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Abstract: Descriptors derived from atomic structure and quantum chemical calculations for small
molecules representing polymer repeat elements were evaluated for machine learning models to
predict the Hildebrand solubility parameters of the corresponding polymers. Since reliable cohesive
energy density data and solubility parameters for polymers are difficult to obtain, the experimental
heat of vaporization ∆Hvap of a set of small molecules was used as a proxy property to evaluate the
descriptors. Using the atomistic descriptors, the multilinear regression model showed good accuracy
in predicting ∆Hvap of the small-molecule set, with a mean absolute error of 2.63 kJ/mol for training
and 3.61 kJ/mol for cross-validation. Kernel ridge regression showed similar performance for the
small-molecule training set but slightly worse accuracy for the prediction of ∆Hvap of molecules
representing repeating polymer elements. The Hildebrand solubility parameters of the polymers
derived from the atomistic descriptors of the repeating polymer elements showed good correlation
with values from the CROW polymer database.

Keywords: machine learning; polymer; properties prediction

1. Introduction

Computer-aided predictions of polymer solubility and miscibility with small molecules
and drugs are of fundamental importance in a number of industrial applications, including
the use of polymers as drug carriers in the growing field of nanomedicine [1]. Among
various approaches, solubility and miscibility predictions based on Hildebrand solubility
parameters are often used for polymer blends, polymer solutions and polymer–drug mix-
tures [2]. The Hildebrand model uses a solubility parameter (SP), δ, defined as the square
root of the cohesive energy density:

δ =

√
Ecoh
Vm

(1)

where Ecoh is the cohesive energy, and Vm is the molar volume. The miscibility of two substances
can be estimated by comparing the absolute value of the difference in their SPs. If it is more
than 2 MPa1/2, the two substances are deemed immiscible, and with a difference of less than
2 MPa1/2, they are considered miscible [3]. The factor 2 MPa1/2 was determined on the basis of
empirical considerations [3]. The Hildebrand SP can also be used to roughly estimate the Flory–
Huggins interaction parameter [4], which is another useful tool for predicting the miscibility of
polymer blends [5].

For low-molecular-weight compounds, Ecoh and δ can be estimated from the heat
of vaporization:

Ecoh ≈ ∆Hvap − RT (2)
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where ∆Hvap is the heat of vaporization [2]. However, for polymers, SP is difficult to obtain
from experiments [6]. Various experimental methods can be used to indirectly derive
SP, such as hot-stage microscopy, differential scanning calorimetry (DSC) and ultraviolet
spectroscopy [7,8], but these methods provide limited accuracy and can only be used for a
small range of polymer species.

In addition to experimental methods, SP can also be calculated by empirical ap-
proaches and computer simulations. A group-contribution method (GC) is an empirical
approach, which uses the sum of the contributions of structural and functional groups
to estimate polymer properties [9]. GC is easy to apply but has limited accuracy due to
the use of empirical assumptions. Although new GC approaches are being developed, a
general model that can cover a wide range of polymer species and polymer properties is
not available [10]. Atomistic simulations employing force fields and interatomic potential
functions are another tool for predicting polymer properties [5,11]. However, accurate SP
predictions using atomistic simulations are computationally demanding, especially for
polymers and compounds with complex structures [12].

In this regard, data-driven approaches based on machine learning (ML) models have
become an appealing alternative to simple empirical approaches and atomistic simulations.
ML models have been developed to predict the physical or chemical properties of materials
with good accuracy, including solubility parameters [11]. However, the predictive power
of ML models depends heavily on the availability of accurate and consistent target data
covering a wide structural and compositional range, as well as unbiased descriptors,
i.e., readily available observables that can be linked to the target property [13]. Such
observables can be derived, e.g., from experimental data or from quantum chemical or
atomistic calculations [13,14]. It is difficult to obtain relevant experimental data on target
properties and descriptors for predicting the SP of polymers. In the case of descriptors, one
approach is to use the features derived for monomer molecules [13]. However, polymer
properties may be fundamentally different from those of the monomer. Therefore, small
organic molecules that are structurally similar to the repeating element (RE) of the polymer
may be a better choice. For a given polymer, different molecules can be identified that
represent REs, as shown in Figure 1 for polyethylene glycol (PEG). Both ethylene glycol and
ethanol, as polar molecules forming strong hydrogen bonds, are poor choices for deriving
molecular descriptors for ML models for PEG.

