The binding of E4BP4, which is maximal at ZT22 [36], was also enriched at CLOCK:

BMAL1 enhancers targeting the Ro/φ genes, but to a lesser extent than what was observed for

the REV-ERBs (Fig 2C). In particular, no significant difference in enrichment was observed

between the Rinφ and the Ro/φ groups, perhaps because co-binding of both CLOCK:BMAL1

and D-box transcription factors drives rhythmic transcription in the afternoon around ZT12, a

time used for our cut-off to differentiate the in-phase from out-of-phase transcription cyclers. In

summary, our analysis indicates that the binding of REV-ERBα and REV-ERBβ (and eventually

E4BP4) at CLOCK:BMAL1 enhancers may, as suggested by others [33, 34], contribute to the

delayed transcription of rhythmically expressed CLOCK:BMAL1 target genes.

CLOCK:BMAL1 promotes rhythmic nucleosome removal independently of

its transcriptional output

Our inability to detect substantial differences in CLOCK:BMAL1 DNA binding that would

explain the heterogeneity of CLOCK:BMAL1 transcriptional output suggests that mechanisms
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other than the recruitment of core clock proteins to target gene promoters control CLOCK:

BMAL1-mediated transcription. The recent finding that CLOCK:BMAL1 promotes the

removal of nucleosomes when bound to DNA may represent one of these mechanisms [20].

Indeed, by mediating the removal of nucleosomes, CLOCK:BMAL1 would enable other tran-

scription factors to access CLOCK:BMAL1 enhancers (most transcription factors bind better

to naked DNA than DNA wrapped around nucleosomes).

To test if CLOCK:BMAL1-mediated nucleosome removal can contribute to the heterogene-

ity of CLOCK:BMAL1 transcriptional output, we examined mouse liver nucleosome signal

over the 24-hr day at CLOCK:BMAL1 DNA binding sites for each of the transcriptional output

groups, using a public MNase-Seq dataset (micrococcal nuclease digestion of mouse liver chro-

matin at 6-time points and high-throughput sequencing of mononucleosomes [20]). Our anal-

ysis reveals that nucleosome signal is rhythmic at CLOCK:BMAL1 DNA binding sites for each

of the transcriptional output categories, i.e., even at CLOCK:BMAL1 DNA binding sites tar-

geting arrhythmically transcribed and non-expressed genes (Fig 3A–3D; S7 Fig). Importantly,

the phase of the rhythms is similar for all groups and minimal nucleosome signal coincides

with maximal CLOCK:BMAL1 DNA binding during the light phase. Closer inspection of the

levels of nucleosome signal and rhythm amplitude reveals important differences between each

of the four transcriptional output categories (Fig 3E). First, the amplitude of the rhythms is sig-

nificantly decreased for arrhythmically transcribed target genes. While minimal levels of

nucleosome signal during the day are similar between the AR and Rinφ groups, nucleosome

signal remains low during the night (i.e., when CLOCK:BMAL1 is not bound to DNA) at

Fig 2. REV-ERBα and REV-ERBβ ChIP-Seq signal is higher at CLOCK:BMAL1 DNA binding sites targeting genes

transcribed at night. A-C (Left). Average ChIP-Seq signal for REV-ERBα (A), REV-ERBβ (B) and E4BP4 (C) at CLOCK:BMAL1

DNA binding sites (center ± 1kb) for each of the 4 CLOCK:BMAL1 transcriptional output group. A-C (Right). Distribution of

REV-ERBα (A), REV-ERBβ (B) and E4BP4 (C) ChIP-Seq signal at CLOCK:BMAL1 peaks for each of the 4 CLOCK:BMAL1

transcriptional output groups (signal for each peak was averaged at CLOCK:BMAL1 peak center ± 250bp). Groups are labeled as

in Fig 1. Those with different letters are significantly different (Kruskal-Wallis test; p< 0.05). REV-ERBα and REV-ERBβ ChIP

were performed from mice liver collected at ZT10, while E4BP4 ChIP was performed from mice liver collected at ZT22. ChIP-Seq

datasets were retrieved from Cho et al., 2012 [35], and E4BP4 ChIP-Seq datasets from Fang et al., 2014 [36].

https://doi.org/10.1371/journal.pgen.1007156.g002
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CLOCK:BMAL1 peaks targeting AR genes (Fig 3E). This suggests that some transcription fac-

tors may be still bound to DNA during the night in the AR group (when CLOCK:BMAL1 is

not bound to DNA), thereby preventing the reformation of nucleosomes. This may promote

transcription at night and thus lead to arrhythmic transcription. Second, the overall nucleo-

some signal is significantly lower at CLOCK:BMAL1 peaks targeting Ro/φ genes than for Rinφ

Fig 3. CLOCK:BMAL1 rhythmic DNA binding is associated with rhythmic nucleosome signal, but not with rhythmic histone

post-translational modifications and eRNA transcription. A-D. Rhythmic nucleosome signal at CLOCK:BMAL1 DNA binding

sites for each of the 4 CLOCK:BMAL1 transcriptional output groups: (A) Rhythmic-in-phase (Rinφ, red); (B) Rhythmic out-of-phase

(Ro/φ, orange); (C) arrhythmic (AR, black); (D) non expressed (NE, grey) target genes). Nucleosome signal was retrieved from mouse

liver MNase-Seq datasets [20], which consists of 6 time points each separated by 4 hours with n = 4 mice for each time point. (Left):
6-time points rhythm of nucleosome signal at CLOCK:BMAL1 binding sites (calculated at CLOCK:BMAL1 peak center ± 75 bp for

each peak), displayed as the average ± s.e.m. of the signal (n = 4) calculated for each mouse and for each transcriptional output

category. The phase of rhythm (average ± s.e.m. from 4 independent rhythm) is indicated in the bottom right. Each rhythm is double-

plotted for better visualization. (Right): average nucleosome signal for each transcriptional output group at CLOCK:BMAL1 DNA-

binding sites (±0.6 kb) during the light phase (ZT2, ZT6, and ZT10; green) and dark phase (ZT14, ZT18, and ZT22; red/orange) of

wild-type mice and in Bmal1-/- mice (average signal for six time points; black). E. maximal and minimal nucleosome signal from the

6-time points rhythms for each of the CLOCK:BMAL1 transcriptional output groups. Groups with different letters are significantly

different (2-way ANOVA; p< 0.05). F. Circadian rhythm of H3K27ac ChIP-Seq signal in the mouse liver at CLOCK:BMAL1 DNA

binding sites (calculated at CLOCK:BMAL1 peak center ± 1 kb) for each of the 4 CLOCK:BMAL1 transcriptional output group.

Datasets were retrieved from Koike et al., 2012 [3] and re-analyzed (see methods for more details). Values correspond to the ChIP-Seq

signal median for each group. Each rhythm is double-plotted for better visualization. G. Rhythm of enhancer RNA (eRNA) signal in

the mouse liver at CLOCK:BMAL1 DNA binding sites (calculated at CLOCK:BMAL1 peak center ± 500 bp) for each of the 4 CLOCK:

BMAL1 transcriptional output groups. Datasets were retrieved from Fang et al., 2014 [36] and re-analyzed (see methods for more

details). Values correspond to the eRNA signal median for each group. Each rhythm is double-plotted for better visualization.

https://doi.org/10.1371/journal.pgen.1007156.g003
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genes, without any significant effect on the amplitude of the rhythm (Fig 3E). In addition, the

time of minimal nucleosome signal is delayed by 4 hours between Rinφ and Ro/φ: while it

coincides with the time of maximal CLOCK:BMAL1 DNA binding for Rinφ genes (ZT06), min-

imal nucleosome signal is observed at ZT10 for Ro/φ genes. This delayed nucleosome signal for

the out-of-phase transcriptional cyclers may be explained by the significant recruitment of

REV-ERBα and REV-ERBβ (Fig 2A and 2B). Indeed, CLOCK:BMAL1 has been recently pro-

posed to facilitate circadian repression by promoting the recruitment of REV-ERBα through

chromatin decondensation [37]. Thus, the increased binding of REV-ERBs at CLOCK:BMAL1

enhancers at ZT10 may promote a further decrease in nucleosome signal. Furthermore, anti-

phase binding of the RORs on ROREs during the night would prevent a full nucleosome re-

compaction, thereby promoting lower levels of nucleosome signal at CLOCK:BMAL1 peaks tar-

geting Ro/φ target genes. Finally, there are no significant differences of nucleosome signal

between CLOCK:BMAL1 DNA binding sites targeting in-phase transcriptional cyclers than

those targeting non-expressed target genes (Fig 3E). This intriguing result suggests that

although CLOCK:BMAL1 is unable to promote transcription activation at NE target genes, its

rhythmic DNA binding still mediates a rhythm in nucleosome signal. One possible explanation

for this result is that CLOCK:BMAL1 decondenses the chromatin to facilitate the binding of

other transcription factors, but those would not be recruited at NE target genes except under

specific conditions (e.g. environmental stressors), thereby preventing activation of transcription

under standard conditions.

CLOCK:BMAL1 does not directly contribute to the transcriptional activity

of its enhancers

Our data indicate that CLOCK:BMAL1 rhythmic DNA binding promotes the rhythmic

removal of nucleosomes at all four transcriptional output categories. We then asked if

CLOCK:BMAL1 can also promote the formation of transcriptionally active enhancers. To

address this question, we used public datasets [3, 36, 38] to examine the rhythmic pattern of

two independent markers of enhancer activity at CLOCK:BMAL1 DNA binding sites: the

post-translational modification H3K27 acetylation (H3K27ac), which positively correlates

with enhancer activity at almost all enhancers and TSS [39], and the expression levels of

enhancer RNA (eRNA), which are relatively short non-coding RNA molecules (50–2000

nucleotides) transcribed at active enhancer regions [40].

