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Abstract

While still in its infancy, the application of deep convolutional neural networks in

veterinary diagnostic imaging is a rapidly growing field. The preferred deep learn-

ing architecture to be employed is convolutional neural networks, as these provide

the structure preferably used for the analysis of medical images. With this retrospec-

tive exploratory study, the applicability of such networks for the task of delineating

certain organs with respect to their surrounding tissues was tested. More precisely,

a deep convolutional neural network was trained to segment medial retropharyn-

geal lymph nodes in a study dataset consisting of CT scans of canine heads. With a

limited dataset of 40 patients, the network in conjunction with image augmentation

techniques achieved an intersection-overunion of overall fair performance (median

39%, 25 percentiles at 22%, 75 percentiles at 51%). The results indicate that these

architectures can indeed be trained to segment anatomic structures in anatomically

complicated and breed-related variating areas such as the head, possibly even using

just small training sets. As these conditions are quite common in veterinary medical

imaging, all routines were published as an open-source Python package with the hope

of simplifying future research projects in the community.
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1 INTRODUCTION

Machine learning algorithms employing deep neural networks can

solve problems that previously have been out of reach for any other

computer system and as such have profoundly changed the techni-

cal world in the past decade. These techniques are starting to enter

the medical world as well, and veterinary science is no exception in

that. Of special importance for applications in medical radiology are

so-called deep convolutional neural networks (DCNNs). Compared to

standard deep neural networks, these architectures explicitly use the

Abbreviations: DCNN, deep convolutional neural network; ECVDI, European College of

Veterinary Diagnostic and Imaging.
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fact that images are depicting spatial objects and thus pixels close to

each other typically describe similar objects. Mathematically speak-

ing, convolutions are a technique to extract “features”—more abstract

descriptions of elements—out of an image, which basically contain

the relevant information about the image. A convolutional neural net-

work is a composition of several of these mathematical algorithms,

interchanged with steps to reduce the information even more to the

relevant parts, typically some kind of averaging over certain regions

in the image. The final steps depend on the target application: “classi-

fication” or “segmentation.” In a “classification” task, the images shall

be assigned a “label” such as deciding between healthy or diseased

patients and ordering such as a tumor grade or even a differential

diagnosis out of a finite set of possibilities.
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In “segmentation” mode, a DCNN can identify regions of special

importance in an image and provide this information back to the user.

The associated architecture of these networks varies. A commonly

used network is made from two convolutional neural networks: one

for extracting the “features” and a “reversed” network for detecting

the regions of interest based on those features. A particular example

of such an algorithm is the U-Net architecture.1 A prototypical man-

ual “segmentation” task inmedical imaging is to contour tumor volumes

andorgans-at-risk,with theaimof correct differentiationbetweennor-

mal organ(s) and lesion(s).2 In the head and neck area, anatomically

close relationships among normal organs, organs at risk and tumor

tissue are routinely encountered. Tumors of the head and neck are

a commonly encountered disease in canine patients and are known

for their high metastatic potential to the locoregional lymphnodes.3–6

Radiation therapy is often the treatment of choice for these types

of tumors, and the challenges while creating treatment plans are the

same as in human medicine. Precise contouring of the lesion(s) and

the organs-at-risk is a time-consuming task and prone to intra- and

interobserver variability and is currently manually performed with the

help of commercially available treatment planning systems.7,8 Studies

in humanmedicine are exploring the possibility of deep learning-based

technology tobeused in fully automateddelineationof anatomic struc-

tures in the head and neck region in medical images and are showing

promising results.9–13 While the classification task of convolutional

neural networks has already been used in some fields of veterinary

imaging in the near past, veterinary literature dealing with the seg-

mentation ability of DCNNs is scarce.14–20 Only one other recently

published study describes the implementation of deep learning-based

approaches to segment organs such as the eye or salivary glands in

canine patients.21

The authors of the current study considered contour delineation

of the medial retropharyngeal lymph nodes in contrast-enhanced CT

studies of canine heads as a well-suited topic for examining the poten-

tial of “a fully automated” algorithm-based approach for segmentation

of anatomic structures in the head and neck region. The objective

of the current study was therefore to determine the diagnostic per-

formance of a deep convolutional neural network in segmenting the

medial retropharyngeal lymph nodes in dogs. The working hypothe-

sis was that the network’s segmentation performance would be able

to identify the contours of the medial retropharyngeal lymph nodes

similar tomanually placed contours from veterinary radiologists.

