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organisms and move cargo along actin filaments.

Some myosin Vs move multiple types of cargo, where
the timing of movement and the destinations of selected
cargoes are unique. Here, we report the discovery of an
organelle-specific myosin V receptor. Vac17p, a novel protein,
is a component of the vacuole-specific receptor for Myo2p,
a Saccharomyces cerevisiae myosin V. Vac17p interacts
with the Myo2p cargo-binding domain, but not with vacuole
inheritance-defective myo2 mutants that have single amino
acid changes within this region. Moreover, a region of the

Class V myosins are widely distributed among diverse

Myo2p tail required specifically for secretory vesicle trans-
port is neither required for vacuole inheritance nor for
Vac17p-Myo2p interactions. Vac17p is localized on the
vacuole membrane, and vacuole-associated Myo2p increases
in proportion with an increase in Vac17p. Furthermore,
Vac17p is not required for movement of other cargo
moved by Myo2p. These findings demonstrate that Vac17p
is a component of a vacuole-specific receptor for Myo2p.
Organelle-specific receptors such as Vac17p provide a
mechanism whereby a single type of myosin V can move
diverse cargoes to distinct destinations at different times.

Introduction

Myo2p moves secretory vesicles (Govindan et al., 1995;
Schott et al., 1999), the Golgi (Rossanese et al., 2001), the
vacuole (Hill et al., 1996; Catlett and Weisman, 1998;
Catlett et al., 2000), and the mitotic spindle (Beach et al.,
2000; Yin et al., 2000). The time of movement and the final
destinations of these cargoes, while overlapping, are not
identical. At the onset of the cell cycle, the organelles are
targeted to the presumptive bud site. However, at cytokinesis,
secretory vesicles are targeted to the mother-bud neck,
whereas vacuoles are localized at the central regions within
both the mother and bud cells. Thus, the attachment and/or
activation of Myo2p on distinct organelles must be differen-
tially regulated.

The globular tail of myosin V plays an important role in
its attachment to cargo. Overexpression of the globular tail
of myosin Va causes a defect in melanosome movement
(Wu et al., 2002a); likewise, overexpression of the globular
tail of Myo2p disrupts secretory vesicle targeting and causes
cell death (Reck-Peterson et al., 1999; Schott et al., 1999).
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In both cases, overexpression of this domain is thought to
compete with endogenous myosin V and displace it from
cargo. Additionally, cell cycle—specific phosphorylation of
the myosin Va globular tail releases it from membranes
(Karcher et al., 2001), suggesting that post-translational
modification of the tail may be important for its attachment
to cargo.

The globular tail of Myo2p contains at least two distinct
cargo-binding domains, one specific for vacuole movement
(Catlett and Weisman, 1998; Catlett et al., 2000), the other
specific for secretory vesicles (Schott et al., 1999; Catlett et
al., 2000). The vacuole-specific region was defined by seven
point mutations affecting one of five amino acids between
residues 1248-1307 of the Myo2p globular tail domain. The
secretory vesicle binding domain was identified via sequence
analysis of a set of my02” mutants (Schott et al., 1999), and
by identification of myo2-A1459-1491, a mutant specifically
defective in secretory vesicle movement (Catlett, 2000).
Overexpression of the Myo2p globular tail missing the secretory
vesicle—specific region disrupts vacuole inheritance, but does
not affect secretory vesicle targeting. Conversely, mutations
in the vacuole-binding domain cause defects in vacuole
movement, but do not affect other Myo2p-related functions
such as secretion. Given that specific regions of the globular
tail are required for different functions of Myo2p, the existence
of cargo-specific receptors for Myo2p was predicted. Here,
we describe Vacl7p, a novel protein that is a key component
of the vacuole-specific Myo2p receptor.
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Figure 1. Vac17p was obtained in two
screens designed to identify the vacuole-
specific Myo2p receptor. The vacuole
inheritance defect in myo2-2 was
suppressed by high copy VAC17. The
vacuole inheritance defects in myo2-
N1304S and myo2-2 (myo2-G1248D)
were suppressed by the presence of
either VAC17-557F or VAC17-1140V.
Strains were labeled for 1 h with the
vacuole-specific fluorophore FM4-64,
and were chased in fresh media for 4 h.
The arrow and arrowhead indicate an mvo2-2
example of a bud with and without an i
inherited vacuole, respectively. Bar, 5 pm.

myo2-N1304S

(G1248D)

Vector

VAC17 VACI7-857F VACI7-1140V
(high copy) (low copy) (low copy)

Results

To identify the vacuole-specific myosin V receptor, we de-
signed two genetic screens. First, we sought multicopy suppres-
sors of myo2-2 (myo2-G1248D), guessing that the impaired
association of myo2-2p with vacuole (Catlett and Weisman,
1998) might be overcome by increasing levels of the receptor
or of other proteins required for Myo2p-mediated vacuole
movement. The second screen sought mutations in genes other
than MYO2 that would restore vacuole inheritance in a vacu-
ole-specific myo2 point mutant, n2y02-N1304S; and was based
on the hypothesis that a weakened protein—protein interaction
caused by myo2-N1304S might be restored by a compensatory
mutation in the binding partner. Furthermore, the location of
the point mutation in the binding partner might reveal addi-
tional information indicating which region of the receptor
contacts the globular tail of Myo2p. We obtained VACI17
as a multicopy suppressor of myo2—2 and the point mu-
tant VACI7-557F as a genomic mutation suppressing 7zy02-
N1304S. VACI17 had also been identified as the corresponding
wild-type gene of the vacuole inheritance mutant vacl7 (Tang
et al., 2003) and as encoding a protein interacting with the
vacuolar membrane protein Vac8p (Tang et al., 2003).
Surprisingly, VACI17-S57F suppressed the vacuole inherit-
ance defect of all the vacuole-specific 72y02 tail mutants (Fig.
1 and Table I). These findings prompted us to perform a di-

rected screen for other mutations in VACI7 that could sup-
press the vacuole inheritance defect of myo2-N1304S. We
identified a second amino acid substitution (VACI7-1140V)
that showed allele specificity, as it only suppressed the vacu-
ole inheritance defects of myo2-2, myo2-N1304S, and myo2-
N1307D (Fig. 1 and Table I).

