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Abstract: Identification of ionic liquids with low toxicity is paramount for applications in various
domains. Traditional approaches used for determining the toxicity of ionic liquids are often expensive,
and can be labor intensive and time consuming. In order to mitigate these limitations, researchers
have resorted to using computational models. This work presents a probabilistic model built from
deep kernel learning with the aim of predicting the toxicity of ionic liquids in the leukemia rat cell
line (IPC-81). Only open source tools, namely, RDKit and Mol2vec, are required to generate predictors
for this model; as such, its predictions are solely based on chemical structure of the ionic liquids
and no manual extraction of features is needed. The model recorded an RMSE of 0.228 and R2 of
0.943. These results indicate that the model is both reliable and accurate. Furthermore, this model
provides an accompanying uncertainty level for every prediction it makes. This is important because
discrepancies in experimental measurements that generated the dataset used herein are inevitable,
and ought to be modeled. A user-friendly web server was developed as well, enabling researchers
and practitioners ti make predictions using this model.

Keywords: small molecules; ionic liquids; toxicity; probabilistic deep learning; artificial intelligence

1. Introduction

Materials which exist in liquid phase at temperatures below 100 ◦C and are composed
of organic or inorganic cations and anions are referred to as room temperature ionic liquids.
Often, they are more loosely called ionic liquids (ILs). These materials exhibit a unique set of
desirable properties, such as a low melting point, negligible volatility, thermal and chemical
stability, high ionic conductivity, solubility with many compounds, low flammability, mod-
erate viscosity, high polarity, and high recyclability [1–4]. Hence, they have drawn great
interest as a research topic and found applications in various fields such as catalysis [5,6],
pharmaceuticals [7,8], biopolymer processing [9], nuclear fuel reprocessing [10,11], solar thermal
energy [12], and batteries [2,13]. However, there is a concern that, owing to their solubility in
aqueous media, ionic liquids may interact with biota, distress it, and ultimately impact human
health when these chemicals are discharged into the environment through wastewater [14].

Prominent research results regarding the toxic effects induced by ILs in the ecosystem
are presented in the works of Samorì et al. [15] and Latała et al. [16]. Overall, studies
leading to identification of more ILs with known effects on the environment have increased
at a slower pace than anticipated [14]. The usual and most effective way of conduct-
ing experiments to measure the toxicity of ILs directly with the aim of determining ILs
with desirable low toxicity has been deemed time-consuming, resource-intensive, and
even impractical due to the large number of feasible combinations between cations and
anions [14,17]. To quickly build on the available results obtained from experimental mea-
surements and mitigate the limitations associated with conducting further experimental
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measurements, computational methods, which often involve machine learning, have be-
come a preferred tool. Herein, we consider several computational tools that have been
developed recently to predict the toxicity of ILs against the leukemia rat cell line IPC-81.
IPC-81 has been frequently used to quantitatively indicate the toxicity of ILs [14,18–25].

Wang et al. [17] developed a support vector machine (SVM) model based on a dataset
containing 355 ILs. From their respective simplified molecular-input line entry system
(SMILES) strings, nine cation descriptors, nine anion descriptors, and 24 general descriptors
were obtained for each IL using a feature extraction algorithm [26] and the RDKit chemin-
formatics tool [27]. Their feature extraction algorithm uses a predefined set of substructures
which act as descriptors. The frequency with which each descriptor appears in the IL
molecule is then used as input to the model, similar to group contribution (GC)-based
methods [28–32]. The SVM model trained in this way yielded a satisfactory RMSE of 0.2875
on the 355 ILs.

More recently, Kang et al. [33] embarked on improving traditional GC-based ap-
proaches to predicting the toxicity of ionic liquids [34,35]. They developed a novel method,
termed atom surface fragment contribution (ASFC), which uses the surface area of screen-
ing charge density (Sσ-surface) calculated based on quantum chemistry. Unlike in GC, where
only the types and frequencies of functional groups are considered and interactions between
groups are ignored (thus rendering isomeric groups indistinguishable [34]), ASFC has the
capability to distinguish the contributions of each group in different molecules, and hence
the potential to improve the reliability of GC models [33]. In ASFC, the Sσ-surface values of
atoms are obtained using BIOVIA COSMOtherm 2020 software, which contains COSMO
files of 74 cations and 15 anions from the quantum chemical level of BP-TZVPD-FINE. The
Sσ-surface values for groups were found by summing the Sσ-surface of all atoms in each group.
Group Sσ-surface values were used as predictor descriptors in a multiple linear regression
(MLR) model similar to the one used by Hossain et al. [36]. The R2 and MSE of the ASFC
model were 0.924 and 0.071, respectively.