2 MATERIALS AND METHODS

2.1 Study design

The current study was designed as a retrospective exploratory study.

The aim was to show that automated, deep learning-based image seg-

mentation is possible with Veterinary Data given the constraints of

limited availability of labeled original data (lymph nodes in this case)

and varying head sizes. If the network would be successfully delineat-

ing and segmenting themedial retropharyngeal lymphnodes fromtheir

surroundings, the future role of this automated approach would have

potential for its use in organs at risk delineation for radiation therapy

planning.

2.2 Data collection

The data collection for this project was performed in two steps. The

first step consisted of reviewing the imaging database of the Vetsuisse

Faculty Zurich for CT examinations of the head of canine patients with

the help of a keyword search termed “medial retropharyngeal lymph

node(s)” in the years 2017–2020. Taking the results of this database

query, two of the authors (D.S. and I.L.) randomly selected 30 radiology

reports of dogs in which a European College of Veterinary Diagnos-

tic and Imaging (ECVDI)–certified veterinary radiologist had described

both medial retropharyngeal lymph nodes as small and normal in size

in accordance with available literature.22 An additional 10 reports of

dogs were selected by the same two authors in which at least one of

the medial retropharyngeal lymph nodes had been described as mod-

erately enlarged. The database query provided only basic information

about the species of the listed animals, which helped to differenti-

ate dogs and cats for patient selection. Detailed information about

the signalment was not included in the initial database query. Query

results did, however, include the patient clinical identification num-

ber. With the help of this number, additional information about age

and breed could be identified at the end of the data collection pro-

cess. In the second step, the contrast-enhanced soft tissue series of the

40 patients was separated from the native soft tissue and bone win-

dow reconstruction series and manually imported into free-available

DICOM viewer software (HOROS; version 2.1.1; free, open-source

medical image viewer; www.horosproject.org). As the data used were

generated during routine patient workup, approval from the animal

welfare committee was not needed. The use of data was in accordance

with the hospital director.

2.3 Ground truth determination

The same two authors who had performed the report selection pro-

ceeded with building the ground truth dataset. One of the evaluators

was an ECVDI imaging resident (D.S.), and the other evaluator was

an ECVDI-certified veterinary radiologist (I.L.). Both evaluators were

familiar with the DICOM viewer software used. Ten of the normal

serieswere evaluated by the veterinary radiologist in a first step to test

the applicability of the contouring tools provided in the image analysis

software (HOROS). The imaging resident then completed the 30 nor-

mal series and evaluated the 10 caseswithmoderately enlargedmedial

retropharyngeal lymph nodes.

The two evaluators performed the contour delineation indepen-

dently by manually setting ROIs, starting with the first slide in which

the medial retropharyngeal lymph node became visible and continu-

ing until the last slide with a visible part of the respective lymph node.

The ROIs were set around the right and left lymph nodes. If there were

concerns about precise contouring in a specific dataset, the evaluators

would sit together and find a consensus. Once the annotations were

http://www.horosproject.org
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completed, the subset of images containing the lymph nodes and ROIs

weremanually separated from the complete contrast-enhanced series.

This preprocessing step was performed to reduce the number of input

images for the convolutional neural network.

Preprocessing also included the export of the collected ROIs to

text files in comma separated values format (CSV), a procedure sup-

ported using standard tools of the viewer software. Those CSV files

contained the ground truth in the form of pixel coordinates, which rep-

resent the edges of a polygon surrounding the lymph node. To train

a convolutional neural network, a “mask” encoding this information

on a pixel-to-pixel basis was needed for each image. Hence, the CSV

files were processed to give 0/1 valued image arrays, with the value

1 indicating that the associated pixel lies inside the ROI, and 0 other-

wise. As typical convolutional neural networks expect the pixel value

within the image to be within 0 to 1, the DICOM images were pre-

processed to extract the image data, and a soft-tissue window-like

transformation was applied to scale each pixel value to that range.