The above genetic interactions and the requirement for
Vacl7p in vacuole inheritance (Fig. 2; Tang et al., 2003) sug-
gest that Vacl7p plays a key role in Myo2p-mediated vacuole
movement. Moreover, the vacI7A strain displays no growth
defects, suggesting that Vacl7p is not required for secretory
vesicle transport (Tang et al., 2003). Next, we tested whether
Vacl7p is required for movement of other cargo carried by
Myo2p. Inheritance of the late Golgi and peroxisomes re-
quires Myo2p, as defects in the inheritance of both organelles
are observed in the 7902-66 mutant (Fig. 2; Hoepfner et al.,
2001; Rossanese et al., 2001). In contrast, inheritance of these
organelles is normal in the vacl7A mutant (Fig. 2). Myo2p
also functions in nuclear spindle orientation (Beach et al.,
2000; Yin et al., 2000). Consistent with these observations,
myo2—-2 cells are defective in nuclear migration, as demon-
strated by a significant increase in binucleate cells (Fig. 2 C,
column 7). However, nuclear partitioning is normal in
vacl7A. We also investigated mitochondrial inheritance in

Table I. VAC17-S57F, VAC17-1140V, and high copy VAC17 suppress the vacuole inheritance defects of selected vacuole-specific myo2

tail mutants
Suppressor Wild-type VAC17
VAC17-S57F VAC17-1140V High copy Low copy Vector

myo2 % % % % %
WT 97 98 95 97 98
G1248D 63 62 30 16 11
D1297N 56 20 12 12 8
D1297G 63 15 14 9 11
L1301P 50 24 11 10 10
N1304D 59 18 ND 8 8
N1304S 64 50 18 13 11
N1307D 56 47 ND 12 10

Vacuole inheritance was measured by counting the percentage of cells with an inherited vacuole in the bud. Control strains with vector alone, low copy
(pRS416), or high copy (pRS426) gave similar values, but only pRS416 is shown. Each strain was counted at least three times, with a minimum total of 200

cells scored. ND, not determined.
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Avacl7 myo2-66

myo2-2

263 347 73 17.6 0 1.3 3.0

314 297 43 3.7 0.29 7.5 52

Vac17p is required for inheritance of vacuoles, but not for inheritance of Golgi, peroxisomes, mitochondria, or nuclei.

(A) Fluorescence micrographs of the indicated organelles and strains. Examples of buds with (arrow) and without (arrowhead) the relevant

organelles are indicated. Vacuoles were labeled for 1 h with FM4-64 and chased in fresh media for 2 h. Golgi were visualized with Sec7p-GFP.
Peroxisomes were visualized with GFP fused to the peroxisome-targeting signal PTS1 (GFP-PTS1). Nuclei were labeled using DAPI. Images of
Sec7p-GFP- and GFP-PTS1-labeled cells were obtained by merging five Z-axis planes spaced by 0.75 wM. myo2-66 is defective in vacuole,

Golgi, and peroxisome inheritance, myo2-2 is defective in nuclear segregation. Bar, 5 nm. (B)

Quantification of vacuole, Golgi, and peroxisome

inheritance. Vacuole inheritance is reported as percentage of cells with an inherited vacuole in the bud. Golgi inheritance was assessed in
cells with buds less than one third the size of the mother. Peroxisome inheritance was assessed in cells with buds less than half the size of the

mother. For each strain, cells were scored from at least two independent experiments. (C)

Quantification of nuclear segregation. Each strain

was counted in four independent experiments. Cell types are reported as percentage of total cells.

vacl7A cells and observed no defect (unpublished data). Thus,
Vacl7p appears to be solely required for vacuole movement.
As predicted for a receptor for Myo2p, Vacl7p interacts
with the Myo2p globular tail (Fig. 3 A). Notably, although the
interaction between full-length Vacl7p (1-425) and the
Myo2p globular tail (1113-1574) was weak, removal of

the secretory vesicle-binding domain from the Myo2p tail
(A1459-1491) consistently increased Vacl7p-Myo2p interac-
tions (Fig. 3 A). Note that these fusion proteins were expressed
to similar levels (Fig. 3 B). This suggests that Myo2p attach-
ment to Vacl7p may be regulated to ensure that only one type
of cargo binds at any given moment. Likewise, compared with
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Vacl7p (1-170)

A
Vacl7p ccl PEST ccl
1-425 [ A | [
1-355 N 1 72| |
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97-170 ]
A96-260 I i 5 | [ |
291-425 |
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Myo2p globular tail domain M L VB
1113-1574 | ||
A1459-149] [ || ] |
A1297-1307 | ] |
1113-1568 [ ||
1113-1519 I illi |
D Myo2p globular tail (1113-1574)