The models described above have shown an exceptional ability to predict toxicity
with great accuracy and reliability by taking into account expert information regarding
the creation of predictor descriptors. However, it may be difficult for someone who has
no or little domain expertise to create such specialized descriptors in order to use them
when making predictions concerning new ILs. Second, several of the models described
above employed commercial software such as COSMOtherm to extract the desired features,
which adds to their cost. Lastly, all these models are deterministic; they do not model
uncertainty in either the data nor in the models themselves. Kang et al. [33] noted that
there might be experimental errors in the set of ionic liquids that they used in their work. It
is therefore crucial that the uncertainty associated with the data be included in the model.

Consequently, this work aims to achieve three main goals. First, we intend to use
existing open-source software to generate descriptors for predicting toxicity of ionic liquids
towards the leukemia rat cell line in a way that requires no or very little domain expertise.
Second, based on these features, we intend to build an accurate and reliable probabilistic
deep learning model for predicting toxicity. Such a model should be capable of capturing
aleatoric uncertainty, which is the uncertainty due to irreducible noise in the data. Aleatoric
uncertainty models the stochastic nature of the process of generating data [37]. Lastly, we
built a web tool for the ensuing model to allow other researchers and practitioners to use it
in their work.

2. Materials and Methods
2.1. Data Preparation

A dataset containing 155 ionic liquids which exhibit toxicity towards the leukemia rat
cell line IPC-81 was collected from the literature [33,38]. The logarithm of half maximal
effective concentration, log EC50, was used to represent the toxicity level, whereas the
SMILES string for each ionic liquid was used to generate the features used for modeling.
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The dataset was split randomly into subsets, which contained 140 ionic liquids for training
and cross-validation and 15 for testing. Figure 1 depicts the overall process.

Ionic liquids
dataset

Random split

Training and
validation set

Test set

Generate
descriptors

Generate
descriptors

Train model Test model

5-fold cross
validation

End

RDKit

Mol2vec

Figure 1. Workflow showing how the data were split, features generated, and cross validation used
in modeling toxicity prediction for ionic liquids.

2.2. Molecular Descriptors and Features

A total of 310 features were used to describe the physical and chemical properties
of each of the ionic liquids. In particular, the first ten features were obtained from RDKit
molecular descriptors. These descriptors were the number of atoms in the molecule,
number of heavy atoms, number of carbon atoms, number of oxygen atoms, number of
nitrogen atoms, number of chlorine atoms, the topological polar surface area (TPSA) of
the molecule, the molecular weight, the number of valence electrons, and the number of
heteroatoms for a molecule. The rest of the features (300) were obtained using a pretrained
Mol2vec [39] model. Mol2vec is an unsupervised machine learning approach to learning
the vector representations of molecular substructures. The pretrained Mol2vec model
used in this experiment was reported to have been trained in an unsupervised fashion on
19.9 million compounds from the ZINC version 15 [40,41] and chEMBL version 23 [42]
databases. The ten features from RDkit and the 300 features from Mol2vec were then
concatenated to produce one feature vector with a length of 310. Figure 2 depicts the
workflow for generating these 310 features for each ionic liquid.
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Figure 2. Workflow showing how ten features were generated from RDKit and 300 from Mol2vec for
each of the ionic liquids based on their respective SMILES strings.

2.3. Deep Kernel Learning

A deep kernel model can be thought of as applying a Gaussian process with a base
kernel kθ to the final hidden layer of the deep neural network. In effect, this means that
the deep neural network has a hidden layer with an infinite number of hidden units, as
a Gaussian process with a base kernel kθ, such as the radial basis function (RBF) kernel,
corresponds to an infinite basis function representation [43]. Figure 3 shows the pedagogical
architecture of the deep kernel learning model used in our experiments.
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Figure 3. A Gaussian process with a deep kernel which maps the 310 input features x through
five parametric hidden layers followed by a single hidden layer with an infinite number of basis
functions using the RBF base kernel. The kernel’s hyperparameters are denoted as θ, whereas those
of the parametric layers are denoted as w. Each of the first four parametric hidden layers has
163 units, while the final parametric hidden layer has two units. There is only one unit in the output
y, representing a single value for log EC50.