The aforementioned computational preprocessing aswell as themodel

training were conducted by a data scientist (V.S.) with more than 20

years of experience.

2.4 Data partition

The training of convolutional neural networks usually requires an

ample number of labeled images. As described above, the procedure

to get to those is quite time-consuming and involves well-trained radi-

ologists, which of course can only devote a limited amount of time to

these tasks. It is hence of paramount importance to use the available

image set as efficiently as possible. A standardmethod to better exploit

a given set of ground truth data is to expand the image set by gener-

ating more images in addition to the given images. For example, take

an image and slightly rotate or shift it. This has the additional benefit

that the neural network will not be biased toward a fixed rotation axis

while at the same time enlarging the dataset. Following these thoughts,

the images of each patient were grouped into 10 consecutive slices

(with respect to the z-dimension) to retain some spatial information in

that dimension. Next, for each of such a batch of images, two angles

between −20◦ and 20◦ were chosen at random, and the same corre-

sponding rotation was applied to all images in the same batch. With

the original batch kept, the dataset was thus enlarged by a factor of

three. At the end of this procedure, the dataset consisted of batches

of 10 consecutive images. The collection of these batches was then

split at random into three nonoverlapping sets with a split ratio of

80:10:10. The procedure implied that no batch of images was in more

than one set. However, an original batch and one of its rotated ver-

sions might well end up in different sets. The same statement thus also

amounts to the images of a patient—they might end up in different

randomly chosen groups. Due to hardware constraints, the number of

pixels in each image finally needed to be reduced. Downsampling the

images by max-pooling with a factor of three (taking the largest value

in each three-by-three-pixel square) was chosen, which is an averaging

technique often usedwhen training convolutional neural networks.

2.5 Model structure

A special type of convolutional neural network, the so-called U-Net

architecture, was used.1 Its name stems from the fact that its shape

can be roughly pictured as an “U,” with several convolutions followed

by averaging operations reducing the images in size more and more

(the downward path of an “U”) while at the same time extracting more

andmore features. This is followed bymany reverse convolutions (also

called transposed convolutions in mathematical terms), which again

enlarge the image increasingly, thereby combining the features into

masks of increasing size (the upward path of the “U”). The exact struc-

ture can be examined using the source code, which is publicly available,

as discussed inmore detail later.

2.6 Model training

The training of such a convolutional neural network architecture usu-

ally requires two main steps. First, the optimal way to extract the

features and combine them into masks needs to be found—this cor-

responds to finding the best set of convolutions. For this, a standard

algorithm called Adam was used.23 This algorithm finds in each step

the convolutions that currently performworse compared to others and

updates them accordingly. Technically speaking, the cross entropy was

used as a loss function, and aminibatch size of 10 images per batchwas

chosen. Second, the hyperparameters of such an architecture need to

be adjusted, for example, how “fast” it is trained (technically called the

learning rate). More precisely, the specific type of model architecture

requires optimizing the dropout rate of the convolutional layers, which

roughly corresponds to the fact that the network is forced to “forget”

some of its learning from time to time during training. It is obvious that

the same datasets should not be used for both steps, as otherwise they

might influence each other. More importantly, to see the effects when

changing, e.g., the learning rate, the convolutions need to be trained

first with a particular choice for these parameters.

Technically, the procedure of adjusting these additional variables is

called “hyperparameter optimization.” A new technique for this task

was invented by a team at Google Brains and is called “population-

based training” (PBT).24 In rough terms, it switches in an intelligentway

between adjusting the convolutions and the hyperparameters such as

the learning rate. The training procedure involved 2000 steps, where

in each of those, a batch of roughly 100 images was used to update

the convolutions followed by eventual updates of the hyperparameters

based on the validation dataset.

2.7 Evaluation of network performance

For such a setup to work out, a quick judgment of whether a given con-

figuration of convolutions and learning ratesworkswell or not is essen-

tial. Technically speaking, such a quantity is called a “validationmetric”;

a singlenumber tells howthenetwork is performing.Awell-established

one for segmentation tasks is the “intersection-overuunion” (IoU),

which measures how well the predicted mask corresponds to the true
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F IGURE 1 Intersection over UnionGray box represents the area
of intersection, while the white and black boxes show the areas of
union

mask by computing the ratio of their intersection in relation to their

union (see Figure 1). This also explains the threefold split into the

training, validation, and test datasets: for updating the convolutions,

the training dataset is used while the hyperparameters are adjusted

in regard to the validation dataset—the test dataset is not used at all

within training and only used to judge the final result. Throughout this

study, the same metric for assessing results was used, which implies

that the performance statements are all with respect to the IoUmetric.