While mouse liver H3K27ac ChIP-Seq signal is rhythmic and high during the light phase at

CLOCK:BMAL1 DNA binding sites targeting in-phase transcriptional cyclers (consistent with

CLOCK:BMAL1 directly facilitating the acetylation of H3K27; Fig 3F and S8 Fig), significant

differences were observed at CLOCK:BMAL1 DNA binding sites targeting the other 3 tran-

scriptional output categories. Rhythmic H3K27ac rhythm is delayed for the out-of-phase tran-

scriptional cyclers, and the amplitude of H3K27ac rhythm is significantly dampened at

CLOCK:BMAL1 DNA binding sites targeting arrhythmically transcribed genes (Fig 3F and

S8A Fig). Remarkably, levels of H3K27ac are close to background levels at CLOCK:BMAL1

peaks targeting non-expressed genes. Given that CLOCK:BMAL1 rhythmically binds to rela-

tively similar levels for all four transcriptional output categories, our analysis suggests that

CLOCK:BMAL1 DNA binding does not directly contribute to the acetylation of H3K27.

To extend on this observation, we then examined another marker of enhancer transcrip-

tional activity by assessing eRNA expression at CLOCK:BMAL1 DNA binding sites using a

publicly available GRO-Seq dataset [36]. The analysis confirmed the results obtained with

H3K27ac (Fig 3G). Rhythmic eRNA expression is only observed at CLOCK:BMAL1 enhancers

targeting rhythmically transcribed genes, and eRNA expression at enhancers targeting non-

Regulation of circadian clock transcriptional output by CLOCK:BMAL1

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007156 January 4, 2018 10 / 34

https://doi.org/10.1371/journal.pgen.1007156


expressed genes is dramatically decreased to levels close to background (Fig 3G). Importantly,

these differences in eRNA expression between the four CLOCK:BMAL1 transcriptional output

categories are further corroborated by similar variations in RNA Polymerase II (Pol II) ChIP--

Seq signal at CLOCK:BMAL1 enhancers (S8C Fig). Altogether, our analysis therefore demon-

strates that, contrary to what has been typically found for core clock genes, CLOCK:BMAL1

DNA binding is not sufficient to promote the activation of its enhancers. Instead, our results

suggest that CLOCK:BMAL1 rhythmically opens the chromatin to facilitate the binding of

other transcription factors at its enhancers, and that the nature of these transcription factors

(e.g., activators, repressors) significantly contributes to CLOCK:BMAL1 transcriptional

output.

Differential recruitment of transcription factors at CLOCK:BMAL1

enhancers

To test our hypothesis that transcription factors bind at CLOCK:BMAL1 enhancers to contrib-

ute to their transcriptional activity and thereby impact on CLOCK:BMAL1-mediated tran-

scription, we assessed if transcription factors were differentially recruited at CLOCK:BMAL1

DNA binding sites within each transcriptional output group. To this end, we performed a

DNA binding motif analysis using HOMER Software Suite that we further validated using

mouse liver transcription factor ChIP-Seq datasets.

As expected, the motif analysis revealed that CLOCK:BMAL1 DNA binding motif (e-box of

the sequence CACGTG) is highly enriched at CLOCK:BMAL1 enhancers for all transcrip-

tional output categories (Fig 4A). Surprisingly however, we found that motifs for liver-specific

transcription factors (e.g., Cebp,Hnf1, Hnf4 andHnf6) were also enriched for all four tran-

scriptional output categories, and thus even at CLOCK:BMAL1 enhancers targeting non-

expressed genes (Fig 4B, S9 Fig, and S2 Table). On the contrary, motifs for ubiquitous tran-

scription factors (u-TFs; broadly expressed transcription factors with a transcriptional activity

regulated by external factors) were almost always enriched for specific CLOCK:BMAL1 tran-

scriptional output groups (Fig 4C, S9 Fig, and S2 Table). For example, CRE motif was enriched

at all CLOCK:BMAL1 enhancers except those targeting out-of-phase transcriptional cyclers,

and FXR motif was enriched at all CLOCK:BMAL1 enhancers except those targeting out-of-

phase transcriptional cyclers. Noticeably, the motifs for NF-κB [which binds to DNA and

becomes transcriptionally active upon infection and inflammation; 41, 42], and CTCF [which

establishes discrete functional chromatin domains by promoting DNA looping; 43, 44, 45]

were enriched at enhancers targeting non-expressed genes.

To assess the relevance of this difference of motif enrichments between tissue-specific (ts-

TFs) and u-TFs, we determined the DNA binding pattern of several transcription factors at

CLOCK:BMAL1 enhancers in the mouse liver using publicly available transcription factors

ChIP-Seq datasets [46–51]. This in vivo analysis largely confirmed the computational motif

analysis: most liver-specific TFs were found to bind at CLOCK:BMAL1 DNA binding sites

independently of the transcriptional output, whereas u-TFs were more specifically enriched

in specific CLOCK:BMAL1 transcriptional output groups (Fig 4D, E, S10 Fig, and S3 Table).

For example,Hnf4a andHnf1 are the only liver-specific TF to exhibit a differential binding

between CLOCK:BMAL1 transcriptional output groups of the six TFs tested (Foxa1, Foxa2,

Hnf1, Hnf4A, Hnf6 and Cepba). Conversely, all twelve u-TFs investigated exhibit DNA binding

differences at CLOCK:BMAL1 enhancers between categories of transcriptional output (Fig 4D

and 4E, S10 Fig). Although each u-TF bound to different subsets of CLOCK:BMAL1 enhanc-

ers, u-TF recruitment was generally higher in rhythmically expressed target genes and lower in

non-expressed target genes compared to the arrhythmic CLOCK:BMAL1 target group. (Fig
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Fig 4. Tissue-specific and ubiquitous transcription factors are differentially recruited at CLOCK:BMAL1 enhancers.

A-C. Enrichment for the DNA binding motif of CLOCK:BMAL1 (A), tissue-specific transcription factors (B) and
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4D and 4E, S10 Fig, and S3 Table). To further characterize the differences in TF DNA binding

between CLOCK:BMAL1, u-TFs and ts-TFs, we computed a TF DNA binding variability

index by calculating the standard deviation of the ChIP-Seq signal between the 4 CLOCK:

BMAL1 transcriptional output groups (see methods for details). We found that the DNA bind-

ing variability at CLOCK:BMAL1 peaks is comparable between CLOCK:BMAL1 and ts-TFs,

whereas there is significantly more variability for u-TFs than for CLOCK and BMAL1 when

peaks targeting core clock genes are removed from the analysis (Fig 4G). While there are vari-

ability index differences among ts-TFs and u-TFs, this analysis further supports our finding

that u-TF recruitment at CLOCK:BMAL1 peaks is globally more variable than for ts-TF (Fig

4G).

CLOCK:BMAL1 likely cooperates with other transcription factors to

regulate the transcription of its direct target genes

Altogether, our data indicate that the mechanisms by which CLOCK:BMAL1 regulates tran-

scription of clock-controlled genes differ from the well-characterized CLOCK:BMAL1-me-

diated regulation of core clock gene expression. Specifically, our data show that although

CLOCK:BMAL1 mediates rhythmic nucleosome removal at its enhancers, it is not sufficient

to generate an active enhancer or drive rhythmic transcription. We thus propose a model

whereby CLOCK:BMAL1 regulates transcription of clock-controlled genes by rhythmically

opening chromatin to facilitate the binding of other transcription factors at its enhancers (Fig

5A). This possibility is supported by results showing that nucleosome signal is rhythmic at the

DNA binding sites of several TFs when those sites are located close to a CLOCK:BMAL1 peak,

and not rhythmic when CLOCK:BMAL1 binding is absent (S11 Fig). Consequently, the tran-

scriptional activities of these transcription factors would dictate the transcriptional outcome

of clock-controlled genes rather than CLOCK:BMAL1 (Fig 5A). For example, binding of posi-

tive transcription factors along with CLOCK:BMAL1 would activate enhancers and lead to

transcription activation during the day, whereas binding of transcriptional repressors (e.g.,

REV-ERBα/β) would inhibit CLOCK:BMAL1 enhancer activity and thereby contribute to

rhythmic transcription peaking during the night, in anti-phase with CLOCK:BMAL1 DNA

binding (Fig 5A). If no transcription factors are recruited (e.g., inducible transcription factors),

CLOCK:BMAL1 enhancers remain silent and target genes are not expressed or are arrhythmi-

cally expressed (Fig 5A). Arrhythmically expressed genes at CLOCK:BMAL1 enhancers may

also have positive transcription factors bound at all times overriding the absence of CLOCK:

BMAL1 DNA binding at night (see result section about rhythmic nucleosome signal and Fig

ubiquitous transcription factors (C) at CLOCK:BMAL1 DNA binding sites for each of the four CLOCK:BMAL1

transcriptional output categories. Enrichment was calculated using HOMER and is reported as the ratio between the

calculated enrichment over the calculated background. � q< 0.05 (Benjamini-Hochberg procedure). D-F. ChIP-Seq signal

of tissue-specific transcription factors (D), ubiquitous transcription factors (E), and transcriptional co-activators / RNA

Polymerase II at ZT6 (F) at CLOCK:BMAL1 DNA binding sites (peak center ± 250bp) for each of the transcriptional

output categories. Groups with different letters are significantly different (Kruskal-Wallis test; p< 0.05). G. Transcription

factor DNA binding variability index at CLOCK:BMAL1 DNA binding sites. The TF DNA binding variability index

reflects differential TF DNA binding by calculating the variance of TF ChIP-Seq signal between the four CLOCK:BMAL1

transcriptional output groups (see methods for details). The variability index is displayed as a dot for each TF: CLOCK,

BMAL1, PER1, PER2, CRY1, CRY2 (blue), seven ts-TFs (CEBPA, CEBPB, FOXA1, FOXA2, HNF1, HNF4A, and HNF6;

red), thirteen u-TFs (REV-ERBα, REV-ERVβ, RORα, E4BP4, RXR, LXR, PPARα, GR-ZT12, E2F4, STAT5, BCL6, ERα,

and GABPA; green), as well as for p300, CBP, and Pol II at seven time points (ZT02 to ZT26) (black). The horizontal lines

represent the variability index median for the first 3 groups of TF. ChIP-Seq datasets used in this analysis are described in

the method section. The variability index was calculated using all CLOCK:BMAL1 peaks analyzed in Fig 1 (left), or

CLOCK:BMAL1 peaks that do not target a clock gene (removal of TF ChIP-Seq signal at peaks targeting Per1, Per2, Cry2,

Dbp, Rev-erbα, and Rev-erbβ,Tef, Hlf, Gm129, and Rorγ; right).

https://doi.org/10.1371/journal.pgen.1007156.g004
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3E). Our results also suggest that u-TFs regulate CLOCK:BMAL1 transcriptional output more

prevalently than ts-TFs. It may be that ts-TFs facilitate the binding of CLOCK:BMAL1 at tis-

sue-specific enhancers rather than contributing to CLOCK:BMAL1 transcriptional output (see

discussion). To validate this model experimentally, we investigated how i) Bmal1 knockout,

and ii) changes in environmental conditions (that alter u-TFs transcriptional activities) affect

CLOCK:BMAL1 transcriptional output.