From an RBF base kernel k(xi, xj|θ) with parameters θ, the input features x are trans-
formed, using a probabilistic Gaussian process, as

k(xi, xj|θ)→ k(g(xi, w), g(xj, w)|θ, w) (1)



Int. J. Mol. Sci. 2022, 23, 5258 5 of 12

where g(x, w) is the nonlinear mapping provided by the deep neural network. The hyper-
parameters of the deep neural network, w, and those of the base kernel, θ, are combined as
γ = {w, θ} and learnt jointly by maximizing the log marginal likelihood L of the targets
y, as follows:

log p(y|γ, X) ∝ −
[
y>(Kγ + σ2 I)−1y + log |Kγ + σ2 I|

]
. (2)

To learn the kernel, the chain rule is applied to compute

∂L
∂θ

=
∂L
∂Kγ

∂Kγ

∂θ
(3)

∂L
∂w

=
∂L
∂Kγ

∂Kγ

∂g(x, w)

∂g(x, w)

∂w
(4)

where the implicit derivative of the log marginal likelihood with respect to the data covari-
ance matrix Kγ is provided by

∂L
∂Kγ

=
1
2

(
K−1

γ yy>K−1
γ − K−1

γ

)
.

For scalability, a structured kernel interpolation [44] covariance matrix, KSKI, is used
instead of Kγ:

Kγ ≈WKU,UW> := KSKI (5)

where U is the set of grid inducing points, KU,U is the kernel matrix between the inducing
points, and W is a sparse matrix of the interpolation weights.

2.4. Training Details and Model Hyperparameters

We used the GPyTorch [45] library to implement the model described in the deep
kernel learning (DKL) section. To obtain optimal model hyperparameters, we used the
Optuna hyperparameter optimization framework [46]. Table 1 contains more information
about the model’s implementation and its associated hyperparameters.

Table 1. Hyperparameters for the deep kernel model used in our experiments.

Hyperparameter Options Optimal Setting

Basis kernel function RBF RBF
Grid size 16 to 100 35
Learning rate 1× 10−5 to 3× 10−1 0.0130925
Optimizer SGD or RMSprop or Adam RMSprop
Deep neural network (DNN) layers 2 to 7 5
Units in each layer (except the last) 32 to 512 163
Units in the last layer of the DNN 2 2
Activation function ReLU or LeakyReLU or Tanh LeakyReLU

With the hyperparameters fixed as shown in the optimal setting column of Table 1, a
DKL model was developed using the training set and a five-fold cross-validation scheme,
as depicted in Figure 1. A representative model was selected based on the optimal perfor-
mance during cross-validation. Table S1 in the Supplementary Materials shows the results
of cross-validation and which instance of the model was selected. The selected model was
then evaluated on the test dataset.

2.5. Performance Evaluation Metrics

To evaluate the performance of the model, we used standard statistical metrics that are
commonly used on regression problems. These metrics were the mean squared error (MSE),
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root mean squared error (RMSE), coefficient of determination(R2), and average absolute
relative deviation (AARD).

With N samples of data where the measured log EC50 from experiments for sample
i is provided by yexp

i and the corresponding prediction from the DKL model by ypred
i , the

aforementioned metrics can be obtained as follows:

MSE =
1
N

N

∑
i=1

(
ypred

i − yexp
i

)2
(6)

RMSE =

√√√√ 1
N

N

∑
i=1

(
ypred

i − yexp
i

)2
(7)

R2 = 1−

N
∑

i=1

(
ypred

i − yexp
i

)2

N
∑

i=1

(
ypred

i − ȳ
)2

(8)

AARD =
1
N

N

∑
i=1

∣∣∣∣∣y
pred
i − yexp

i

yexp
i

∣∣∣∣∣ (9)

Note that the term ȳ in Equation (8) represents the average measured log EC50 in
the dataset.