B
A1459- kD
— 97
Myo2p
(1113-1574)
— 66

WT Al459- vector
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Figure 3.  Vac17p interacts with Myo2p.
(A) Vac17p and the globular tail of Myo2p interact
in a yeast two-hybrid test. The Myo2p globular tail
(WT) or the Myo2p globular tail missing the secretory
vesicle binding domain (A1459-1491), fused to
the GAL4 DNA binding domain (GBD) were tested
for their abilities to interact with the indicated
coding regions of VAC17 fused with the GAL4
DNA activation domain (GAD). Plasmids were
cotransformed into the yeast strain PJ69—4A.
Transformants were plated onto SC-LEU-TRP,
replica-plated onto SC-LEU-TRP-ADE-HIS+3AT,
and grown for 2 d at 24°C. The regions tested are
represented by boxes, with the corresponding amino
acid positions indicated. CC, coiled-coil regions;
PEST, PEST sequence (see Fig. 2 A of Tang et al.,
2003). Protein expression of all noninteracting
constructs was confirmed by Western analysis (not
depicted). (B) The globular tail missing the secretory
vesicle binding domain interacts more strongly with
— Vac17p. Western blot of the GBD-Myo2 globular
tail and the GBD-Myo2 globular tail A1459-1491
+ fusion proteins (bottom) and endogenous Myo2p
(top) indicates that both fusion proteins are expressed
at similar levels. The Western blot shown is
representative of seven independent experiments.
(C) Plasmids encoding the GAL4 DNA binding
domain fused with the indicated coding regions of

+

+

Vacl7p (1-355)

Myo2p

Myo2p
(1113-1574)

3

the MYO?2 globular tail were tested for their ability to
interact with the GAL4 DNA activation domain fused
with the portion of VAC17 encoding residues 1-170.
VB, vacuole binding site in the Myo2p globular tail
(1297-1307). Protein expression of all noninteracting
constructs was confirmed by Western analysis (not
depicted). (D) The vacuole-specific Myo2p point
mutations disrupt the ability of Myo2p to interact
with Vac17p. The yeast two-hybrid test was
kD performed as in C, using the GAL4 DNA binding
220 domain fused with the Myo2p globular tail
containing the indicated point mutations and the
GAL4 DNA activation domain fused with the portion
of VACT17 encoding residues 1-355. (E) Western blot
analysis of the expression of the wild-type and
mutant GAL4 binding domain-Myo2 globular tail
— 6 fusion proteins (bottom) and endogenous Myo2p
(top). The Western blot shown is representative of the
results obtained in three independent experiments.

—97

full-length Vacl7p, specific truncations of Vacl7p increased
Vacl7p-Myo2p interactions. This behavior suggests that re-
gions outside of the Myo2p binding domain of Vacl7p func-
tion in the negative regulation of Vacl7p—Myo2p interactions.

Analysis of the Vacl7p truncations showed that the
Myo2p binding domain on Vacl7p lies between residues
97-170. In further support of the above two-hybrid analy-
sis, deletion of this region (vacl7-A109-190) abrogates vac-
uole inheritance (Tang et al., 2003).

Deletion analysis of Myo2p showed that removal of resi-
dues 1297-1307 abolished Vacl7p-Myo2p interactions
(Fig. 3 C). However, this short sequence is not sufficient for
Vacl7p binding, as the shortest segment of the tail that in-
teracts with Vacl7p (residues 1113-1568) encompasses
nearly the entire globular tail (Fig. 3 C).

To determine if the vacuole inheritance defects seen in the
myo2 tail mutants result from poor interaction of the mutant
Myo2p with Vacl7p, we examined interaction of Vacl7p
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(1-355) with myo2p tail fusions of five representative mu-
tants (myo2-2/G1248D, D1297N, L1301P, N1304D, and
N1304S). None of these constructs interacts significantly
with Vacl7p (Fig. 3 D). Western blot analysis indicates that
all of these mutant Myo2p fusion proteins were expressed to
a similar degree as wild type (Fig. 3 E). Together with the re-
quirement of Vacl7p in vacuole inheritance, these observa-
tions suggest that the interaction of Vacl7p and Myo2p is
normally required for vacuole movement.

We further analyzed the relationship between Vacl7p-
Myo2p interactions and vacuole inheritance by testing the
interaction of additional 7y02 mutants with Vacl7p. As
part of a separate paper (Catlett, N.L., unpublished data),
we obtained a collection of intragenic suppressors of the
myo2—2 (G1248D) vacuole inheritance defect via random
PCR mutagenesis. Eight of these suppressors restore vacu-
ole inheritance to >80% when present as the sole copy
of MYO2. Each suppressor, except the pseudorevertant
G1248N, contains both G1248D and a second point muta-
tion. We constructed myo2 tail DNA binding-domain fu-
sions of these suppressors and found that all eight simulta-
neously restored vacuole inheritance and Vacl7p-Myo2p
interactions. This finding demonstrates that the vacuole in-
heritance defect in myo2-2 is directly related to a loss of
Vacl7p—Myo2p interactions.

Analysis of VAC17-1140V also strongly supports the hy-
pothesis that Vacl7p—Myo2p interactions are required for
vacuole inheritance. The 1140V mutation is located in the
Myo2p binding site. VACI7-I140V restored vacuole inherit-
ance in myo2-N1304S from ~10 to 50% (Table I). More-
over, it showed allele specificity, restoring vacuole inheritance
in myo2-2 (G1248D), N1304S, and N1307D, but not in
other vacuole-specific 72y02 point mutants (Table I). Next, we
tested whether VAC17-1140V, in addition to restoring vacu-
ole inheritance, restored interaction with my02-2 and myo2-
N1304S (Fig. 4 D). A VAC17-1140V two-hybrid construct
(97-260) restored interaction with both mye2-2 and myo2-
N1304S. A longer fusion, VACI7-1140V (1-260) also inter-
acted with the globular tail domain of my02-2. The suppres-
sion of myo2-2 by 1140V is not due to overexpression of
Vacl7p because its levels are similar to the wild-type protein
(unpublished data). Thus, VACI7-1140V suppresses selected
vacuole-specific my02 mutants by increasing the affinity of
Vacl7p for Myo2p through the original interaction site.

Characterization of VACI17-I140V strongly suggests that
Vacl7p binds to Myo2p directly. That VACI7-1140V
causes an allele-specific, extragenic restoration of vacuole in-
heritance in the my02-2 mutant, concomitant with the res-
toration of Vacl7p-Myo2p interactions, is best explained by
the re-establishment of a direct interaction between the two
proteins. In further support of a direct interaction between
Vacl7p and Myo2p, we found that Myo2p coimmunopre-
cipitates with Vacl7p (Tang et al., 2003).