2.8 Implementation and hardware resources

In principle, all steps described above can nowbe considered standards

in the artificial intelligence community. However, their application to a

particular project can often be time-consuming by themselves and is

also known to be error prone. To simplify future research ideas of the

veterinary community as well as by themselves, the authors decided

to bundle the technical steps into an open-source Python package,

which is now available on GitHub (https://github.com/volkherscholz/

dicomml) and free to use for everybody. It expects as an input only the

original DICOM images as well as the associated CSV files with the

edge coordinates of the polygons surrounding the regions of interest.

The authors hope that by utilizing this package, their colleagues will be

enabled to perform their own studies regarding segmentation tasks.

Training a convolutional neural network architecture requires ded-

icated hardware resources involving specialized graphical processing

units (GPUs). The authors are thankful to the University of Zurich Sci-

ence Cloud for providing them with a virtual machine with 8 CPU

cores, 32 GB of memory, and a Tesla T4 GPU attached. In utilizing

these hardware resources, standard deployment tools (also known as

containerization) known from cloud environments were applied.

3 RESULTS

3.1 Data

The examinations were performed with a 16-slice CT scanner (Bril-

liance 16, Philips Medical Systems, Best, The Netherlands) with the

dogs under general anesthesia and placed in sternal recumbency. The

scanning parameters were set at 120 kVp, 280 mA, 1.0 s rotation

time, 0.683 pitch, and a slice thickness of 1.5 mm with an incre-

ment of 0.75 mm. The field of view was adjusted to cover the head

and the neck and collimated to the individual size of each patient.

Iodinated contrast medium (2 ml/kg iv; Accupaque™ 350; GE Health-

care, Glattbrugg, Switzerland)was administered using a programmable

injector (AccutronCT-DMedtron, Injector, SMDMedical TradeGmbH,

Salenstein, Switzerland) through a peripheral venous catheter. The

contrast-enhanced images were acquired after a delay of 90 s. Analy-

sis of the dataset revealed that the patients included in this studywere

adult, pure andmixed breed dogs with all types of skull conformation.

3.2 Model performance

The training procedure took approximately 12 h on the hardware

described above. Thebestmodel achieved an average intersection over

union of 36%± 20%on the test dataset (median 39%, 25 percentiles at

22%, 75 percentiles at 51%).

Several examples to illustrate the high variation in performance of

the resulting deep convolutional neural network are provided. Figure 2

shows images of a patient with asymmetry of the medial retropha-

ryngeal lymph nodes for which the neural network performed the

segmentation of the contours of the lymph nodes similar to their

original appearance in the CT images. In comparison, Figure 3 shows

images of another dogof a different breed and therefore different head

conformations in which the neural network segmented the pixels con-

taining the medial retropharyngeal lymph nodes but also included the

immediate adjacent carotid artery as well as the medial contour of the

rightmandibular salivary gland on the right side. Performance can even

vary within a patient, as illustrated in Figure 4, which shows consecu-

tive images of the same dog, as shown in Figure 3. U-Net performed

more precise segmentation of the pixels compatible with the medial

retropharyngeal lymph nodes from the surrounding structures at this

more caudal location in the retropharyngeal area. Figure 5 shows the

original contrast-enhanced CT image as well as the input and corre-

sponding output images created by U-Net of a third, middle aged dog

in which both medial retropharyngeal lymph nodes were of small size.

The output image shows amismatch of the contours between the orig-

inal image and the pixels identified by the neural network as being the

medial retropharyngeal lymph nodes.