Figure 1. Polyethylene glycol (PEG) and different choices of small molecules with a structural motif
of the repeating element of PEG.

In this work, descriptors derived from the atomic structure and quantum chemical
calculations of small molecules as potential polymer REs are evaluated for ML models
of the polymer SP. Since reliable cohesive energy density and SP data for polymers are
difficult to obtain in experiments and simulations, a surrogate target property is used to
evaluate the descriptors, namely, the experimental heat of vaporization ∆Hvap of the small
molecules. For low-molecular-weight compounds, ∆Hvap can usually be determined with
good accuracy [15]. Subsequently, the relationship between ∆Hvap of the polymer RE and
the available SP of the polymers is investigated.

2. Method
2.1. Molecular Datasets

ML models for predicting ∆Hvap were trained and tested on a dataset of small organic
molecules including hydrocarbons, alcohols, acids, amines, ketones, aldehydes, nitriles,
organic chlorides and benzene derivatives. A summary of the dataset is shown in Table 1.
Figure 2 shows examples of the largest molecules used. The ML models were then applied to
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another dataset of organic molecules with structural similarity to REs of popular polymers
to predict ∆Hvap and correlate it with the polymer SP. This dataset is summarized in Table 2.

Table 1. Summary of the molecules included in the training dataset with experimental ∆Hvap (see
Supplementary Materials, Tables S1 and S6).

Type Formula Size n Number of
Molecules

hydrocarbons CnH2n+2 1–10 10
acids CnH2n+1COOH 0–8 9

alcohols CnH2n+1OH 1–9 9
ketones CnH2nO/C6H5COCH3 3–7 6
amines CnH2n+1NH2 1–6 5

aldehydes Cn−1H2n−1CHO/C6H5CHO 3–6 5
nitriles CnH2n+1CN 1, 3–6 5

organic chlorides CnH2n+1Cl 1, 3–6 5

benzene derivatives
C6H6/C6H5OCH3/C6H5OCH2CH3/

C6H5CH2OCH3
/C6H5CnH2n+1

1, 2, 4 7

Figure 2. The largest molecule of each type used in the training dataset: decane (C10H22), nonanoic
acid (C8H17COOH), nonanol (C9H19OH), 2-heptanone (C7H14O), hexylamine (C6H13NH2), hexanal
(C5H11CHO), hexanenitrile (C5H11CN), chloropentane (C5H11Cl) and butylbenzene (C6H5C4H9).

The organic molecules in both datasets cover a wide range of ∆Hvap values, from
8.19 kJ/mol (methane) to 69.00 kJ/mol (heptanoic acid), and represent different chemical
structures. The experimental values of ∆Hvap for all molecules, measured around a normal
boiling point, were collected from the literature (see Supplementary Materials).

2.2. Computational Details

All density functional theory calculations were performed as a gas phase using the
Turbomole program package [16]. The Becke 3-parameter Lee–Yang–Parr (B3-LYP) [17]
exchange–correlation functional was employed, along with triple zeta valence plus po-
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larization (def2-TZVP) [18] basis sets and Grimme dispersion correction (DFT-D3) [19].
The geometry convergence criteria for DFT calculations were 10−6 hartree for the energy
change and 10−3 hartree/bohr for the gradient norm. Count descriptors and topological
descriptors were calculated with the PaDEL-Descriptor program [20]. Python 3 with the
Scikit-learn package was used for building all machine learning models [21].

Table 2. Summary of polymer repeating elements (REs) included in the validation set with experi-
mental ∆Hvap (see Supplementary Materials, Tables S2 and S7).

Polymer Formula RE Formula of RE

poly(acrylic acid) (C3H4O2)n propanoic acid CH3CH2COOH
poly(allyl cyanide) (C4H5N)n butanenitrile CH3CH2CH2CN
polyacrylonitrile (C3H3N)n propanenitrile CH3CH2CN

polybutylene (C4H8)n butane CH3CH2CH2CH3
polyethylene (HDPE) (C2H4)n ethane CH3CH3
poly(ethylene glycol) (C2H4O)n dimethyl ether CH3OCH3
cis-1,4-polyisoprene (C5H8)n 2-methyl-2-butene CH3CHC(CH3)2

polyisobutene (C4H8)n isobutane (CH3)2CHCH3
polymethacrylonitrile (C4H5N)n isobutyronitrile (CH3)2CHCN

poly(methyl methacrylate) (C5H8O2)n methyl butyrate CH3CH2CH2COOCH3
polypropylene (C3H6)n propane CH3CH2CH3

polystyrene (C8H8)n ethylbenzene C6H5C2H5
poly(vinyl alcohol) (C2H4O)n ethanol CH3CH2OH
poly(vinyl acetate) (C4H6O2)n ethyl acetate CH3COOCH2CH3

poly(vinyl chloride) (C2H3Cl)n chloroethane CH3CH2Cl
poly(vinyl ethyl ether) (C4H6O)n diethyl ether CH3CH2OCH2CH3