Although Vacl7p interacts with Myo2p and also Vac8p
(Tang et al., 2003), our analysis of VACI7-S57F suggested
that Vacl7p also interacts with yet another molecule to reg-
ulate Myo2p attachment to the vacuole. The molecule pre-
dicted by the behavior of VACI7-S57F is unlikely to be
Vac8p because the Vacl7p-S57F mutation maps outside of
the Vac8p binding region (Tang et al., 2003). Moreover,

An organelle-specific myosin V receptor | Ishikawa ctal. 891

VACI7 and VACI17-S57F interact with VACS to the same
extent (unpublished data).

Evidence that Vacl7p interacts with at least one addi-
tional molecule includes the following: First, VACI17-S57F
showed no allele specificity, suppressing all of the vacuole-
specific myo2 point mutants to a similar degree (Fig. 2 B).
Second, although VACI7-S57F interacted with wild-type
Myo2p, it did not restore interactions with the vacuole-spe-
cific Myo2p point mutants (Fig. 4 D). Furthermore, the
S57F mutation maps outside of the Myo2p binding region
of Vacl7p (Fig. 4 C). Finally, this region of Vacl7p is not
essential for vacuole inheritance; removal of residues 1-97
from Vacl7p reduces vacuole inheritance by only 30% (un-
published data). The most likely explanation for these data is
that Vac17p-S57F indirectly restores Vacl7p—Myo2p inter-
actions, suggesting that at least one other protein is involved
in Myo2p binding to Vacl7p. This protein could be part of
the receptor complex and could work with Vacl7p to pro-
mote Myo2p interaction with vacuole. Alternatively, the
protein might negatively regulate Vacl7p—Myo2p interac-
tions, but not Vacl7p-S57F-Myo2p interactions. The sup-
pression by VAC17-S57F is not due to elevated Vacl7p lev-
els; the cellular concentration of Vac17p-S57F is the same as
the wild-type protein (unpublished data). Also, it is unlikely
that the S57F mutation now allows Vacl7p to interact with
Myo2p at a site distinct from the globular tail. Using the
yeast two-hybrid test, we found no interaction between
Vacl7p-S57F and the Myo2p tail containing both the glob-
ular domain and the coiled-coil region or the coiled-coil re-
gion alone (unpublished data).

By definition, the vacuole-specific receptor for Myo2p
would recruit the motor to the vacuole. Thus, using double-
labeled immunofluorescence microscopy, we tested whether
Vacl7p is required for the association of Myo2p with vacu-
oles. In addition, we used Western analysis to measure the
level of Myo2p on isolated vacuoles. For these experiments,
WT, vacl7A, and VAC17-APEST cells were compared. The
removal of the PEST sequence stabilizes Vacl7p, increasing
the levels of Vac17p on the vacuole (Tang et al., 2003). This
mutant, expressed from a low copy plasmid, was used in-
stead of high copy VACI7 because the number of multicopy
plasmids present varies widely from cell to cell. Like overex-
pression of Vacl7p from a multicopy plasmid, VACI7-
APEST increases vacuole inheritance in myo2-2 from 11 to
37% (n = 187), but does not affect vacuole inheritance in
myo2-N1304S (n = 232).

In wild-type cells, Myo2p concentrates at sites of polar-
ized growth and is also present as small cytoplasmic spots,
with a subset of spots colocalizing with the vacuolar mem-
brane (Hill et al., 1996 and Fig. 5 A). Thus, the low levels of
vacuolar Myo2p seen by immunofluorescence microscopy
are insufficient to determine whether less Myo2p is present
on vacuoles in vacI7A cells. However, increasing Vacl7p
levels with the Vacl7p-stabilizing mutant VACI7-APEST
(Tang et al., 2003) dramatically increased the levels of
Myo2p on the vacuole (Fig. 5 C). Consistent with the im-
munofluorescence microscopy images, when compared with
wild type, significantly higher levels of Myo2p copurified
with VAC17-APEST mutant vacuoles. Moreover, levels of
Myo2p on vacl7A vacuoles were significantly lower (Fig. 5
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Figure 4.  All intragenic myo2-2 suppressors A
restore both vacuole inheritance and Vac17p-
Myo2p interactions. Likewise, VAC17-1140V

| Myo2p Globular Tail

o . F1264S
suppresses the vacuole-specific Myo2p tail VI1262A | S1268P
mutants myo2-2 and myo2-N1304S, and interacts G1248N T1274M
with the Myo2p globular tail containing either of N F1275S
these point mutations. (A) Schematic of the Myo2p S1247G _l V1288A
2.2
globular tail. Arrows above the schematic indicate [ | | 1
the amino acid changes that suppress the vacuole | l[ 13 N1307D 5'?
inheritance defect of myo2-2 (G1248D), whereas 2.2 (G1248D : i
arrows below the schematic indicate the vacuole- myo2-2 (G ) N1304S. D 1459-1491
specific point mutations at residues 1248, 1297, D]ZZ[:JITE’C(‘”:J
1,

1301, 1304, and 1307, and the secretory vesicle—
specific region (1459-1491). (B) The yeast two-
hybrid test was used to assess the ability of the B
Myo2p globular tail containing the myo2-2
intragenic suppressor point mutations to bind to
Vac17p (1-170). Vacuole inheritance was
assessed by scoring the percentage of cells with
buds containing an inherited vacuole. Each of the
myo2-2 intragenic suppressors was tested as the
sole copy of the MYO2 gene. A minimum total of
180 cells were counted from three independent
experiments. (C) Schematic of Vac17p showing
the location of the VAC17 mutations S57F and
1140V. CCI and CClI indicate predicted coiled-
coil regions. PEST indicates a predicted protein
degradation signal. Further analysis of the Vac17p
sequence is described in Tang et al. (2003).