If the activity of u-TFs contributes to CLOCK:BMAL1 regulation of clock-controlled gene

transcription, then, a knockout of Bmal1 (which eliminates CLOCK:BMAL1-mediated tran-

scription [52]) should differentially affect the expression of CLOCK:BMAL1 target genes.

Fig 5. CLOCK:BMAL1 regulation of clock-controlled gene expression likely relies on the cooperation of CLOCK:BMAL1 with other

transcription factors. A. Proposed model incorporating tissue-specific (ts-TFs) and ubiquitous (u-TFs) transcription factors into CLOCK:BMAL1

regulation of clock-controlled gene transcription. See text for details. B, C. Intron (B) and exon (C) signals of direct CLOCK:BMAL1 target genes

classified based on their transcriptional output (Rinφ: in-phase transcriptional cyclers; Ro/φ: out-of-phase transcriptional cyclers; AR: arrhythmically

transcribed target genes; NE: non-expressed target genes), in wild-type (left) and Bmal1-/- (right) mouse liver. Values correspond to the median RPKM

for each transcriptional output group, and are displayed as the average ± s.e.m. of four (wild-type) or two (Bmal1-/-) independent samples for each

time point. Data were retrieved from public RNA-Seq datasets [53], and are double-plotted for better visualization. D-G. Rhythm of mRNA expression

in the liver of mice fed ad libitum (blue) or fasted for at least 22 hours (orange). Data were retrieved from a public dataset [56]. Mouse liver mRNA

expression is displayed for Clock and Bmal1 (D), as well as CLOCK:BMAL1 target genes that are rhythmically expressed (E), arrhythmically expressed

(F), or not expressed (G) in the liver of mice fed ad libitum.

https://doi.org/10.1371/journal.pgen.1007156.g005
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Specifically, target gene expression levels in Bmal1-/-mouse should be arrhythmic and low for

the in-phase transcriptional cyclers (no recruitment of positive transcription factors at

CLOCK:BMAL1 enhancers), while they should be arrhythmic and high for the out-phase tran-

scription cyclers (no recruitment of repressors at CLOCK:BMAL1 enhancers). These effects

should also be more obvious during the light phase when CLOCK:BMAL1 binds to DNA. In

addition, Bmal1 knockout should have a reduced effect on arrhythmically and non-expressed

target genes. These predictions were confirmed by analyzing a public dataset that characterized

the genome-wide effect of Bmal1 knockout in the mouse liver using RNA-Seq of rRNA-

depleted total RNA (Fig 5B and 5C) [53]. For both intronic and exonic RNA-Seq signal, the

expression of Rinφ genes in Bmal1-/-mouse liver is at the trough level of wild-type mice, and

at peak levels in Ro/φ genes. Moreover, Bmal1 knockout does not significantly affect the

expression levels of arrhythmic and non-expressed CLOCK:BMAL1 target genes (Fig 5B and

5C).

Our model also predicts that the transcriptional output of CLOCK:BMAL1 target genes can

be altered by environmental changes that affect u-TF DNA binding capacity. External signals

that activate or repress the binding of u-TFs are predicted to impact CLOCK:BMAL1 co-

operation with other transcription factors, and thereby change the transcriptional output of

CLOCK:BMAL1 target genes. For example, signals that enable the recruitment of positive

transcription factors at CLOCK:BMAL1 enhancers could increase the amplitude of rhythmic

transcription and/or initiate the rhythmic expression of target genes that are arrhythmic under

control conditions. Conversely, signals that inhibit the binding of transcription factors that

normally cooperate with CLOCK:BMAL1 could blunt the rhythmic expression of some

CLOCK:BMAL1 target genes. To test this hypothesis, we analyzed how fasting, which is

known to affect the transcriptional activity of many u-TFs [54, 55], alters CLOCK:BMAL1

target gene expression in the mouse liver using a public dataset [56]. Strikingly, while the

expression of Clock, Bmal1 and several direct rhythmic target genes (e.g., Phf17, Slc16a2) are

unaffected by fasting, some other targets exhibit a significantly altered gene expression profile

(Fig 5D–5G, S12 Fig for additional examples). For example, some rhythmic target genes

become arrhythmically expressed under fasting (e.g., Sgk2, Flcn) while other targets exhibit an

increased amplitude of expression (e.g., Gnat1, Gm129) (Fig 5E). Remarkably, some direct

CLOCK:BMAL1 target genes that are arrhythmically or not expressed under ad libitum condi-

tion become rhythmically expressed under fasting condition (Fig 5F and 5G). Because not all

CLOCK:BMAL1 target genes are equally affected by fasting, these results cannot simply be

explained by a global change in CLOCK:BMAL1 transcriptional activity under fasting condi-

tion. One possibility is that fasting enhances or represses the transcriptional capabilities of sev-

eral u-TFs that cooperate with CLOCK:BMAL1, thereby altering the transcriptional output of

many direct CLOCK:BMAL1 target genes. Similar results were found by analyzing a public

dataset investigating the effect of high-fat diet on rhythmic gene expression in the mouse liver

(S13 Fig) [57].

Discussion

Based on the mechanisms by which CLOCK:BMAL1 regulates the expression of several core

clock genes, it is commonly assumed that the rhythmic binding of CLOCK:BMAL1 to DNA is

necessary and sufficient to drive the rhythmic transcription of its target genes. However, the

recent characterization of CLOCK and BMAL1 cistromes in the mouse liver revealed that

CLOCK:BMAL1 target gene transcription is highly heterogeneous, thereby suggesting that

CLOCK:BMAL1 regulation of clock-controlled gene expression relies on more complex mech-

anisms than those underlying core clock gene rhythmic transcription [3, 28–30]. We report
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here that CLOCK:BMAL1 heterogeneous transcriptional output does not stem from differ-

ences in the DNA binding profiles of CLOCK and BMAL1, or the PER/CRY circadian re-

pressive complex. Instead, we found that while CLOCK:BMAL1 rhythmically promotes

chromatin decondensation at its enhancers, it is not sufficient to promote transcription activa-

tion. Based on these data and the characterization of transcription factor DNA binding profiles

at CLOCK:BMAL1 enhancers, we propose that CLOCK:BMAL1 regulates the expression of

clock-controlled genes by generating a permissive chromatin landscape that facilitates the

binding of other transcription factors at its enhancers rather than directly promoting rhythmic

transcription. Interestingly, analysis of a random set of genes not directly targeted by CLOCK:

BMAL1 but exhibiting similar profiles of expression of the four CLOCK:BMAL1 transcrip-

tional output categories suggests that this mechanism is largely specific to CLOCK:BMAL1

(S14 Fig).

The current models describing the regulation of rhythmic gene expression by circadian

clocks in other eukaryotes are also based on how core clock components regulate their own

transcription via transcriptional feedback loops. For example, the mechanisms underlying

transcriptional regulation by CLOCK:BMAL1 orthologs in Neurospora (WCC for White Col-

lar Complex) and Drosophila (CLK:CYC heterodimer) are based largely on how they regulate

the expression of the core clock genes frequency (in Neurospora), and period and timeless (in

Drosophila) [2, 58–60]. Given that the circadian clock mechanisms are highly conserved in

eukaryotes, it is likely that both WCC and CLK:CYC also regulate their target gene expression

by remodeling the chromatin and facilitating the binding of other transcription factors. Con-

sistent with this hypothesis, WCC and CLK:CYC transcriptional outputs are also heteroge-

neous [61, 62], and both recruit chromatin remodelers to promote nucleosome eviction at

their binding sites [63–67].

The recent characterization of many transcription factor cistromes revealed that the num-

ber of transcription factor DNA binding sites often exceeds the number of anticipated target

genes, suggesting that many of these DNA binding sites are non-functional [68, 69]. Although

many CLOCK:BMAL1 DNA binding sites could be considered as non-functional because they

target arrhythmically or not expressed genes, the observation that CLOCK:BMAL1 rhythmi-

cally promotes nucleosome eviction at enhancers targeting both arrhythmically expressed

(albeit with a decreased amplitude) and non-expressed genes instead indicates that CLOCK:

BMAL1 rhythmic DNA binding is not “silent”. More specifically, our data suggest that the

majority of CLOCK:BMAL1 DNA binding events are functional, in that they rhythmically

shape the chromatin landscape, and that transcription activation requires additional down-

stream events to be initiated (e.g., recruitment of other transcription factors). This hypothesis

is further supported by our finding that CLOCK:BMAL1 does not directly generate a tran-

scriptionally active enhancer. Indeed, both H3K27ac ChIP-Seq signal and eRNA transcription

are minimal at CLOCK:BMAL1 enhancers targeting non-expressed genes, and are delayed at

CLOCK:BMAL1 enhancers targeting out-of-phase transcriptional cyclers (Fig 3F and 3G).

The observation that H3K27ac ChIP-Seq signal at CLOCK:BMAL1 enhancers correlates with

CLOCK:BMAL1 transcription output rather than CLOCK:BMAL1 DNA binding phase/inten-

sity seems inconsistent with the well-described interactions between core clock proteins and

histone modifiers [3, 14–19, 26], and thus raises the question on whether or not CLOCK:

BMAL1 DNA binding occurs with enzymatically activate histone modifiers. Interestingly,

instances of enhancers bound by p300/CBP but lacking H3K27ac (and transcriptional activity)

have been described at enhancers targeting developmental genes in human ES cells [70, 71].