3. Results and Discussion

In this section, we provide results showing the performance of the DKL model and
compare it with GC and ASFC models, two of the state-of-the-art models in this area. These
two models, especially ASFC, have been shown to be accurate and reliable in predicting
the toxicity of ionic liquids towards the leukemia rat cell line IPC-81. Here, we determine
whether DKL can be as accurate and reliable as ASFC.

Table 2 compares the performance of the DKL model with the existing models GC and
ASFC. On the 140 ionic liquids used for cross-validation, DKL performs well in all metrics
compared to both GC and ASFC. In particular, DKL achieves an RMSE of 0.233, which
is about 10% lower than the RMSE achieved by ASFC. The determination coefficient, R2,
achieved by DKL was 0.94, compared to 0.93 for ASFC and 0.924 for GC.

Table 2. Performance comparison of our DKL model with existing models on the training, validation,
and full datasets.

Model Dataset Samples AARD%↓ R2↑ MSE↓ RMSE↓
GC train + valid 140 11.358 0.924 0.071 0.267
ASFC train + valid 140 10.898 0.930 0.065 0.256
DKL train + valid 140 8.756 0.940 0.054 0.233

GC full 155 - - - -
ASFC full 155 10.613 0.911 0.086 0.294
DKL full 155 8.932 0.943 0.052 0.228

Similarly, on the full dataset containing 155 ionic liquids DKL achieved an RMSE of
0.228, compared to 0.294 achieved by ASFC, representing an improvement of about 22%.
The coefficient of determination rose from 0.911 for ASFC to 0.943 for DKL.

It is important to note that on both sets of results DKL achieved an RMSE of around
0.23 and an R2 of about 0.94. This is in contrast to deviations of 0.256–0.294 in RMSE and
0.93–0.911 in R2 achieved by ASFC, which are slightly larger. The minor deviations in the
scores obtained by DKL could mean that the model was not overfitted, and is thus better
able to generalize.
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The contrast in the performance of ASFC and DKL can further be discerned in Figure 4.
The figure shows the sorted absolute errors between experimental and predicted log EC50
for ASFC and DKL models on the full dataset of 155 ionic liquids. The area under the
absolute error curve associated with DKL is evidently smaller than that of ASFC, revealing
a higher predictive accuracy for IL toxicity with the DKL model.

Figure 4. Sorted absolute errors between experimental and predicted log EC50 for ASFC and DKL
models on the 155 ionic liquids which form the entire dataset.

Because the DKL model is a probabilistic model, it can be used to make predictions
for any number of samples while observing the mean predictions and covariances. This
information can then be used to determine the uncertainty in the predictions made by
the model. Figure 5 shows a comparison between experimental and predicted log EC50
for the fifteen ionic liquids that formed the test dataset. It can be observed that the mean
predictions made by DKL are close to the experimental log EC50 values. This demonstrates
that the model learned well and can make authentic predictions. More importantly, we
can query the model to show a number of samples that contribute to this prediction, from
which we can visually determine the levels of uncertainty in the model. In Figure 5, we
show twenty such samples for each of the fifteen predictions.

Figure 6 shows the log EC50 values predicted by the DKL model in comparison with
the values measured by experiment for the same fifteen ionic liquids used in the test dataset,
this time using the indices of the ILs in the dataset as the x-axis variable. From the figure,
it can be observed that the model is more uncertain for ILs at index 1, while being more
certain about other predictions, such as the prediction at index 0. Such information is
important in allowing practitioners or researchers to make decisions about the predictions
made by the model. Consider a situation where the chemical structure of the ionic liquid
being evaluated is very similar to two other ILs which have very different levels of toxicity,
and the latter two were used for modeling. Ideally, the model’s uncertainty should be high
in order to reflect the varied toxicity levels of the data on which it was modeled. If the
uncertainty range enters regions where the toxicity levels are unacceptable, the practitioner
may conduct further experiments or gather more information from other sources in order to
obtain additional insight about the IL. This extra information would then lead to deciding
whether or not to proceed with use of the IL in the intended application.



Int. J. Mol. Sci. 2022, 23, 5258 8 of 12

Figure 5. Comparison between experimental and DKL predicted log EC50 for the fifteen ionic liquids
in the test dataset.

Figure 6. Comparisons between experiment and DKL predicted log EC50 for each of the fifteen ionic
liquids forming the test dataset. For each DKL prediction, we drew samples that contribute to the
mean prediction.