(D) The yeast two-hybrid test was used to assess
the ability of VAC17-1140V and VAC17-557F to
interact with the globular tail of myo2-2 and
myo2-N1304S. The region of VACT7 initially

Vacuole
Inheritance (%) 10 100 96 85

Vacuole

Myo2p globular tail (1113-1574)

(myo2-2) G1248D GI1248D
G1248D GI248N SI247G S1268P

G1248D Gl1248D GI1248D Gl1248D GI1248D
F1275S F1264S  VI262A VI288A TI274M

Vacl7p (1-170) EIEE

E). The above data strongly suggests that Vacl7p is required
for normal Myo2p association with the vacuole.

We included myo2-2 mutant vacuoles as we had previ-
ously observed that myo2-2p was severely defective in its as-
sociation with the vacuole (Catlett and Weisman, 1998).
However, in this work, the defect in myo2-2p association
with the vacuole appears less severe. The vacuole isolation
conditions for the current work included additional protease
inhibitors that were not used in the previous work. Vacuoles
isolated from wacl7—1, or vac8A cells without the addition
of these extra protease inhibitors showed no significant dif-
ference in Myo2p levels as compared with wild-type vacu-
oles (Catlett, N.L., unpublished data).

Discussion

Several lines of evidence suggest that Vacl7p is a key compo-
nent of the vacuole-specific Myo2p receptor. Vacl7p is re-
quired for vacuole inheritance, and residues 96-170 of
Vac17p bind directly to the globular tail of Myo2p. Further-
more, Vacl7p is localized on the vacuole membrane (Tang
et al., 2003), and it is required for Myo2p association with
the vacuole. Moreover, Vacl7p resides on the vacuole mem-
brane through interaction of its COOH terminus with the
myristylated and palmitoylated vacuolar membrane protein
Vac8p (Tang et al., 2003). We propose that Myo2p associ-
ates with the vacuole via direct interaction with Vacl7p,
which in turn binds directly to Vac8p (Fig. 5 F).

The molecular basis of Myo2p attachment to the vacuole
shares similarities to what is currently known about myosin

Va attachment to melanosomes. Melanophilin, a recently
discovered rab effector, is a component of the melanosome-
specific myosin Va receptor (Fukuda and Kuroda, 2002;
Hume et al., 2002; Nagashima et al., 2002; Provance et al.,
2002; Wu et al., 2002b). Melanophilin binds directly to
myosin V, and interacts with melanosomes via interaction
with Rab27a. Thus, both Vac17p and melanophilin bind di-
rectly to myosin V and attach to their respective membranes
via interaction with an acylated protein.

Despite these similarities, there are several differences be-
tween attachment of myosin Va to melanosomes and Myo2p
attachment to vacuoles. Melanophilin and Vacl7p do not
share any sequence similarity. Moreover, no obvious melano-
philin homologues were found in the yeast genome database.
Similarly, no Vacl7p homologues were found in higher eu-
karyotes. In addition, Rab27a and Vac8p are not related pro-
teins. Vac8p is not a small GTPase; rather, it likely plays its
role via interaction with binding partners. It appears that
Vac8p brings specific protein complexes to distinct regions of
the vacuole (Wang et al., 2001). Moreover, although both
Vac8p and Rab27a are acylated, Rab27a is geranylgeran-
ylated at its COOH terminus, and Vac8p is myristylated and
multiply-palmitoylated at is NH, terminus. These diverse
types of modifications are likely to serve distinct functions
(Melkonian et al., 1999; Zacharias et al., 2002).

It is possible that the differences in these receptors arise
because their respective membranes are found in distant or-
ganisms or because the melanosome is a specialized lysoso-
mal-like organelle, whereas the yeast vacuole/lysosome serves
more generalized functions.
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C l Myo2p bindine d . l used to test 1140V (residues 97-260) does not
yo-gpmamscoman contain S57. Therefore, for direct comparison, the
1l S57F and 1140V mutations were each introduced
ﬁ into VACT17 encoding 1-260. (E) Western blot
analysis of the expression of the GAL4 binding
domain-Myo2 globular tail fusion proteins (bottom)
and endogenous Myo2p (top). The Western blot
shown is representative of the results obtained in
D Myo2p globular tail (1113-1574) three independent experiments.
WT myo2-2 N1304S vector
WT
Vacl7p
(97-260) 1140V
Myo2p globular tail (1113-1574)
WT myo2-2 N1304S vector
WT
(1-260)
[140V
Vasisle WT 97 16 I3
Inheritance (%) ROTE 7 63 o4
1140V 98 62 50
E kD

Myo2p
(1113-1574)

97

66

WT myo2-2 N1304S vector

Alternatively, these myosin V receptors may each contain
additional proteins. A portion of the vacuole-specific region
of Myo2p (residues 1291-1313) is weakly conserved with all
vertebrate myosins and is highly conserved among the three
classes of vertebrate myosin Vs (Catlett et al., 2000; unpub-
lished data). This suggests that this region in vertebrate myo-
sin Vs may bind a protein receptor. Melanophilin, which
binds to the melanocyte-specific exon F that is outside of the
globular tail domain, may also bind to this conserved region;
alternatively there may be yet another protein that binds
this region and functions together with melanophilin and
Rab27a. Notably, both the globular tail domain plus exon F
are needed to observe the dominant-negative effects caused
by overproduction of the myosin Va tail (Wu et al., 2002b).

Similarly, the vacuole-specific receptor reported here may
also include a specific rab protein. Rab27a has been shown to be
required for myosin Va binding to melanosomes, and Rabl1a is

required for myosin Vb binding to recycling endosomes (Lapi-
erre et al, 2001). Moreover, the rabs, Secdp (Schott et al.,
1999; Ortiz et al., 2002), and Ypt31/Ypt32 (Ortiz et al., 2002)
may play a role in Myo2p movement of secretory vesicles.