Those enhancers, which are termed poised enhancers, share most of the properties of active

enhancers, including similar levels of nucleosome depletion, p300, and chromatin remodelers

binding. However, these poised enhancers are unable to drive gene expression in ES cells until
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they acquire H3K27ac signal during differentiation [71]. Here we found that the binding of

CBP and p300 at non-expressed target genes is above background levels, and that the differ-

ences in CBP and p300 DNA binding between non-expressed and expressed target genes are

smaller than those observed for H3K27ac and Pol II ChIP-Seq signal (Figs 3Fand 4F, S10 Fig).

It is thus tempting to speculate that the concept of poised enhancers extends to the circadian

field, with CLOCK:BMAL1 rhythmically priming the chromatin landscape of “circadian

poised enhancers”. While those circadian poised enhancers would share properties of active

enhancers (similar CLOCK:BMAL1 DNA binding, nucleosome eviction rhythm, etc.), they

would be transcriptionally inactive and require the binding of other transcription-associated

factors needed to trigger H3K27ac and rhythmic transcription.

Investigation of the transcription factors that are recruited at CLOCK:BMAL1 enhancers

revealed a surprising difference between u-TFs and ts-TFs. In particular, ts-TFs are recruited

at similar levels between expressed and non-expressed CLOCK:BMAL1 target genes, suggest-

ing that they do not significantly contribute to the heterogeneity of CLOCK:BMAL1 trans-

criptional output. Because ts-TFs are known to establish tissue-specific enhancers and enable

the binding of u-TFs in a tissue-specific manner [72–75], it is likely that ts-TFs contribute

primarily to the binding of CLOCK:BMAL1 at tissue-specific enhancers and thus enable the

generation of a tissue-specific circadian transcriptional program [8–10, 76]. Contrary to ts-

TFs, u-TFs appear to bind at CLOCK:BMAL1 enhancers targeting specific transcriptional out-

put categories, suggesting that their nature (i.e., activator or repressor, constitutively active or

inducible), as well as mode of cooperation with CLOCK:BMAL1, likely contributes to the het-

erogeneity of CLOCK:BMAL1 target gene transcription. For example, the transcriptional

repressors REV-ERBα and REV-ERBβ are enriched at CLOCK:BMAL1 enhancers targeting

out-of-phase transcriptional cyclers, agreeing with the recently proposed model of facilitated

repression whereby CLOCK:BMAL1 remodels its enhancer chromatin to facilitate the recruit-

ment of REV-ERBs and delay the transcriptional output of some of its target genes [37]. Since

rhythmically expressed genes tend to exhibit higher u-TF ChIP-Seq signal than arrhythmic

and non-expressed genes (S10 Fig), and given the low expression of in-phase transcriptional

cyclers in Bmal1-/-mice, we propose that a major function of CLOCK:BMAL1 is to facilitate

the recruitment of both positive and negative transcription factors to drive the rhythmic tran-

scription of clock-controlled genes (i.e., not just to facilitate the binding of the circadian

repressors REV-ERBα/β). Although the mechanisms underlying of this cooperation between

CLOCK:BMAL1 and other transcription factors are still unknown, nucleosome-mediated

cooperation between transcription factors is not unprecedented [77–82], and several papers

have shown that two non-interacting TFs can synergistically bind to DNA through a mecha-

nism whereby the first TF leads to partial unwrapping of nucleosomal DNA, thus making the

site of the second TF more accessible and thereby increasing DNA binding.

This cooperation between CLOCK:BMAL1 and other TFs may explain why a large fraction

of CLOCK:BMAL1 target genes are not expressed: u-TF recruitment is not sufficient to acti-

vate CLOCK:BMAL1 enhancers and promote transcription. In support of this idea, CLOCK:

BMAL1 enhancers targeting non-expressed target genes are enriched for the NF-κB trans-

cription factor motif, which is known to mediate transcriptional response to immune and

inflammatory responses [41]. Because the genome-wide characterization of circadian clock

mechanisms has mostly been carried out in healthy mice raised in standard laboratory con-

ditions, NF-κB is likely inactive, sequestered in the cytosol and its target genes are not exp-

ressed. CLOCK:BMAL1 may thus prime NF-κB DNA binding upon inflammation or immune

response, thereby triggering a rhythmic response to acute infection. Interestingly, such a

mechanism may explain, at least in part, why the immune host response oscillates based on the

time-of-day bacterial infection [83–86]. We also found that CLOCK:BMAL1 enhancers at
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non-expressed target genes are enriched for the transcription factor CTCF (CCCTC-binding

factor; Fig 4A). CTCF is known to promote long-range interactions between two or more

genomic sequences, and thus bring sequences that are far apart in the linear genome into close

proximity [44]. This may suggest that some CLOCK:BMAL1 DNA binding sites situated in

non-expressed gene loci actually target other clock-controlled genes located hundreds of kilo-

bases apart through long-range interactions, as recently described for one CLOCK:BMAL1

DNA binding site in the mouse liver [87]. Although it is impossible to assess the prevalence of

CLOCK:BMAL1 binding sites mediating long-range chromatin interactions without the

appropriate experiments, we found a few examples suggesting that this is a likely possibility

(S15 Fig).

Transcription regulation in higher eukaryotes relies on the activity of multiple enhancers

[88, 89]. It is thus likely that CLOCK:BMAL1 target gene expression results from a complex

integration between CLOCK:BMAL1 enhancers and other enhancers. Our results indicate that

enhancers targeting the same gene typically share the same transcriptional activity profiles

(H3K27ac signal, eRNA levels, and Pol II ChIP-Seq signal; S8 Fig). Based on these observa-

tions, we cannot exclude that other enhancers targeting arrhythmically expressed CLOCK:

BMAL1 target genes outcompete CLOCK:BMAL1 enhancers, to produce constitutive ex-

pression. Further experiments aimed at revealing hierarchical influences of enhancers on the

regulation of gene expression at the genome-wide level will be required to directly test this

hypothesis.

It was recently proposed that altering the environmental conditions can reprogram circa-

dian transcriptional programs (e.g., high-fat diet and antibiotics treatment in the liver, LPS

treatment in the lung [57, 90–92]). Our model that CLOCK:BMAL1 regulates the expression

of clock controlled genes by facilitating the binding of other TFs represents a mechanistic

framework for explaining how environmental signals can mediate this transcriptional repro-

gramming. Indeed, activation of new signaling pathways by environmental changes is likely to

modulate multiple transcriptional programs, thereby altering how CLOCK:BMAL1 cooperate

with those programs to drive rhythmic gene expression. Importantly, this mechanism may

also explain, at least in part, why the number and nature of rhythmically expressed genes vary

between datasets and laboratories [93–95]. Indeed, differences in diet, light environment and

housing may all lead to changes in u-TF transcriptional activity, which may in turn affect

clock-controlled gene expression.

In conclusion, our data indicate that the mechanisms by which CLOCK:BMAL1 regulates

the transcription of core clock genes do not apply to clock-controlled genes, and suggest that

the primary function of CLOCK:BMAL1 is to regulate the chromatin landscape at its enhanc-

ers to facilitate the binding of other transcription factors. Our results therefore highlight the

emerging role of other transcription factors in regulating the ~15% of genes that are rhythmi-

cally expressed in a given mammalian tissue, and suggests that clock-controlled gene expres-

sion relies more on the interplay between the circadian clock and other signaling pathways.

Given that the majority of CLOCK:BMAL1 target genes are either arrhythmically or not

expressed under standard conditions, our data also suggest that these non-oscillating genes

may become rhythmically expressed under other environmental and/or pathological condi-

tions, and thus expand the total number of genes under circadian control to more than 50% in

mammals [10]. Finally, because the clockwork mechanisms are highly conserved between

eukaryotes (e.g., heterogeneous transcriptional output, poor reproducibility between datasets

characterizing circadian gene expression, regulation of chromatin landscape by core clock

components), it is likely that the mechanisms we uncovered largely apply to all eukaryotic cir-

cadian clocks.
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Materials and methods

Sequencing datasets and alignment to the mouse genome

Unless notified below, publically available datasets used in this paper were downloaded from

the NCBI or EBI websites in either sra or fastq formats (see Table 1 for accession numbers).

Table 1. Public datasets used in this study.

Reference SRA/GEO dataset Data Remapped

Koike et al., 2012 [3] GSE39977 ChIP-Seq: BMAL1, CLOCK, PER1, PER2, CRY1,CRY2, H3K27ac Yes1

Menet et al., 2012 [28] GSE36916 Nascent-Seq

RNA-Seq

Yes2

Rey et al., 2011 [29] GSE26602 ChIP-Seq: BMAL1 Yes

Cho et al., 2012 [35] GSE34020 ChIP-Seq: Reverba, Reverbb Yes

Menet et al., 2014 [20] GSE47145 MNase-Seq Yes3

Le Martelot et al., 2012

[22]

GSE35790 ChIP-Seq: RNA polymerase II (Pol II) Yes

Vollmers et al., 2012

[38]

SRA025656 ChIP-Seq: H3K9ac, H3K27ac Yes

Fang et al., 2014 [36] GSE59486 ChIP-Seq: E4BP4, Roralpha

GRO-Seq

Yes4

Ling et al., 2010 [98] GSE21777 DNase-Seq No5

Faure et al., 2012 [46] https://www.ebi.ac.uk/arrayexpress/

experiments/E-MTAB-941/

ChIP-Seq: GABPA, HNF1, HNF4A, E2F4, CEBPA, HNF6, p300, CBP,

CTCF

Yes

Lim et al., 2015 [47] GSE59752 ChIP-Seq: CEBPB, GR Yes

Boergesen et al.,

2012 [48]

GSE35262 ChIP-Seq: LXR, PPARa, RXR Yes

Gordon et al., 2014

[50]

GSE52351 ChIP-Seq: ERalpha Yes

MacIsaac et al., 2010

[49]

GSE17067 ChIP-Seq: FOXA1, FOXA2 Yes

Zhang et al., 2012

[51]

GSE31578 ChIP-Seq: BCL6, STAT5 Yes

Atger et al., 2015 [53] GSE73554 RNA-Seq: Wild-type and Bmal1-/- mouse liver No6

Eckel-Mahan et al.,

2015 [57]

GSE52333 Mouse liver RNA expression (microarray data) from wild-type mice fed

normal chow or high fat diet

No7

Vollmers et al., 2009

[56]

GSE13093, GSE13064 Mouse liver RNA expression (microarray data) from wild-type mice fed ad

libitum or subjected to fasting for 24 hours.