3.1. Applicability Domain

As per Organisation for Economic Co-operation and Development (OECD) principles
which stipulate that Quantitative Structure–Activity Relationship (QSAR) prediction mod-
els should have well-defined applicability domains (AD), we performed an AD analysis
for this study. We used the standardization technique (ST) proposed by Roy et al. [47]. In
an ideal situation, data are distributed such that 99.7% of the population falls within the
range mean ± 3 standard deviations (SD). In this context, this implies that mean ± 3SD
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represents the zone to which the majority of the ionic liquids in the training set belong.
Any ionic liquids appearing outside this region are considered to be different from the rest
of the ionic liquids.

In ST, a descriptor column is standardized based on the corresponding mean and
standard deviation for the training set only. If the ensuing standardized value for a
descriptor of a particular ionic liquid is more than 3.0, then the ionic liquid is considered
an outlier if it is in the training set, and is considered outside the AD if it is part of the test
set [48]. The applicability domain section in the Supplementary Material provides a full
description of the ST algorithm.

The distribution map of the applicability domain is shown in Figure 7. The coverage of
the test set in the applicability domain using the ST shows that all but one ionic liquid fell
outside the AD. Similarly, in the training set, three of the 140 ionic liquids were considered
outliers. This means that 93% and 98% of the ionic liquids in the test and training sets,
respectively, fall within the AD.

Figure 7. Applicability domain defined in this study. One ionic liquid in the test set is outside
the AD, and three ILs in the training set are outliers as their corresponding descriptors’ maximum
standardized values are greater than the 3.0 threshold.

Our DKL model uses the “mixtures out” validation protocol. To a large extent, this
protocol estimates the ability of models to predict new combinations of anions and cations.
This may provide overoptimistic results, as described elsewhere [49,50]. This applies to the
ASFC model with which we are comparing DKL in this study as well. There exist more
rigorous validation protocols, such as “components validation”, which can test the model’s
prediction of new types of ions. By design, components validation is more similar to
real-life situations [49,51]. Thus, replacing mixtures validation with components validation
in our workflow may minimize the level of optimistic results, if any.

3.2. Prediction Web Server

A web server that encapsulates the DKL model was built. The tool accepts SMILES
strings as input for the ionic liquids and provides results in both tabular and interactive
visualization formats. The server is publicly available at http://nsclbio.jbnu.ac.kr/tools/
iltox/, accessed on 8 April 2022.

http://nsclbio.jbnu.ac.kr/tools/iltox/
http://nsclbio.jbnu.ac.kr/tools/iltox/
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4. Conclusions

Currently available data do not show that ionic liquids are environmentally safe
chemicals; as such, their toxicity risk has to be evaluated in order to ensure their safe use in
a wide range of applications. In this work, we have presented a probabilistic deep learning
model that can be used to predict the toxicity of ionic liquids towards the leukemia rat
cell-line (IPC-81) reliably and accurately. The model pipeline requires little or no expert
domain knowledge in the generation of features to be used for subsequent predictions. In
addition, all predictors are generated using open source cheminformatics tools. In addition,
because the model is embedded with a Gaussian process it has the inherent capability to
attach a level of uncertainty to each prediction it makes. As the dataset used in this work
was generated from experimental measurements in which inconsistencies are, at the very
least, unavoidable, the uncertainty associated with these data had to be addressed. In that
respect, the results obtained here indicate that the presented probabilistic deep learning
model represents a good choice. Furthermore, the probabilistic nature of the model means
that it provides vital information with which users can interpret prediction results and gain
insight about both the data and the model. Finally, based on this model we developed a
web-based tool which can be used to make predictions. This tool is freely available on our
project website.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ijms23095258/s1.
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16. Latała, A.; Nędzi, M.; Stepnowski, P. Toxicity of imidazolium and pyridinium based ionic liquids towards algae. Bacillaria
paxillifer (a microphytobenthic diatom) and Geitlerinema amphibium (a microphytobenthic blue green alga). Green Chem. 2009,
11, 1371–1376. [CrossRef]

17. Wang, Z.; Song, Z.; Zhou, T. Machine learning for ionic liquid toxicity prediction. Processes 2021, 9, 65. [CrossRef]
18. Stolte, S.; Matzke, M.; Arning, J.; Böschen, A.; Pitner, W.R.; Welz-Biermann, U.; Jastorff, B.; Ranke, J. Effects of different head

groups and functionalised side chains on the aquatic toxicity of ionic liquids. Green Chem. 2007, 9, 1170–1179. [CrossRef]
19. Ranke, J.; Stolte, S.; Störmann, R.; Arning, J.; Jastorff, B. Design of sustainable chemical products the example of ionic liquids.