The discovery of organelle-specific myosin V receptors dem-
onstrates that myosin V attaches to membranes via protein—
protein interactions. Moreover, that Vacl7p is not required for
movement of other Myo2p cargo shows that within a single cell
type, there are specific receptors for distinct membrane cargo.
Perhaps these organelle-specific receptors compete with each
other for access to the myosin V tail. Further study of Vacl7p—
Myo2p interactions will help elucidate how organelle-specific
receptors regulate myosin V attachment to its diverse cargoes.

Materials and methods

The strains used in this paper are listed in Table II.
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Figure 5.  Elevation of Vac17p levels on the vacuole
membrane causes a corresponding increase of
Myo2p on the vacuole membrane. (A-D) Indirect
immunofluorescence of Myo2p (green) and the
60-kD subunit of the yeast vacuolar ATPase (red).
(A) Wild-type; LWY6726, pVACT7 (low copy
plasmid). (B) vac17A; LWY6726, pRS416 (vector
control). (C) VAC17-APEST; LWY6726, pVACI7-
APEST (low copy plasmid). (D) myo2-2, LWY5518.
Bar, 5 um. Arrowheads indicate the low levels of
Myo2p on the vacuole seen in wild-type cells
(small yellow spots), whereas arrows indicate the
increased levels of Myo2p on the vacuole seen in
the VACT7-APEST mutant cells. Vacuole inheritance
is delayed in DBY1398 and the related strain
LWY6726. Thus, the vacuole is not always
juxtaposed with the site of bud emergence or the
tips of small-budded cells and the sites of Myo2p
accumulation on the vacuole membrane are not
always coincident with these sites. These strains
facilitate distinguishing between enrichment of
Myo2p on the vacuole membrane versus enrichment
at sites of polarized growth. (E) Western blot
analysis of the levels of Myo2p (top) and yeast
vacuolar ATPase 100-kD subunit (bottom) found
on isolated vacuoles. A vector control (pRS416)
was present in the first three strains. WT, LWY7235;
myo2-2, LWY5516; vac17A, LWY5798; VAC17-
APEST, LWY5798, pVACT7-APEST (low copy
plasmid). The Western blot is representative of the
results obtained in three independent experiments.
(F) Model for Myo2p association with the vacuole.
Vac17p binds directly to a vacuole-specific region
of the globular tail domain of Myo2p. Vac17p
interacts with the vacuole membrane via interaction
with Vac8p. See Tang et al. (2003) for a detailed
analysis of Vac17p association with Vac8p.
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Vacuole

Plate assay for vacuole inheritance

The plate assay for vacuole inheritance (Gomes de Mesquita et al., 1996;
Catlett et al., 2000) measures the maintenance of active carboxypeptidase
Y (CPY), a vacuolar protease, after the inactivation of PEP4. PEP4 encodes
the first enzyme in the vacuolar protease cascade required for CPY activa-
tion. Strains were cotransformed with pGAL-PEP4 and the indicated librar-
ies, plasmids, or vector controls. Transformants were replica-plated to se-
lective media containing 3% galactose, transferred to media containing
2% glucose, and then assayed for CPY activity. Wild-type colonies
(VAC+) have active CPY and are red, whereas vacuole inheritance defec-
tive colonies (vac—) have inactive CPY and are white.

Screen for multicopy plasmids suppressing the myo2-2 vacuole
inheritance defect

Multicopy library pools RB378 and RB380, derived from YEp24 (URA3,
2p), and the pRS202-based library (URA3, 2.) were gifts from Drs. David
Botstein (Stanford University, Stanford, CA) and Philip Hieter (University of
British Columbia, Vancouver, BC), respectively. pNLC16 (pGAL-PEP4-
HIS3) was generated by subcloning the EcoRlI/Sall fragment from a URA-
based pGAL-PEP4 plasmid (Vida et al., 1990) into pRS413 (HIS3, CEN).
LWY5518 yeast were cotransformed with pNLC16 and library DNA. Ap-
proximately 13,000, 45,000, and 19,000 transformants were screened
from the pRS202 library and the RB378 and RB380 pools, respectively.
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Strain Genotype Source
LWY7235 MATa, ura3-52, leu2-3,112, his3-A200, trp1-A901, lys2-801, suc2-A9 Bonangelino et al., 1997
LWY5798 MATa, ura3-52, leu2-3,112, his3-A200, trp1-A901, lys2-801, suc2-A9, vacl7A:: Tang et al., 2003
TRP1
DBY1398 MATa, ura3-52, ade2-1 Thomas and Botstein, 1986
LWY6726 MATa, ura3-52, ade2-1, vacl7A:kanMX4 This work; parental strain DBY1398
JP7A MATa, ura3-52, leu2-3,112, his6, met6, adel, myo2-66 Johnston et al., 1991
LWY5518 MATa, ura3-52, leu2-3,112, his3-A200, trp1-A901, lys2-801, suc2-A9, pep4- Catlett et al., 2000

AT1137, myo2-2

This paper
Catlett et al., 2000

Catlett and Weisman, 1998

This work

James et al., 1996

Modified from Hoepfner et al., 2001
Modified from Hoepfner et al., 2001

Modified from Hoepfner et al., 2001
Modified from Rossanese et al., 2001

Modified from Rossanese et al., 2001

Modified from Rossanese et al., 2001

LWY5516 MATa, ura3-52, leu2-3,112, his3-A200, trp1-A901, lys2-801, suc2-A9, myo2-2

LWY2949 MATa, ura3-52, leu2-3,112, his3-A200, trp1-A901, lys2-801, suc2-A9, pep4-
AT1137, myo2A::TRP1, pMYO?2

LWY2947 MATa, ura3-52, leu2-3,112, his3-D200, trp1-A901, lys2-801, suc2-A9, myo2A::
TRP1, pMYO2