Yes

1 Datasets from Koike et al., 2012 were downloaded as sra files and remapped to the mouse genome (mm10 version) to analyze ChIP-Seq signal at various enhancers.

However, we used the CLOCK and BMAL1 peak coordinates provided in the S2 Table of the original paper to generate our list of high confidence CLOCK:BMAL1

DNA binding sites (see details below), and also determine the phase and intensity of CLOCK and BMAL1 DNA binding.
2 Nascent-Seq and RNA-Seq dataset were remapped to the mouse genome version mm10 (e.g., to generate the S14 Fig). However, Nascent-Seq and RNA-Seq signals

were retrieved from the original paper (Fig 2—source data 1 and Fig 3—source data 2) and used to generate the data presented in Fig 1.
3 While fastq files were remapped to the mouse genome version mm10, further analysis was performed as described in the original paper [20]. For example, the 50nt

reads were extended to 147nt to match the length of a mononucleosome.
4 Analysis of the GRO-Seq dataset has been performed similarly to the original paper and reads were also extended to 150bp as in Fang et al., 2014 [36].
5 No reanalysis of the DNase-Seq was performed. The file GSE21777_M-CM_peaks.txt, which contain the list of DNaseI hypersensitive sites (DHS) in the mouse liver,

was downloaded from the ncbi website (GSE21777) and the DHS peak coordinates (mouse genome version mm9) were converted to mouse genome version mm10

using a liftOver tool downloaded from the UCSC genome browser website (conversion resulted in a list of 104,556 DHS peaks).
6 The processed files with intron and exon RNA-Seq signal (fpkm) from wild-type and Bmal1-/-mouse liver were downloaded from the ncbi website and directly used

to generate the Fig 5B and 5C (files GSE73554_KO_RF_Intron_Exon_RFP.txt and GSE73554_WT_RF_Intron_Exon_RFP.txt).
7 Processed microarray data were downloaded from the ncbi website and used to generate the Fig 5D–5G. The original statistical analysis performed by the authors and

provided as supplementary S2 Table from the journal Cell website was used in our study to assess rhythmic gene expression.

https://doi.org/10.1371/journal.pgen.1007156.t001
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Files in sra format were converted to fastq files using the sratoolkit (version 2.3.5–2). Fastq

files were mapped to the mouse genome (version mm10) using bowtie2 [96] or tophat2 [97].

For all datasets, we only considered reads that mapped uniquely to the mouse genome (i.e.,

one unique genomic location). Datasets were further filtered to remove duplicated reads using

samtools (rmdup function) or a custom-made script. Additional information is provided for

each dataset as Supplementary Materials and Methods.

Identification of CLOCK:BMAL1 DNA binding sites

Genomic locations of CLOCK and BMAL1 DNA binding sites in the mouse liver provided in

the original paper (supplementary S2 Table) [3] were used to generate our list of high confi-

dence CLOCK:BMAL1 DNA binding sites. Genomic locations were converted to the mm10

version of the mouse genome using UCSC genome browser liftOver tools, and processed as

indicated in S1 Fig to generate our list of high confidence CLOCK:BMAL1 DNA binding sites.

Overlap between CLOCK and BMAL1 ChIP-Seq peaks was determined using bedtools (inter-

sectBed) and coordinates from BMAL1 ChIP-Seq datatsets were further kept to generate a list

of 3217 CLOCK:BMAL1 peaks. We also used the original data provided by the authors in their

S2 Table to assign CLOCK:BMAL1 peaks to their putative target genes (original analysis per-

formed using HOMER tools). In particular, we defined a CLOCK:BMAL1 target gene as a

gene with at least one CLOCK:BMAL1 peak located between -10kb of the transcription start

site and +1kb from the transcription termination site. Using this criteria, 2458 CLOCK:

BMAL1 peaks were assigned to a target gene, and the remaining 759 peaks were assigned as an

intergenic CLOCK:BMAL1 DNA binding site.

The 2458 CLOCK:BMAL1 peaks assigned to a target gene were then parsed based on the

transcription profile of their target genes using the Nascent-Seq datasets from Menet et al.,

2012 [28]. We directly used the original Nascent-Seq expression values and the assessment of

their rhythmic expression from the original paper without performing new analysis. Details on

how genes were determined to be rhythmically transcribed are provided in Supplementary

Materials and Methods. Using these data, CLOCK:BMAL1 peaks were parsed into 4 different

categories of transcriptional output (see also S1 Fig):

(i) Rhythmic transcription in phase with CLOCK:BMAL1 binding (peak of transcription

between ZT02 and ZT12), 205 CLOCK:BMAL1 peaks,

(ii) Rhythmic transcription out-of-phase with CLOCK:BMAL1 binding (peak of transcription

between ZT12 and ZT02), 124 CLOCK:BMAL1 peaks,

(iii) Arrhythmic transcription, 654 CLOCK:BMAL1 peaks (criteria used to defined arrhythmic

transcription are detailed in Supplementary Materials and Methods). Note that to decrease

the number of false positive in the list of arrhythmically expressed genes, we removed genes

that exhibit arrhythmic nascent RNA expression, but exhibit rhythmic mRNA expression

(using the RNA-Seq dataset from Menet et al., 2012 [28],

(iv) Not transcribed (average reads/bp between the 12 sample< 1), 291 CLOCK:BMAL1 peaks.

The remaining peaks, which were not analyzed in this study, were categorized as:

(v) Post-transcriptional cyclers, 262 CLOCK:BMAL1 peaks. These peaks target genes with an

arrhythmic Nascent-Seq signal, but rhythmic RNA-Seq signal (based on the reads/bp values

published in Menet et al., 2012 datasets [28]).

(vi) Low expression levels, 588 CLOCK:BMAL1 peaks. These CLOCK:BMAL1 peaks target

genes with Nascent-Seq and/or RNA-Seq signals that are below threshold for the analysis of
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rhythmic expression, but above the threshold of 1 read/bp set to define the “not-expressed”

CLOCK:BMAL1 target genes. These thresholds were defined in Menet et al., 2012 [28].

(vii) No signal value, 334 CLOCK:BMAL1 peaks. These peaks were assigned to a target gene

(defined as described above with the HOMER software and localization criteria), but no

information was found in the Nascent-Seq or RNA-Seq. Several of these peaks target genes

encoding for a non-coding RNA, as well as genes with alternative gene symbol.

The list of the 3217 CLOCK:BMAL1 peaks parsed into the different transcriptional output

categories is provided in S1 Table. The phase of rhythmic CLOCK:BMAL1 DNA binding,

ChIP-Seq signal, and genomic location of CLOCK:BMAL1 DNA binding sites were retrieved

from the Koike et al., 2012 original paper supplementary S2 Table [3] and processed to gener-

ate the analysis presented in Fig 1.

Analysis of ChIP-Seq, MNase-Seq and GRO-Seq signal at CLOCK:BMAL1

peaks

ChIP-Seq, MNase-Seq and GRO-Seq signal was retrieved from bam files containing uniquely

mapped reads (and duplicated reads removed) at CLOCK:BMAL1 enhancers using custom-

made scripts [20]. Specifically, signal was retrieved at:

• CLOCK:BMAL1 peak center ± 250 bp for transcription factors, CBP, p300 and Pol II,

• CLOCK:BMAL1 peak center ± 1kb for histone modifications,

• CLOCK:BMAL1 peak center ± 500 bp for eRNA,

• CLOCK:BMAL1 peak center ± 75bp for nucleosome signal,

and normalized to the sequencing depth. Differences in the window size were calculated

based on the width of the ChIP-Seq signal at CLOCK:BMAL1 DNA binding sites (e.g.,

H3K27ac ChIP-Seq signal is significantly wider than any transcription factor ChIP-Seq signal).

Because we aimed at assessing the role of CLOCK:BMAL1 in removing a nucleosome at its

DNA binding site, we chose a narrower window size of 150bp (see Fig 3A–3D). All analyses

were performed at individual CLOCK:BMAL1 ChIP-Seq peaks, and this even for peaks target-

ing the same gene. Data presented in S4 Fig examined the role of multiple peaks targeting the

same gene on BMAL1 and CLOCK ChIP-Seq signals. For all datasets, ChIP-Seq signal is dis-

played as the number of reads/bp per 100,000,000 reads.

Analysis of ChIP-Seq and GRO-Seq signal at other enhancers targeting

CLOCK:BMAL1 target genes

Enhancers lying into CLOCK:BMAL1 target gene loci (-10kb from the transcription start site

to +1kb from the transcription termination site) were identified using a public mouse liver

DNAse-Seq dataset (see above) [98] and bedtools (intersectBed function). Enhancers were

then parsed based on the presence or not of a CLOCK:BMAL1 ChIP-Seq peak (3155 out of the

3217 CLOCK:BMAL1 ChIP-Seq peaks are located into a DNaseI hypersensitive site). Because

a majority of the 104,556 DHS peaks only displayed low levels of ChIP-Seq (transcription fac-

tors, Pol II, H3K27ac) and GRO-Seq signals [as shown in the ENCODE project, 99, 100], we

filtered the number of DHS lying into a CLOCK:BMAL1 target gene by only considering those

being into the top 40,000 DHS list (based on DNase-Seq signal), obtaining the following num-

ber of DHS peaks:

(i) In-phase transcription cyclers: 1548 DHS peaks,
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(ii) Out-of-phase transcription cyclers: 1189 DHS peaks,

(iii) Arrhythmically expressed target genes, 5830 DHS peaks,

(iv) Not expressed target genes, 991 DHS peaks.