2.3. Molecular Descriptors

In the current work, four quantum chemical descriptors were obtained using DFT
calculations: atomization energy (AE), quadrupole moment (QM), chemical hardness η and
electronegativity χ. There are different definitions for the quadrupole moment [22,23]. In
the present work, the quadrupole moment was defined as the second moment of charge [23],
and QM was taken as

QM =
1
3
(
Qxx + Qyy + Qzz

)
(3)

where Qxx, Qyy and Qzz are diagonal elements of the second moment of the charge tensor.
Chemical hardness η and electronegativity χ are chemical reactivity descriptors that

were applied in an artificial neural network for predicting solvation energies [24]. They are
defined as

η ' ELUMO − EHOMO (4)

and
χ = −1

2
(ELUMO + EHOMO) (5)

where EHOMO and ELUMO denote the energies of the highest occupied (HOMO) and lowest
unoccupied molecular orbitals (LUMO), respectively.

The remaining descriptors, such as number of aromatic bonds (nAromBond) and
number of heavy atoms (nHeavyAtom), were generated using the PaDEL-Descriptor [20]
program based on the atomic structures of molecules. The descriptors were obtained using
exactly the same method for both datasets (Tables 1 and 2). The full specification of the
descriptors is given in the Supplementary Materials.

2.4. Machine Learning Models

Two supervised machine learning models were used: multilinear regression (MLR)
and kernel ridge regression (KRR) [25]. MLR is the simplest ML model using the least
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square method and has been widely applied in data analysis. The MLR model can be
represented as a linear combination of all descriptors

yprediction = θ1x1 + θ2x2 + · · ·+ θixi + θ0 (6)

where θi is the coefficient of each descriptor xi, and θ0 is the intercept. The training of the
MLR model involves the determination of the best (θ1, θ2, . . . , θi) and θ0. All hyperparame-
ters used for MLR training used the default values implemented in the Scikit-learn package.

KRR is a combination of the kernel function and ridge regression, which is an im-
provement on the ordinary linear regression method [26,27]. There are several kernel
functions available for different tasks, and in the present work, the polynomial kernel
function was applied

k
(
x, x′

)
=
(
x·x′ + c

)d, (7)

where x and x
′

are descriptors, and hyperparameters c and d are the soft margin constant
and degree of the polynomial kernel, respectively. The accuracy and performance of the
model usually depend on the choice of hyperparameters. Since the dataset was relatively
small, changes in parameters other than c and d had little effect on the model accuracy
and were therefore set to constant values (alpha (regularization strength) = 0.001 and
gamma = none). In the current work, c and d in Equation (7) were determined using the
grid search function of Scikit-learn. Based on the grid search results, the value of c had little
effect on the model and was finally set to 1. The models with d = 1 and d = 2 showed similar
performance, and both models were retained for further study. Changes in parameters
other than c and d had little effect on the model accuracy and were therefore left at the
default values implemented in the Scikit-learn package.

Due to the limited size of the dataset (61 molecules in total), the leave-one-out cross-
validation (LOOCV) method was used in the current work, aiming to make optimal use
of each sample and to obtain a more justified model. LOOCV is an extreme case of cross-
validation, in which only one sample is selected for testing in each cycle, and the other
samples are used to train the model until all samples have been selected once. The final
model is optimized by averaging the LOOCV results. MLR and KRR models were trained
with the same dataset, and LOOCV was applied for all models. After training and LOOCV,
all models were used to predict ∆Hvap of polymer REs (16 molecules in Table 2), and the
performance of all models was analyzed [28] using root-mean-square error (RMSE)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (8)

mean absolute error (MAE)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (9)

and the average of relative error (ARE)

ARE =
1
n

n

∑
i=1

∣∣∣∣1− ŷi
yi

∣∣∣∣ (10)

where yi and ŷi are the reference and predicted values, respectively. In addition, the
coefficient of determination (R2) was used to describe the proportion of variability in a
dataset that can be explained by the model [29].