LWY6631 MATa, ura3-52, leu2-3,112, his3-A200, trp1-A901, lys2-801, suc2-A9, pep4-
AT1137, myo2A::TRP1, vac17A::TRP1, pmyo2-N13045-HIS3

PJ69-4A MATa, ura3-52, leu2-3,112, his3-200, trp1-901, gal4A, gal80A, LYS2::GALT-
HIS3, GAL2-AAE2, met::GAL7-lacZ

LWY6917 MATa, ura3-52::GFP-PTS1-URA3, leu2-3,112, his3-A200, trp1-A901, lys2-801,
suc2-A9

LWY6919 MATa, ura3-52::GFP-PTS1-URA3, leu2-3,112, his3-A200, trp1-A901, lys2-801,
suc2-A9, vacl17A:: TRP1

LWY6921 MATa, ura3-52::GFP-PTS1-URA3, leu2-3,112, his6, met6, adel, myo2-66

LWY6923 MATa, ura3-52, leu2-3,112, his3-A200, trp1-A901, lys2-801, suc2-A9, SEC7A::
SEC7-GFPx3

LWY6927 MATa, ura3-52, leu2-3, 112, his3-A200, trp1-A901, /y52—807, suc2-A9, vacl7A::
TRP1, SEC7A::SEC7-GFPx3

LWY6931 MATa, ura3-52, leu2-3,112, his6, met6, adel, myo2-66, SEC7A::SEC7-GFPx3

JSY3094 MATa, ura3-52, his3A200, leu2A1, mdm20A::LEU2

Singer et al., 2000

Vacuole inheritance was assessed with the CPY plate assay. As expected,
PEP4 was obtained; we also obtained MYO2. In addition, three isolates
were obtained that restored vacuole inheritance to ~30% when assessed
by fluorescence microscopy. Each contained a plasmid with multiple
OREFs including full-length VAC17 (YCLO63W). VACT7 was identified as
the corresponding wild-type gene for the vac mutant vac17-1, and VAC17
is required for vacuole inheritance (Tang et al., 2003). Thus, a multicopy
plasmid containing VACT7 alone was tested, and suppressed the vacuolar
inheritance of myo2-2 to a similar degree as the three candidate plasmids.

Screen for extragenic suppressors of the myo2-N1304S vacuole
inheritance defect

myo2A::TRP1 yeast carrying plasmids pmyo2-N1304S and pGAL-PEP4-
URA3 were mutagenized with ethyl methanesulfonate as described previ-
ously (Winston, 1990). Vacuole inheritance was assessed with the CPY
plate assay. VAC+ suppressor candidates were isolated, and the original
pmyo2-N1304S plasmid was replaced with unmutagenized pmyo2-
N1304S to distinguish between suppression due to a new mutation in the
original myo2-N1304S plasmid or a mutation in another gene. One ex-
tragenic suppressor was identified out of 110,000 colonies. A heterozy-
gous diploid of the suppressor candidate strain, with myo2-N1304S as the
sole copy of MYO2, exhibited the same correction of vacuole inheritance
as the haploid candidate strain, demonstrating that the suppressor muta-
tion was dominant. In tetrads derived from this diploid, the restoration of
vacuole inheritance segregated 2:2, indicating that the suppression arose
from a single mutation. Therefore, a genomic library of this suppressor was
constructed (see following paragraph) and transformed into the myo2-
N1304S starting strain. Complementing plasmids were recovered and se-
quenced. The suppressing plasmid encoded VACT7 with a single point
mutation (C170T), resulting in the amino acid substitution S57F.

Construction of the genomic suppressor library

myo2-N1304S was integrated into the genome of the suppressor strain
(myo2A::TRP1, pMYO2-URA3) via transformation and homologous re-
combination of a linear 5-kb fragment containing full-length myo2-
N1304S (obtained from pmyo2-N1304S cut with Clal, Dralll, and Scal).
The integrant was selected by growth on 5-fluoro-orotic acid plates and in-
ability to grow on SC-TRP-URA plates. Size-fractionated (8-12 kb) geno-
mic DNA from a partial Sau3A digest (techniques described in Nau et al.,

1997) was ligated into the BamHI site of pRS415. Approximately 85% of
the clones contained inserts.

Yeast two-hybrid analysis

Fusion of the GAL4 activation domain with VAC17 (pGAD-VAC17) is de-
scribed in Tang et al. (2003). For pRS416-VACT17(1-170), pRS416-VAC17
was cut with BstBl and religated, creating K171N, T172L, and N173-
STOP. For pGAD-VACT17(1-170), an ~1.2-kb Bglll and Pacl fragment from
pGAD-VAC17 was replaced with the corresponding fragment from
pRS416-VACT7(1-170). For pGAD-VAC17(97-170), the ~500-bp EcoRI
fragment from pRS416-VAC17(1-170) was cloned into the EcoRI site of
pGAD-C1 (James et al., 1996). For pRS416-VACT17(1-355), pRS416-
VACT17 was cut with Aflll, the sticky ends were filled in with Klenow, and
the plasmid was religated, creating K356-STOP. For pGAD-VACT7(1-
355), the Bglll and Pacl fragment from pGAD-VAC17 was replaced with
the corresponding fragment from pRS416-VAC17(1-355). For the pGAD-
VAC17(97-260) plasmids, DNA was amplified from either pRS416-
VAC17, pRS416-vacl7-557F, or pRS415-vac17-1140V using primers TF1v
(5'-AAAAGCGATCCATGGCAACCCAAGCCCTAGAG-3') and  VAC17
Cla3R  (5'-GGATCGATTTCAGCACCCTTTGCGGGCACACC-3’), which
add BamHI and Clal sites, respectively, and was ligated into pGAD-C1.