H3K27ac and Pol II ChIP-Seq signals, as well as GRO-Seq (eRNA) signal, were retrieved at

those DHS sites (as well as those overlapping with a CLOCK:BMAL1 peak) using the DHS

peak coordinate and normalized to 100,000,000 reads. Signal was then normalized to the coor-

dinate length (in bp) to obtain the signal displayed as reads/bp per 100,000,000 reads. The

coordinates used were, for the same reason as above for CLOCK:BMAL1 DNA binding sites:

• H3K27ac ChIP-Seq: DHS genomic coordinate center ± 1 kb,

• Pol II ChIP-Seq: DHS “real” genomic coordinates,

• GRO-Seq (eRNA signal): DHS genomic coordinate center ± 500 bp.

Because our analysis revealed the existence of small but significant overall variations of

H3K27ac and Pol II ChIP-Seq signal between time points (see S8 Fig), we further normalized

the datasets by performing either a mean normalization (H3K27ac) or a ranking analysis (Pol

II). For H3K27ac ChIP-Seq datasets [3, 38], averaged H3K27ac signal was calculated at the top

40,000 DHS peaks (the top 40,000 DHS peaks concentrate the majority of TFs DNA binding

sites; peak center ± 1 kb; total of 104,556 total DHS peaks; dataset from Ling et al., 2010 [98])

for each time point. This averaged signal was then used to normalize the raw H3K27ac ChIP--

Seq signal, by calculating for each time point the ratio between H3K27ac signal for each peak

and this averaged signal (see S8 Fig). Pol II ChIP-Seq dataset [22] were normalized by per-

forming a ranking normalization (method similar to a quantile normalization). To this end,

Pol II ChIP-Seq signal was calculated at all 104,556 DHS peaks (peaks mapped in Ling et al.,

2010 paper [98]), and sorted based on the ChIP-Seq values. The raw values for each DHS peak

were then normalized using the sorted averaged ChIP-Seq signal at each of the 104,556 ranks

for all time points.

Motif analysis

Motif analysis was performed at CLOCK:BMAL1 enhancers (original peak coordinates) for

each of the transcriptional categories using the findsMotifGenome.pl script from the HOMER

suite. Parameters were as the following: -size given–len8. The resulting table was sorted by the

q-value and a q-value less than 0.05 was considered significant. Percent enrichment (percent

of target sequences with motifs / percent of background sequences with motif) was then calcu-

lated for motifs found to be significant in at least one of the CLOCK:BMAL1 transcriptional

output category. Results of the motif analysis are provided as S2 Table.

Determination of the TF DNA binding variability index

To determine the variance of each TF DNA binding (CLOCK, BMAL1, ts-TFs and u-TFs)

between the four CLOCK:BMAL1 transcriptional output categories, we computed a TF DNA

binding “variability index” based on the analysis performed in S10 Fig. The variability index

was calculated by summing up the standard deviation of the ChIP-Seq signal between the 4

transcriptional output groups, which was calculated for each decile (0.1 to 0.9) and normalized

to the averaged signal for each decile (the standard deviation is higher for upper deciles

because ChIP-Seq signals are higher). This index reflects differential DNA binding strength

between groups, as similar binding between the 4 groups results in small standard deviation

values for each decile, and thus a small variability index. Conversely, differences in DNA
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binding signal between groups result in larger standard deviation values and thus a larger vari-

ability index.

Generation of a list of control genes not targeted by CLOCK:BMAL1

To determine if the results described in this paper are specific to CLOCK:BMAL1, we also per-

formed an analysis on genes not targeted by CLOCK:BMAL1, but exhibiting similar profiles of

expression to the 4 CLOCK:BMAL1 transcriptional output categories (Rinφ, Ro/φ, AR and

NE). To this end, 125 genes were randomly selected for each of the 4 groups, using criteria

similar to those used to define CLOCK:BMAL1 transcriptional output (see above). Levels of

expression for each group were not significantly different to those of CLOCK:BMAL1 target

genes (Kruskal-Wallis test). Nucleosome signal, H3K27ac ChIP-Seq signal, Pol II ChIP-Seq

signal, eRNA expression, tissue specific and ubiquitous transcription factor ChIP-Seq signal

were all calculated as described above for CLOCK:BMAL1 target genes. Statistical analysis was

also performed similarly to CLOCK:BMAL1 transcriptional output.

Statistical analysis

Statistical analysis was done using JMP, Version Pro 12.0.1. SAS Institute Inc., Cary, NC,

1989–2007. Differences in sequencing signal, represented in the boxplot graphs, were analyzed

for statistical enrichment using the nonparametric Kruskal-Wallis test. Rhythmic analysis of

nucleosome signal and ChIP-Seq signal was performed using a Fourier analysis (Fig 3A–3D)

(see Supplementary Materials and Methods for details). Differences in the amplitude of nucle-

osome signal rhythm (Fig 3E) were analyzed using a 2-way ANOVA. Differences in CLOCK:

BMAL1 ChIP-Seq peaks genomic location were analyzed using a chi-square test (Fig 1G), and

differences in the number of CLOCK:BMAL1 peaks per target genes (S5A Fig) were analyzed

by a Fisher’s exact test. Differences were considered significant when p< 0.05.

Supporting information

S1 Fig. Assignment of CLOCK:BMAL1 DNA binding sites to their target gene transcrip-

tional output in the mouse liver. Flowchart illustrating the procedure used to identify

CLOCK:BMAL1 target genes and to determine their transcriptional output in the mouse liver.

See methods section for details. Briefly, publicly available lists of CLOCK and BMAL1 DNA

binding sites [from 3] were compared and the overlapping CLOCK and BMAL1 peaks were

identified as CLOCK:BMAL1 DNA binding sites (BMAL1 peak coordinates were kept for

downstream analysis). Of the 3217 identified CLOCK:BMAL1 peaks, 2458 were assigned to a

target gene (peak located by HOMER software between -10kb of a gene transcription start site

and +1kb of a gene transcription termination site). The remaining 759 peaks were listed as

intergenic. The list of 2458 CLOCK:BMAL1 peaks was then parsed based on their target genes

transcriptional output using our publicly available Nascent-Seq analysis of rhythmic transcrip-

tion in the mouse liver [28]. 329 CLOCK:BMAL1 peaks were found to target rhythmically

transcribed genes in the mouse liver. Of these, 205 peaks were found to target rhythmically

transcribed genes with a peak of transcription coinciding with CLOCK:BMAL1 rhythmic

DNA binding (from ZT02 to ZT12; in-phase rhythmic transcriptional cyclers or Rinφ),

whereas 124 peaks were targeting genes with a peak of rhythmic transcription out-of-phase

with CLOCK:BMAL1 DNA binding (from ZT12 to ZT02; out-of-phase transcription cyclers

or Ro/φ). A total of 916 CLOCK:BMAL1 peaks were assigned to genes exhibiting an arrhyth-

mic nascent RNA profile. To ensure that these target genes are “true” arrhythmically expressed

target genes, the list was further filtered by removing those exhibiting rhythmic mRNA expres-

sion [using the dataset from 28], resulting in a final list of 654 CLOCK:BMAL1 peaks targeting
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arrhythmically transcribed genes. Finally, the remaining CLOCK:BMAL1 peaks were assigned

to genes expressed below the expression threshold set to determine rhythmic gene expression.

Because this threshold is set to call rhythmically expressed genes with high confidence rather

than calling “true” non-expressed genes, we further filtered this list of peaks by removing

genes exhibiting an averaged signal greater than 1 read/bp for the 12 time points of the

Nascent-Seq dataset. This filtering resulted in a list of 291 CLOCK:BMAL1 peaks targeting

non-expressed genes. The list of the 3217 CLOCK:BMAL1 peaks parsed based on their target

gene transcription, and used in our meta-analysis, is provided in S1 Table.

(TIF)

S2 Fig. Effect of LD vs. DD lighting conditions on BMAL1 rhythmic DNA binding. Mouse

liver BMAL1 ChIP-Seq datasets performed in mouse exposed to LD12:12 (Rey et al., 2011) or

constant darkness (DD, Koike et al., 2012) were compared to determine if the lighting condi-

tions (LD vs. DD) impact BMAL1 rhythmic DNA binding phase and signal. A. Correlation

between BMAL1 ChIP-Seq signal in LD and DD for each of the 4 CLOCK:BMAL1 transcrip-

tional output categories (rhythmic-in-phase (Rinφ, red); rhythmic out-of-phase (Ro/φ,

orange); arrhythmic (AR, black); and non expressed (NE, grey) target genes). Peaks targeting

core clock genes are depicted with an open circle. B. Correlation between the phase of BMAL1

DNA binding in LD and DD for each of the 4 CLOCK:BMAL1 transcriptional output catego-

ries. C. Correlation between the phase of BMAL1 DNA binding in LD and DD for all 3217

CLOCK:BMAL1 ChIP-Seq peaks from the Koike et al., 2012 dataset (see methods section for

details, and S1 Table). ChIP-Seq peaks were classified based on BMAL1 ChIP-Seq signal from

Koike et al., 2012, and divided into 4 equal size quartiles. Peaks with higher ChIP-Seq signal

display a better phase correlation in BMAL1 rhythmic DNA binding.