Chem. Rev. 2007, 107, 2183–2206. [CrossRef]
20. Zhao, Y.; Zhao, J.; Huang, Y.; Zhou, Q.; Zhang, X.; Zhang, S. Toxicity of ionic liquids: Database and prediction via quantitative

structure—Activity relationship method. J. Hazard. Mater. 2014, 278, 320–329. [CrossRef]
21. Cho, C.W.; Stolte, S.; Yun, Y.S. Comprehensive approach for predicting toxicological effects of ionic liquids on several biological

systems using unified descriptors. Sci. Rep. 2016, 6, 33403. [CrossRef]
22. Sosnowska, A.; Grzonkowska, M.; Puzyn, T. Global versus local QSAR models for predicting ionic liquids toxicity against IPC-81

leukemia rat cell line: The predictive ability. J. Mol. Liq. 2017, 231, 333–340. [CrossRef]
23. Cao, L.; Zhu, P.; Zhao, Y.; Zhao, J. Using machine learning and quantum chemistry descriptors to predict the toxicity of ionic

liquids. J. Hazard. Mater. 2018, 352, 17–26. [CrossRef] [PubMed]
24. Kang, X.; Chen, Z.; Zhao, Y. Assessing the ecotoxicity of ionic liquids on Vibrio fischeri using electrostatic potential descriptors. J.

Hazard. Mater. 2020, 397, 122761. [CrossRef] [PubMed]
25. Wu, T.; Li, W.; Chen, M.; Zhou, Y.; Zhang, Q. Estimation of Ionic Liquids Toxicity against Leukemia Rat Cell Line IPC-81 based on

the Empirical-like Models using Intuitive and Explainable Fingerprint Descriptors. Mol. Inform. 2020, 39, 2000102. [CrossRef]
[PubMed]

26. Wang, Z.; Su, Y.; Jin, S.; Shen, W.; Ren, J.; Zhang, X.; Clark, J.H. A novel unambiguous strategy of molecular feature extraction in
machine learning assisted predictive models for environmental properties. Green Chem. 2020, 22, 3867–3876. [CrossRef]

27. Landrum, G. RDKit: Open-Source Cheminformatics Software. 2016. Available online: https://www.rdkit.org/ (accessed on 8
April 2022).

28. Lin, S.T.; Sandler, S.I. Henry’s law constant of organic compounds in water from a group contribution model with multipole
corrections. Chem. Eng. Sci. 2002, 57, 2727–2733. [CrossRef]

http://doi.org/10.1038/451652a
http://www.ncbi.nlm.nih.gov/pubmed/18256660
http://dx.doi.org/10.1016/j.jhazmat.2021.125215
http://www.ncbi.nlm.nih.gov/pubmed/33951860
http://dx.doi.org/10.3390/ijms22115612
http://www.ncbi.nlm.nih.gov/pubmed/34070636
http://dx.doi.org/10.1021/ja0463482
http://dx.doi.org/10.1002/chem.201404288
http://dx.doi.org/10.1007/s11095-009-0030-0
http://dx.doi.org/10.5560/znb.2013-3150
http://dx.doi.org/10.1021/ja025790m
http://dx.doi.org/10.1016/j.scitotenv.2021.147309
http://www.ncbi.nlm.nih.gov/pubmed/33975102
http://dx.doi.org/10.1016/j.jhazmat.2008.08.022
http://www.ncbi.nlm.nih.gov/pubmed/18805639
http://dx.doi.org/10.1897/07-066R2.1
http://www.ncbi.nlm.nih.gov/pubmed/17941742
http://dx.doi.org/10.1039/b901887e
http://dx.doi.org/10.3390/pr9010065
http://dx.doi.org/10.1039/b711119c
http://dx.doi.org/10.1021/cr050942s
http://dx.doi.org/10.1016/j.jhazmat.2014.06.018
http://dx.doi.org/10.1038/srep33403
http://dx.doi.org/10.1016/j.molliq.2017.02.025
http://dx.doi.org/10.1016/j.jhazmat.2018.03.025
http://www.ncbi.nlm.nih.gov/pubmed/29567407
http://dx.doi.org/10.1016/j.jhazmat.2020.122761
http://www.ncbi.nlm.nih.gov/pubmed/32388091
http://dx.doi.org/10.1002/minf.202000102
http://www.ncbi.nlm.nih.gov/pubmed/32643859
http://dx.doi.org/10.1039/D0GC01122C
https://www.rdkit.org/
http://dx.doi.org/10.1016/S0009-2509(02)00157-4