For the pGBD-MYO2(1113-1574) clones, DNA for all mutants and
wild-type were PCR amplified from the relevant MYO2 plasmids (Catlett et
al., 2000) using the MYO2-Bam3F (Catlett et al., 2000) and T3 universal
primers. PCR products were cut with BamHI and Clal and ligated into
pGBD-C1 (James et al., 1996). To generate pGBD-myo2 1113-1574
A1459-1491, the ~1.5-kb BamHI and Clal fragment of pNLC27 (Catlett,
2000) was subcloned into pGBD-C1.

The following MYO?2 deletions were generated with the QuikChange®
Site-Directed Mutagenesis Kit (Stratagene) using a pBluescript plasmid
(NLC15) containing the 1.6-kb EcoRI fragment of pRS413-MYO2 (Catlett
and Weisman, 1998). For pGBD-C1-myo2 1113-1518, the primers SDP
7F  (5'-GGGTCACGAGCATAGCTGAAGCATATTTATCACTCC-3') and
SDP 7R (5'-GGAGTGATAAATATGCTTCAGCTATGCTCGTGACCC-3")
were used to generate a stop codon at amino acid 1518. For pGBD-C1-
myo2 1113-1574 A1297-1307, the primers SDP 9F (5'-GGTCACAGAAC-
TAAAGGATATTTGGCTGAAGAAATTGCAG-3') and SDP 9R (5'-CTG-
CAATTTCTTCAGCCAAATATCCTTTAGTTCTGTGACC-3') were used. The
~1.3-kb Stul and Clal fragments from the above plasmids were each li-
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gated into pGBD-MYO2 1113-1574 missing the corresponding region.
For pGBD-myo2 1113-1568, the primers SDP 8F (5'-GACCTTGTTGC-
CCAATAAGTCGTTCAAGACGG-3') and SDP 8R (5'-CCGTCTTGAAC-
GACTTATTGGGCAACAAGGTC-3') were used to generate a stop codon
at amino acid 1568. The ~1.5-kb EcoRI and Clal fragment was subcloned
into pGBD-C1-myo2 1113-1574 missing the corresponding region.

Random mutagenesis of VAC17

To isolate VACT7 suppressors of myo2-N1304S, PCR mutagenesis was
performed using Taq DNA polymerase (Boehringer). Full-length VAC17
was PCR amplified from pRS415-VAC17 using the primer set TF1v (see
above) and TF2v (5'-AAAACTGCAGAAGATGGCACCCGAGTCTAG-3).
LWY6631 (pGAL-PEP4 -URA) was cotransformed with the mutated VAC17
PCR products and a VACT7 plasmid cut with Mscl and Sphl to remove
most of VACT7.

In vivo labeling of organelles

Yeast vacuoles were labeled with N-(3-triethylammoniumpropyl)-
4(6(4(diethylamino)phenylhexatrienyl) pyridium dibromide (FM4-64;
Molecular Probes, Inc.) as described previously (Catlett et al., 2000). Low
and high copy VAC17 were expressed from the pRS416 and pRS426 plas-
mids, respectively (Tang et al., 2003). Nuclei were observed with 4’ DAPI
dihydrochloride hydrate (Sigma-Aldrich) as described previously (Sher-
man et al., 1986).

Immunofluorescence labeling and vacuole purification

Indirect immunofluorescence was performed essentially as described pre-
viously (Hill et al., 1996; Catlett et al., 2000). Goat anti-Myo2p tail antise-
rum (Catlett, 2000) was affinity purified as previously described (Reck-
Peterson et al., 1999). Fixed cells were incubated with affinity-purified
goat anti-Myo2p tail antibody (1:200), followed by Alexa 488-donkey
anti-goat IgG (1:200). Vacuole membranes were labeled with mouse anti—
yeast v-ATPase 60-kD subunit (1:200), followed by Rhodamine red X-don-
key anti-mouse IgG (1:200). Secondary antibodies and anti-yeast v-ATP-
ase were purchased from Molecular Probes, Inc.

Vacuoles were isolated on a Ficoll flotation gradient as described previ-
ously (Catlett and Weisman, 1998), except 40 wM chymostatin, 10 mM
DTT, 1X complete, EDTA-free protease inhibitor cocktail (Roche), and 1x
protease inhibitor cocktail (Sigma-Aldrich), were added to the cell suspen-
sion and Ficoll gradient layers. After removal from the gradient, vacuoles
were washed once in the gradient buffer and collected by centrifugation at
13,000 g for 10 min.

Fluorescence microscopy
Cells were viewed with a microscope (Axioscope 2, Carl Zeiss Microlmag-
ing, Inc.) equipped for epifluorescence, and images were captured using
an RT Spot camera (Diagnostic Instruments, Inc.) controlled by Meta-
Morph® Imaging Series 4.5 software (Universal Imaging Corporation).
Confocal images were obtained with a laser scanning confocal micro-
scope (model LSM 510; Carl Zeiss Microlmaging, Inc.). For each field, a
z-series of 0.3-pum slices was scanned and projected to generate a single
image. The data was exported as 8-bit TIFF files and processed using
Adobe Photoshop®.

Western blot analysis

SDS-PAGE and Western blot analysis were performed after standard proce-
dures. Primary and secondary antibodies were used at the following con-
centrations: affinity-purified goat anti-Myo2p tail (1:2,000), HRP-donkey
anti-goat 1gG (1:5,000; Jackson ImmunoResearch Laboratories), mouse
anti-yeast v-H"-ATPase 100-kD subunit (1:5,000; Molecular Probes, Inc.),
and HRP-goat anti-mouse 1gG (1:5,000; Molecular Probes, Inc.). For Fig. 3
E, the concentrations of primary and secondary antibodies were goat anti-
Myo2p tail (1:10,000) and HRP-donkey anti-goat IgG (1:10,000). HRP ac-
tivity was detected using ECL (Amersham Biosciences).
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