(TIF)

S3 Fig. Analysis of BMAL1 and CLOCK ChIP-Seq signal based on the phase of target gene

transcription. A. Analysis of BMAL1 ChIP-Seq signal from Koike et al. (2012) at CLOCK:

BMAL1 peaks targeting rhythmically transcribed genes (RG), arrhythmically transcribed

genes (AR) or not transcribed genes (NE). Peaks targeting rhythmic targets are binned in 5

groups of equal size for either all peaks (n = 329; groups RG1 to RG5), or those targeting non-

core clock genes only (n = 307; groups RG1’ to RG5’). Data are represented as boxplots for

each group and time points, and the thick line displays CLOCK:BMAL1 DNA binding rhythm

based on the median of ChIP-Seq signal. Statistical analysis was performed by Kruskal-Wallis

non-parametric test, and pair-wise post-hoc analyses are displayed for each of the six time

points using color-coding of the p-values. B. Phases of nascent RNA expression of rhythmically

transcribed CLOCK:BMAL1 target genes are displayed for either all rhythmic target genes

(left, groups RG1 to RG5), or only non-core clock rhythmic target genes (right, groups RG1’ to

RG5’). Nascent RNA expression was retrieved from Menet et al., 2012. C. Analysis of CLOCK

ChIP-Seq signal from Koike et al. (2012) at CLOCK:BMAL1 peaks was performed as for

BMAL1 ChIP-Seq signal in A. D. Nascent RNA expression of rhythmically transcribed

CLOCK:BMAL1 is displayed for either all rhythmic targets (groups RG1 to RG5), or for non-

core clock target genes (groups RG1’ to RG5’), as well was for arrhythmically transcribed target

genes (AR), or non-expressed target genes (NE). Groups with different letters are significantly

different (Kruskal-Wallis test; p< 0.05).

(TIF)

S4 Fig. Correlation analysis between CLOCK:BMAL1 ChIP-Seq signal and CLOCK:

BMAL1 target genes nascent RNA expression. A. Correlation between BMAL1 and CLOCK

ChIP-Seq signal at CLOCK:BMAL1 ChIP-Seq peaks in the mouse liver from Koike et al., 2012
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datasets, parsed based on the transcriptional output of CLOCK:BMAL1 target genes (in-phase

transcriptional cyclers, Rinφ, red; out-of-phase transcriptional cyclers, Ro/φ, orange, arrhyth-

mically transcribed target genes, AR, black; not transcribed target genes, NE, grey; see text for

details). B. Correlation between BMAL1 (top) and CLOCK (bottom) ChIP-Seq signal and the

phase of nascent RNA expression of rhythmic CLOCK:BMAL1 target genes in the mouse liver

(Nascent-Seq data from Menet et al., 2012). The dash lines depict the cut-offs used to partition

the in-phase cyclers (Rinφ; from ZT02 to ZT12) to the out-of-phase cyclers (Ro/φ; from ZT12

to ZT02). Distinction is made between CLOCK:BMAL1 peaks targeting core clock genes

(Per1, Per2, Cry2,Dbp, Rev-erbα, and Rev-erbβ; circles filled in red), extended core clock genes

(Tef, Hlf, Gm129, and Rorγ; circles filled in orange), to those targeting clock-controlled genes

(filled in blue and green for BMAL1 and CLOCK, respectively). CLOCK:BMAL1 peaks target-

ing arrhythmically transcribed genes (circles filled in black) and non expressed genes (circles

filled in grey) are shown for comparison. C. Correlation between the phase of BMAL1 (top) or

CLOCK (bottom) DNA binding and the phase of transcription of rhythmically transcribed

CLOCK:BMAL1 target genes in the mouse liver. D. Correlation between BMAL1 ChIP-Seq

signal and nascent RNA expression levels of CLOCK:BMAL1 target genes in the mouse liver,

parsed based on the transcriptional output of CLOCK:BMAL1 target genes.

(TIF)

S5 Fig. Contribution of CLOCK:BMAL1 peaks targeting the same genes to CLOCK:

BMAL1 ChIP-Seq signal and CLOCK:BMAL1 target gene nascent RNA expression. A. The

number of CLOCK:BMAL1 target genes is displayed based on the number of CLOCK:BMAL1

ChIP-Seq peaks for each of the 4 categories of CLOCK:BMAL1 transcriptional output (in-

phase transcriptional cyclers, Rinφ, red; out-of-phase transcriptional cyclers, Ro/φ, orange,

arrhythmically transcribed target genes, AR, black; not transcribed target genes, NE, grey; see

text for details). Top table: all CLOCK:BMAL1 target genes; Middle table: target genes without

core clock genes (Per1, Per2, Cry2,Dbp, Rev-erbα, and Rev-erbβ); Bottom table: CLOCK:

BMAL1 target genes without core clock genes (Per1, Per2, Cry2,Dbp, Rev-erbα, and Rev-erbβ)

and other associated clock genes (Tef, Hlf, Gm129, and Rorγ). Yellow boxes indicate the loca-

tion of clock genes within the table. The distribution of the number of CLOCK:BMAL1 ChIP--

Seq peaks per gene is also displayed as a pie chart for all CLOCK:BMAL1 peaks. Groups with

different letters are significantly different (Fischer’s exact test (two-sided test); p< 0.05). B, C.

BMAL1 (B) and CLOCK (C) ChIP-Seq signal at CLOCK:BMAL1 ChIP-Seq peaks (from Koike

et al., 2012) is displayed for each of CLOCK:BMAL1 transcriptional output category. In this

analysis, ChIP-Seq signal at CLOCK:BMAL1 peaks targeting the same gene was summed up

(see panel A for the number of genes with multiple peaks for each category). Groups with dif-

ferent letters are significantly different (Kruskal-Wallis test; p< 0.05). D. Nascent RNA

expression of CLOCK:BMAL1 target genes parsed based on CLOCK:BMAL1 target gene tran-

scription, for all CLOCK:BMAL1 targets (left), target genes without core clock genes (middle),

and target genes without core clock genes and other associated clock genes (Tef, Hlf, Gm129,

and Rorγ). Groups with different letters are significantly different (Kruskal-Wallis test;

p< 0.05).

(TIF)

S6 Fig. Recruitment of PERs and CRYs to CLOCK:BMAL1 peaks does not correlate with

the heterogeneous CLOCK:BMAL1 transcriptional output. A. (Left) Circadian rhythm of

BMAL1 and CLOCK ChIP-Seq signal in the mouse liver at CLOCK:BMAL1 DNA binding

sites for each of the 4 CLOCK:BMAL1 transcriptional output groups. (Right) Distribution of

BMAL1 and CLOCK ChIP-Seq signal for each of the 4 CLOCK:BMAL1 transcriptional output

groups at the time of maximal DNA binding (CT04 for BMAL1 and CT08 for CLOCK). B.
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(Left) Circadian rhythm of PER1, PER2, CRY1, and CRY2 ChIP-Seq signal in the mouse liver

at CLOCK:BMAL1 DNA binding sites for each of the 4 CLOCK:BMAL1 transcriptional out-

put groups. (Right) Distribution of PER1, PER2, CRY1, and CRY2 ChIP-Seq signal for each of

the 4 CLOCK:BMAL1 transcriptional output group at the time of maximal DNA binding

(CT16 for PER1 and PER2, CT04 for CRY1 and CT12 for CRY2. For both A and B panels,

datasets were retrieved from Koike et al., 2012 and re-analyzed (see methods section for more

details). Values correspond to the ChIP-Seq signal median for each group. To improve visuali-

zation, CT0 ChIP-Seq values were repeated at CT24. Groups with different letters are signifi-

cantly different (Kruskal-Wallis test; p< 0.05).

(TIF)

S7 Fig. Rhythmic nucleosome signal at CLOCK:BMAL1 DNA binding sites. A-D: Nucleo-

some signal was retrieved from mouse liver MNase-Seq datasets (Menet et al., 2014), which

consists of 6 time points each separated by 4 hours with n = 4 mice for each time point. Each

graph displays a 6-time points rhythm of nucleosome signal at CLOCK:BMAL1 binding sites

(calculated at CLOCK:BMAL1 peak center ± 75 bp for each peak), displayed as the average ± s.

e.m. of the signal (n = 4) calculated for each mouse and for each transcriptional output cate-

gory: (A) Rhythmic-in-phase (Rinφ, red); (B) Rhythmic out-of-phase (Ro/φ, orange); (C)

arrhythmic (AR, black); (D) non expressed (NE, grey) target genes). The phase of rhythm

(average ± s.e.m. from 4 independent rhythm, calculated by Fourier transform) is indicated in

the bottom right. Each rhythm is double-plotted for better visualization. For both Rinφ and

Ro/φ groups, the nucleosome rhythm is calculated at all CLOCK:BMAL1 peaks targeting

rhythmic target genes (left), or only at peaks targeting rhythmic non core clock genes (removal

of nucleosome signal at peaks targeting Cry2,Dbp, Rev-erbα, and Rev-erbβ for the Rinφ group,

and of the peaks targeting Per1 and Per2 for the Ro/φ group. E: maximal and minimal nucleo-

some signal from the 6-time points rhythms for each of the CLOCK:BMAL1 transcriptional

output groups. Groups with different letters are significantly different (2-way ANOVA;

p< 0.05).

(TIF)

S8 Fig. CLOCK:BMAL1 does not directly promote H3K27ac post-translational modifica-

tion. A. Circadian rhythm of H3K27ac ChIP-Seq signal in the mouse liver at CLOCK:BMAL1

DNA binding sites (Left; blue background) or at non-CLOCK:BMAL1 enhancers located in

CLOCK:BMAL1 target genes (Right; green background) for each of the 4 CLOCK:BMAL1 tran-

scriptional output groups: rhythmic-in-phase (Rinφ, red); rhythmic out-of-phase (Ro/φ,

orange); arrhythmic (AR, black); and non expressed (NE, grey) target genes. Datasets were

retrieved from Koike et al., 2012 (top) or Vollmers et al., 2012 (bottom) and re-analyzed (see

methods section for more details). Values correspond to the ChIP-Seq signal median for each

group, and were calculated for each CLOCK:BMAL1 peak as the average of reads/bp at

CLOCK:BMAL1 DNA binding sites center ± 1 kb normalized to one million sequencing

reads. For each dataset, H3K27ac ChIP-Seq signal was further normalized by mean normaliza-

tion to account for the differences in ChIP-Seq efficiency between each sequencing sample

(bottom graphs for each datasets). This normalization assumes that the overall genome-wide

levels of H3K27ac are constant at any time in the mouse liver. To this end, we normalized

H3K27ac ChIP-Seq signal for each peak to the averaged H3K27ac signal calculated at the top

40,000 DNase hypersensitive sites for each time point Graphs are double-plotted to improve

visualization. B. Rhythm of enhancer RNA (eRNA) signal in the mouse liver at enhancers tar-

geting a CLOCK:BMAL1 target gene and that do not harbor a CLOCK:BMAL1 DNA binding

site (calculated at CLOCK:BMAL1 peak center ± 500 bp) for each of the 4 CLOCK:BMAL1

transcriptional output group. Datasets were retrieved from Fang et al., 2014 [36] and re-

Regulation of circadian clock transcriptional output by CLOCK:BMAL1

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007156 January 4, 2018 26 / 34

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007156.s007
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007156.s008
https://doi.org/10.1371/journal.pgen.1007156


analyzed (see methods section for details). Values correspond to the eRNA signal median for

each group. Each rhythm is double-plotted for better visualization. C. Rhythm of RNA Poly-

merase II ChIP-Seq signal in the mouse liver at CLOCK:BMAL1 enhancers (top) and enhanc-

ers targeting a CLOCK:BMAL1 target gene but without a CLOCK:BMAL1 DNA binding site

for each of the 4 CLOCK:BMAL1 transcriptional output group. Datasets were retrieved from

Le Martelot et al., 2012 [22], re-analyzed and normalized by a ranking analysis (see methods

section for details). Values correspond to Pol II ChIP-Seq signal median for each group. Each

rhythm is double-plotted for better visualization.