3. Discussion
3.1. Selection of Molecular Descriptors

Molecular descriptors were manually selected and filtered by analyzing multicollinearity
based on correlation coefficients. For this, descriptors were selected in addition to the quantum
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chemical descriptors that showed low multicollinearity (correlation coefficient within ±0.75)
and a high degree of correlation with ∆Hvap. The 15 descriptors finally selected are shown
in Figure 3.

Figure 3. Correlation coefficients among 15 descriptors. AE: atomization energy, QM: quadrupole
moment, nAromBond: number of aromatic bonds; nHeavyAtom: number of heavy atoms (all but
hydrogen); SsOH: sum of (-OH) E-States; SssO: sum of (-O-) E-States; nAcid: number of acidic
groups; SHdsCH: sum of (=CH-) E-States; SsNH2: sum of (-NH2) E-States; SsCH3: sum of (-CH3)
E-States; SHBa: sum of E-States for hydrogen bond acceptors; SHBd: sum of E-States for hydrogen
bond donors; SssCH2: sum of (-CH2) E-States (see Supplementary Materials); η: chemical hardness;
χ: electronegativity.

Figure 3 shows that there is only weak correlation among most descriptors, which can
reduce the risk of collinearity problems [30]. Reducing redundant and irrelevant descriptors
also lowers the cost of training and reduces the possibility of an overfitting problem [14,31].

3.2. Predictions of ∆Hvap for Small Organic Molecules

The final MLR model for predicting ∆Hvap (in kJ/mol) is given as

∆Hvap = −23.723AE + 0.234QM− 3.303nAromBond + 3.601SsOH− 0.33SssO + 0.477SsCH3 + 2.753SsNH2
−0.65SHBa + 1.301SHdsCH− 5.580nAcid− 0.618SssCH2− 15.805SHBd
+15.53nHeavyAtom + 10.667

(11)

This model does not contain any unreasonably small or large factors for descriptors,
which indicates that there are no irrelevant or redundant descriptors. Figure 4 shows that
MLR performed well for the training set of small molecules and the LOOCV, according to
the R2 score and other metrics. ARE for training (0.071) and LOOCV (0.105) showed the
same trend as the other metrics. The MLR model showed good accuracy for predicting
∆Hvap of molecules, with a maximum deviation of 12.43 kJ/mol for ethanoic acid. However,
there are large disparities in the values of ∆Hvap for ethanoic acid across the literature
(from 23.7 (at 391.1 K) to 42 (at 305 K) kJ/mol) [32,33]. The overall deviation is within
experimental accuracy. For the LOOCV, both the RMSE of 5.291 kJ/mol and MAE of
3.607 kJ/mol are within ranges indicative of good accuracy.
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Figure 4. Performance of the MLR model for ∆Hvap predictions of small molecules (ARE for the
training set: 0.072 and for LOOCV: 0.105). ∆Hvap, MAE and RMSE in kJ/mol.

The performance comparison of the final KRR (d = 1) and KRR (d = 2) models is shown
in Figure 5.

Figure 5. Performance of the KRR models for ∆Hvap predictions of small molecules: (a) d = 1 (ARE
for the training set: 0.072 and for LOOCV: 0.106), (b) d = 2 (ARE for the training set: 0.026 and for
LOOCV: 0.184). ∆Hvap, MAE and RMSE in kJ/mol.

Compared to the MLR model, the KRR model (d = 1) did not perform better in training,
but all metrics had a small lead in cross-validation, which showed slightly better stability.
KRR (d = 2) performed best during training but was the worst in LOOCV, and this case was
most likely due to the overfitting. Considering the size of the datasets used in the current
work, high-scoring ML models trained with small datasets can often suffer from overfitting.

3.3. Predictions of ∆Hvap for Polymer Repeating Elements

All three models were applied to predict ∆Hvap of molecules representing polymer
REs. Table 3 and Figure 6 show that the MLR and KRR (d = 1) models provided the best
accuracy. The KRR (d = 2) model failed to predict ∆Hvap of polymer RE, and the much
larger error of the KRR (d = 2) suggests that the model was overfitted. As mentioned, KRR
algorithms do not offer advantages on small datasets.

Figures 4–6 demonstrate that the MLR model showed slightly worse performance
than the two KRR models during training and cross-validation, but the MAE of MLR for
polymer RE was better than that of KRR (d = 1). Therefore, the MLR model and the KRR
model (d = 1) in the current work have better extrapolation ability than the KRR (d = 2)
models. However, the KRR algorithm with higher d could still yield better results for a
larger dataset with more complex structures and chemical compositions.
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Table 3. Performance comparison of MLR and KRR models (MAE and RMSE in kJ/mol).