4 DISCUSSION

The presented model reached a mean IoU of 36%, which is generally

considered suboptimal performance given that an IoU score of 50%

achieved by an image segmentation model for its prediction perfor-

mance on the testing dataset is considered good performance.25 In

the authors‘ opinion, it still yielded acceptable results considering the

circumstances of being one of the first models trained for automated

image segmentation in veterinary medicine. The authors refer in that

context to their example shown in Figure 3, which clearly shows a

https://github.com/volkherscholz/dicomml
https://github.com/volkherscholz/dicomml
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F IGURE 2 Transverse contrast-enhanced CT image of a 9-year-old Shetland Sheepdog acquired in sternal recumbency (windowwidth= 450,
level= 140, 120 kVp, 280mA) (A) at the level of the paracondylar processes showing themedial retropharyngeal lymph nodes (white arrowheads).
Input image for U-Net (B) and corresponding output image (C). The pixels identified by U-Net as medial retropharyngeal lymph nodes are
highlighted in image (C). Left in the images is right in the dog

F IGURE 3 Transverse contrast-enhanced CT image acquired in sternal recumbency (windowwidth= 450, level= 140, 120 kVp, 280mA) at
the level of the atlanto-occipital transition of a 12-year-old Golden Retriever (A) showing themedial retropharyngeal lymph nodes (white
arrowheads). Input image for U-Net (B) and corresponding output image (C). The pixels identified by U-Net asmedial retropharyngeal lymph nodes
are highlighted in image (C). Image (C) shows inaccurate segmentation of the right medial retropharyngeal lymph node as the adjacent carotid
artery, and themedial contour of the right mandibular salivary gland is highlighted as well

dissatisfactory performance of the model as contouring of the lateral

margin of the right medial retropharyngeal lymph node was imprecise

in the output image. However, as the remaining aspects of the lymph

node were more exactly contoured by the network, the pixels high-

lighted in the output image as corresponding to the lymph node would

still provide a first impression of the lymph node‘s size and would help

with visual organ delineation in a clinical setup.

This study was conducted with CT examinations of the head and

neck of dogs, as this imaging modality provides the best insight into

pathologic processes in these body areas and serves as the main imag-

ing modality for the conception of RT plans.26–28 There were several

reasons for the selection of the medial retropharyngeal lymph nodes

as topics for this pilot study.

This group of lymph nodes builds the largest lymph center of the

head and neck29 and as such acts as sentinel lymph nodes in neo-

plasms in these body regions.30,31 Their size, shape, and appearance

are important features in terms of cancer staging as well as assess-

ment of the effectiveness of the selected radiation or chemotherapy

treatment.32 Their anatomy with their inherent relatively poor con-

trast to their surrounding tissues on CT slices as well as their variable

appearance and boundaries on successive slices make the medial

retropharyngeal lymph nodes a representative basic model for future

tumor segmentation.

Contrast-enhanced CT scans were chosen since the presence of

contrast improves medial retropharyngeal lymph node visualization

compared to noncontrast-enhanced CT scans and because of the use
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F IGURE 4 Transverse contrast-enhanced CT image acquired in sternal recumbency (windowwidth= 450, level= 140, 120 kVp, 280mA) (A)
at the level of the caudal atlas of the same dog shown in Figure 3 depicting themedial retropharyngeal lymph nodes (white arrowheads). Input
image for U-Net (B) and corresponding output image (C). The pixels identified by U-Net as medial retropharyngeal lymph nodes are highlighted in
image (C)

F IGURE 5 Transverse contrast-enhanced CT image acquired in sternal recumbency (windowwidth= 450, level= 140, 120 kVp, 280mA) of a
5-year-old Boxer (A) at the level of the atlanto-occipital transition showing themedial retropharyngeal lymph nodes (white arrowheads). Input
image for U-Net (B) and corresponding output image (C). Image (C) shows themismatch of the contours between the original image and the pixels
identified by U-Net as being themedial retropharyngeal lymph nodes

of contrast-enhanced scans for the conception of radiotherapy plans

in oncologic patients.33 With the far-reaching goal of employing deep

convolutional neural networks for this task entirely, it appeared logical

to test whether such algorithms can successfully delineate the medial

retropharyngeal lymph nodes.