(TIF)

S9 Fig. Transcription factor DNA binding motif analysis at CLOCK:BMAL1 enhancers

and based on CLOCK:BMAL1 transcriptional output. Enrichment for transcription factor

DNA binding motifs (calculated using the HOMER software suite) at CLOCK:BMAL1 DNA

binding sites for each of the four CLOCK:BMAL1 transcriptional output categories: rhythmic-

in-phase (Rinφ, red); rhythmic out-of-phase (Ro/φ, orange); arrhythmic (AR, black); and non

expressed (NE, grey) target genes. Enrichment is reported as the ratio between the calculated

enrichment over the calculated background. � q< 0.05 (Benjamini-Hochberg procedure).

Motif enrichment is shown for: CLOCK:BMAL1 (A); tissue-specific transcription factors (B);

as well as ubiquitous transcription factors for which the motif is enriched for all 4 output

groups (C) or specific group(s) (D).

(TIF)

S10 Fig. Transcription factor ChIP-Seq signal at CLOCK:BMAL1 enhancers and based

on CLOCK:BMAL1 transcriptional output. Mouse liver ChIP-Seq signal of tissue-specific

transcription factors (A), ubiquitous transcription factors (B, C), and transcriptional co-activa-

tors / RNA Polymerase II at ZT10 (D) at CLOCK:BMAL1 DNA binding sites (peak center ±
250bp) for each of the transcriptional output categories. ChIP-Seq signal is represented for

each output group based on its distribution (every decile). Groups with different letters are sig-

nificantly different (Kruskal-Wallis test; p< 0.05).

(TIF)

S11 Fig. Analysis of nucleosome signal over the 24-hr day at the DNA binding sites of two

tissue-specific TF and two ubiquitous TF in the mouse liver. Nucleosome signal at four TF

DNA binding sites was retrieved from mouse liver MNase-Seq datasets (Menet et al., 2014),

which consists of 6 time points each separated by 4 hours with n = 4 mice for each time point.

MNase-Seq data are displayed for two tissue-specific TFs: FOXA2 (A) and HNF6 (B), and two

ubiquitous TFs: REV-ERBα (C) and ERα (D). Nucleosome signal was calculated at TF peak

center ± 75 bp for each peak and at each TF ChIP-Seq peak coordinate, and is displayed as the

average ± s.e.m of the signal (n = 4) calculated for each mouse. Each rhythm is double-plotted

for better visualization. (Left,A-D)Nucleosome signal at TF ChIP-Seq peaks harboring a

CLOCK:BMAL1 peak (blue), or at the top 10,000 TF ChIP-Seq peaks that do not harbor a

CLOCK:BMAL1 peak (green). (Right, A’-D’) Nucleosome signal at TF ChIP-Seq peaks harbor-

ing a CLOCK:BMAL1 peak, and parsed based on CLOCK:BMAL1 transcriptional output:

Rhythmic-in-phase (Rinφ, red), Rhythmic out-of-phase (Ro/φ, orange), arrhythmic (AR,

black), and non expressed (NE, grey).

(TIF)

S12 Fig. Additional examples of CLOCK:BMAL1 target genes exhibiting changes in

expression under fasting condition in the mouse liver. Rhythm of mRNA expression in the

liver of mice fed ad libitum (blue) or fasted for at least 22 hours (orange). Data were retrieved

from a public dataset (Vollmers et al., 2009). Mouse liver mRNA expression is displayed for
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CLOCK:BMAL1 target genes that are rhythmically expressed in the liver of mice fed ad libi-
tum, and that exhibit under fasting condition a decrease in the rhythm amplitude (first col-

umn), no change (second column) or an increase in the rhythm amplitude (third column).

Mouse liver mRNA expression is also displayed for CLOCK:BMAL1 target genes that are

arrhythmically expressed in the liver of mice fed ad libitum, and that exhibit rhythmic expres-

sion under fasting condition.

(TIF)

S13 Fig. Effect of high-fat diet on CLOCK:BMAL1 target gene expression. A-D. Six-time

point rhythm of liver mRNA expression in mice fed with normal chow (black) or high fat diet

(blue). Values were retrieved from a public dataset [57] and correspond to the average ± s.e.m.

of 3 independent samples. Mouse liver mRNA expression is displayed for Clock and Bmal1
(A), and some CLOCK:BMAL1 target genes that are rhythmic under both normal chow and

high fat diet (B); normal chow only (C); and high fat diet only (D).

(TIF)

S14 Fig. Analysis of nucleosome signal, enhancer activity, and TF DNA binding at cis-reg-

ulatory regions targeting non-CLOCK:BMAL1 target genes. Analysis of a random set of

genes not targeted by CLOCK:BMAL1 and transcribed similarly to the 4 CLOCK:BMAL1

transcriptional output groups (n = 125 genes for each group) was performed to determine the

extent to which the findings reported in the manuscript are specific to CLOCK:BMAL1. The

same criteria as those used for the characterization of CLOCK:BMAL1 transcriptional output

were used, and groups are thus similarly referred as Rhythmic-in-phase (Rinφ, dark blue),

Rhythmic out-of-phase (Ro/φ, light blue), arrhythmic (AR, black), and non expressed (NE,

grey). Cis-regulatory regions targeting the randomly selected control genes are defined as

DNase I hypersensitive sites (DHS) located within -10kb of the TSS to +1kb of the TTS (simi-

larly to what was done for CLOCK:BMAL1 target genes). Analysis of these DHS suggests that

many of our findings are specific to CLOCK:BMAL1 A. Heatmap displaying nascent RNA

expression of the random set of genes and parsed based on the transcriptional output.

Nascent-Seq signal was ordered based on the phase of nascent RNA oscillations for the in-

phase and out-of-phase transcriptional cyclers. Ordering of arrhythmically transcribed genes

is based on the peak time of maximal expression; the lack of a distinctive 24-hr rhythm profile

of nascent RNA expression over the 48-hr time-scale is indicative of arrhythmic transcription.

NE genes are not displayed due to the lack of expression. B. Average nascent RNA expression

level for the 4 control groups. C-D. BMAL1 (C) and CLOCK (D) ChIP-Seq signal at DNase I

hypersensitive sites (DHS) targeting the randomly selected control genes. ChIP-Seq signal for

CLOCK:BMAL1 target genes is provided for comparison. E. Nucleosome rhythm at DHS tar-

geting the randomly selected control genes (similar to Fig 3A–3D). F-H. H3K27ac, Pol II and

eRNA expression at DHS targeting the randomly selected control genes (similar to Figs 3F,

S8C and S3G, respectively). I-K. ts-TF (I), u-TF (J), and p300 and Pol II (K) ChIP-Seq signal at

DHS targeting the randomly selected control genes (similar to Fig 4D–4F).

(TIF)

S15 Fig. The enrichment of CTCF (CCCTC-binding factor) at CLOCK:BMAL1 enhancers

targeting non-expressed genes may underscore the role of long-range chromatin interac-

tions between CLOCK:BMAL1 enhancers and its target genes. Visualization file of ChIP--

Seq signal at two CLOCK:BMAL1 enhancers (yellow boxes) targeting non expressed genes

(Top: Lif and Bottom: Adc), and exhibiting significant CTCF ChIP-Seq signal. Arrows with

question marks indicate a potential CTCF-mediated long-range chromatin interaction that

would enable CLOCK:BMAL1 to regulate the rhythmic transcription of genes located more
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than 50kb away from its enhancer.

(TIF)

S1 Table. List of the CLOCK:BMAL1 peaks parsed based on the transcriptional output.

This table contains the list of the 3217 CLOCK:BMAL1 peaks that was used in this study,

along with their genomic localization (mm10 version), their target gene, and their parsing into

specific transcriptional output categories.

(TXT)

S2 Table. Motif analysis at CLOCK:BMAL1 DNA binding sites based on the transcrip-

tional output. Outcome of the motif analysis performed by the HOMER software at CLOCK:

BMAL1 DNA binding sites parsed based on their transcriptional output.

(XLSX)

S3 Table. TF ChIP-Seq signal at CLOCK:BMAL1 peaks parsed based on the transcriptional

output. This table contains the ChIP-Seq signal for several TFs at the 1,274 CLOCK:BMAL1

peaks that were assigned to a CLOCK:BMAL1 transcriptional output category used in this

study.

(XLSX)

S4 Table. Genomic coordinates of control genes not targeted by CLOCK:BMAL1 and their

DNase hypersensitive sites This table contains the lists of genes not targeted by CLOCK:

BMAL1 that were randomly selected and used to determine if the mechanisms underlying

CLOCK:BMAL1-mediated transcription are specific (S14 Fig). The genomic coordinates of

these control genes correspond to -10kb from the TSS to +1kb from the TTS (mm10 version).

The table also contains the genomic location of the top 40,000 DNase hypersensitive sites

(given size) located within these control genes (-10kb from the TSS to +1kb from the TTS),

and that were used in our analysis.

(XLSX)
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