Training Set (LOOCV) Polymer REs

R2 MAE RMSE ARE R2 MAE RMSE ARE

MLR 0.805 3.607 5.291 0.105 0.819 3.533 4.348 0.118
KRR (d = 1 ) 0.806 3.597 5.276 0.106 0.821 3.540 4.348 0.118
KRR (d = 2 ) 0.328 2.520 15.661 0.184 0.311 23.472 36.536 0.820

Figure 6. ∆Hvap predictions of polymer RE by MLR and KRR (d = 1), ARE for MLR: 0.118 and for
KRR (d = 1): 0.118. ∆Hvap, MAE and RMSE in kJ/mol.

3.4. Hildebrand Solubility Parameter of Polymers

Our results show that the heat of vaporization of small molecules and polymeric REs,
and thus their SPs, can be predicted with good accuracy using the MLR and KRR (d = 1)
models. The question now is how well the Hildebrand SP of RE correlates with the SP of
the corresponding polymers. For this, Hildebrand SPs of polymers were collected from the
CROW polymer database [34] with recommended values, and SPs of REs were calculated
from MLR-predicted ∆Hvap (see Supplementary Materials). Figure 7 shows the correlation
of Hildebrand SPs between polymers and REs. The linear model yields an R2 value of 0.855.

Figure 7. Correlation of Hildebrandt SP between polymers and REs. All values in MPa1/2. Linear fit
model: δpolymer = 0.602δRE + 5.915.

There are several factors that can affect the accuracy of Hildebrand SP predictions
for polymers. First, the experimental values of SPs for polymers can only be determined
indirectly, and the accuracy of such values is essentially indeterminate. Second, the SPs



Polymers 2022, 14, 26 9 of 11

are determined not only by the internal structure of the polymer chains, reflected here
in the descriptors derived from the polymer RE, but also by factors such as the degree
of polymerization, polydispersity, and the nature of the end groups. Such factors cannot
be determined from the properties of REs alone and must be derived from experimental
data. How well the two descriptors, chemical hardness and electronegativity, actually help
in the prediction of solubility parameters needs to be further investigated, as intuitively,
the association between the two and polymer solubility is not strong. In addition, larger
chemical structures, such as oligomers with several repeating units, may provide more
information about inter- and intramolecular interactions and can improve the accuracy of
machine learning models. Simulations of such structures are obviously less computationally
expensive than simulations of polymers, but finding suitable descriptors may still be a
challenge. This is also one of the pathways for future research studies.

4. Conclusions

In this work, descriptors derived from atomic structure and quantum chemical cal-
culations for small molecules as potential polymer repeating elements were evaluated
for machine learning models to predict the Hildebrand solubility parameters of the corre-
sponding polymers. Since reliable cohesive energy density data and solubility parameters
for polymers are difficult to obtain, the experimental heat of vaporization ∆Hvap of small
molecules was used as a proxy property to evaluate the descriptors. The multilinear and
kernel ridge regression model (with polynomial kernel degree = 1) showed good and very
similar performance in training, cross-validation and the prediction of molecules repre-
senting polymer repeating elements. The kernel ridge regression model (degree = 2) was
strongly overfitted, which was revealed by its poor performance in cross-validation and
prediction. The Hildebrand solubility parameters derived from the multilinear regression
model for the ∆Hvap of polymer repeating elements showed good correlation with the
solubility parameters of the corresponding polymers collected from the CROW polymer
database. However, atomistic descriptors derived from polymer repeating elements only
reflect the internal structure of the polymer chains. More accurate models for predicting the
Hildebrand solubility parameters of polymers must take into account additional relevant
factors, such as the degree of polymerization, polydispersity and the nature of the poly-
mer end groups. Such factors cannot be determined from the properties of the repeating
elements of the polymer alone and must be derived from experimental data.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym14010026/s1, Table S1: Heat of vaporization ∆Hvap of small molecules; Table S2:
Heat of vaporization ∆Hvap of polymer REs; Table S3: MLR predictions on polymer RE dataset;
Table S4: KRR predictions on polymer RE dataset; Table S5: Hildebrand solubility parameter δ of
polymers and calculated δ of REs; Table S6: Complete dataset of small organic molecules; Table S7:
Complete dataset of polymer REs.
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