Within veterinary medicine, the present study is one of the first

to apply deep convolutional neural networks for image segmentation

tasks as opposed to classification tasks. As described already in the

introduction, one of the main working fields for automated image

segmentation algorithms can very well be based within the field of

veterinary radiation oncology. The emerging benefits of deep convolu-

tional neural networks for automatic delineation and segmentation of

either the OAR or the neoplastic masses, respectively, would probably

help to overcome the known limitations of observer-related varia-

tions and facilitate the tedious work of manual delineation of these

structures and therefore optimize the workflow to conceive radio-

therapy treatment (RT) plans.2,26,34 In addition, in the future, AI-based

tools could also help with registration and segmentation of neoplas-

tic masses and metastases, compare these to normal images and help

with facilitating the labor-intensive work of manually measuring and

plotting detected size changes against the time and normal anatomy in

follow-up examinations.34

Several reasons could potentially contribute to the lower perfor-

mance of the network. First, the images had to be downsampled by a

factor of three due to hardware constraints, which led to amuch lower

resolution. The lower resolution and relatively small number of pixels

showing the medial retropharyngeal lymph nodes result in high sensi-

tivity of the model to misidentification of the pixels resembling lymph
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node parenchyma. More precisely, the misclassification of even one or

a few pixels to be within or not within the ROI can result in a degraded

IoU if the total pixel count in the entire ROI is small. In contrast, a

higher resolution image and thus anROIwithmore pixels in total is less

sensitive with regard to a few incorrectly predicted pixels. The main

limiting factor here was the availability of GPUs. With the hardware

configuration used, the hyperparameter optimization was only possi-

ble if the image size was restricted to 128 × 128 pixels per image. It

is technically possible to combine several GPUs to push these bound-

aries, but this was not possible in the present setup due to the limited

availability of suchdevices. Second, thedatasetwasbasedononly forty

patients, and data augmentation techniques can onlymitigate this bot-

tleneck to some degree. Third, inherent to veterinary medicine, the

head sizes of patients differ due to variation in breed,which constitutes

a major challenge for neural networks. In particular, the variable rela-

tion of the medial retropharyngeal lymph nodes to their surrounding

structures, such as the medial extending common carotid artery and

branches, thedorsal adjacentbonesandmuscles and the lateral located

mandibular salivary gland, is assumed to have a significant impact on

their correct delineation. Nevertheless, the trained network achieved

reasonable predictions on most images and was able to detect major

clinical changes.

This study could well suffer from multiple causes of biases, the

effects of which were considered and mitigated as much as possible

by the authors. Due to the limited dataset to begin with, a selection

bias cannot be ruled out, especially as all studies were conducted using

the same imaging equipment at the same department. To counteract

this initial bias, the authors took a random subset from the initial query

result. However, with only 40 patients in total, it is well possible that

good randomization was not achieved, especially as the distribution

of normal to diseased patients was skewed (30 normal patients ver-

sus 10 diseased patients). To reduce the influence of the small sample

size, the authors chose to split each patient’s images into groups of 10

images each, which were then randomly rotated, and each such batch

of images was then assigned by chance to one of the three datasets

(training, validation, test). Another source of bias is due to hardware

constraints – because of limited resources, the batch size per step of

stochastic gradient descent was rather small and thus did not consti-

tute a good random subset, which is also known to lead to suboptimal

training results. In addition, and independent of the exact implementa-

tion, the fact that only two veterinary radiologists were annotating the

images is almost certainly a possible source of rater bias. The authors

tried to mitigate this fact by comparing their annotations and making

sure that they are comparable, but of course this does not completely

rule out a rater bias. The small number of patients did not allowamean-

ingful statistical analysis of inter- or intrarater agreement, a limitation

that the authors hope to address in future studies. In summary, most

possible causes of bias can be traced back to either the small sam-

ple size or the hardware constraints, and both such limitations should

and hopefully will be lifted as the use of deep learning advances within

veterinary medicine.

Future research steps, such as the extension of the hardware

resources as well as the initial datasets, are required to improve the

accuracy of the presented deep convolutional neural network. Of

course, much further work is still needed before one can hope to use

convolutional neural networks in clinical conditions for the automated

conception of radiotherapy plans. In summary, this study constitutes

a complementary step in that direction by illustrating the possibility

of using a deep convolutional neural network for the segmentation of

lymph nodes in canine patients and is in linewith various other promis-

ing research projects describing the use of techniques from artificial

intelligence in veterinary medicine.
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