Int. J. Mol. Sci. 2022, 23, 5258 12 of 12

29. Sedlbauer, J.; Bergin, G.; Majer, V. Group contribution method for Henry’s Law constant of aqueous hydrocarbons. AIChE J. 2002,
48, 2936–2959. [CrossRef]

30. Huang, Y.; Dong, H.; Zhang, X.; Li, C.; Zhang, S. A new fragment contribution-corresponding states method for physicochemical
properties prediction of ionic liquids. AIChE J. 2013, 59, 1348–1359. [CrossRef]

31. Razdan, N.K.; Koshy, D.M.; Prausnitz, J.M. Henry’s constants of persistent organic pollutants by a group-contribution method
based on scaled-particle theory. Environ. Sci. Technol. 2017, 51, 12466–12472. [CrossRef]

32. Peng, D.; Picchioni, F. Prediction of toxicity of Ionic Liquids based on GC-COSMO method. J. Hazard. Mater. 2020, 398, 122964.
[CrossRef]

33. Kang, X.; Zhao, Y.; Chen, Z. Atom surface fragment contribution method for predicting the toxicity of ionic liquids. J. Hazard.
Mater. 2022, 421, 126705. [CrossRef]

34. Mu, T.; Rarey, J.; Gmehling, J. Group contribution prediction of surface charge density profiles for COSMO-RS (Ol). AIChE J.
2007, 53, 3231–3240. [CrossRef]

35. Abramenko, N.; Kustov, L.; Metelytsia, L.; Kovalishyn, V.; Tetko, I.; Peijnenburg, W. A review of recent advances towards the
development of QSAR models for toxicity assessment of ionic liquids. J. Hazard. Mater. 2020, 384, 121429. [CrossRef] [PubMed]

36. Hossain, M.I.; Samir, B.B.; El-Harbawi, M.; Masri, A.N.; Mutalib, M.A.; Hefter, G.; Yin, C.Y. Development of a novel mathematical
model using a group contribution method for prediction of ionic liquid toxicities. Chemosphere 2011, 85, 990–994. [CrossRef]
[PubMed]

37. Hüllermeier, E.; Waegeman, W. Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and
methods. Mach. Learn. 2021, 110, 457–506. [CrossRef]

38. Zhang, S.; Sun, N.; He, X.; Lu, X.; Zhang, X. Physical properties of ionic liquids: Database and evaluation. J. Phys. Chem. Ref. Data
2006, 35, 1475–1517. [CrossRef]

39. Jaeger, S.; Fulle, S.; Turk, S. Mol2vec: Unsupervised machine learning approach with chemical intuition. J. Chem. Inf. Model. 2018,
58, 27–35. [CrossRef]

40. Irwin, J.J.; Shoichet, B.K. ZINC- a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model.
2005, 45, 177–182. [CrossRef]

41. Irwin, J.J.; Sterling, T.; Mysinger, M.M.; Bolstad, E.S.; Coleman, R.G. ZINC: A free tool to discover chemistry for biology. J. Chem.
Inf. Model. 2012, 52, 1757–1768. [CrossRef]

42. Gaulton, A.; Bellis, L.J.; Bento, A.P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani,
B.; et al. ChEMBL: A large-scale bioactivity database for drug discovery. Nucleic Acids Res. 2012, 40, D1100–D1107. [CrossRef]

43. Wilson, A.G.; Hu, Z.; Salakhutdinov, R.; Xing, E.P. Deep kernel learning. In Proceedings of the 19th International Conference on
Artificial Intelligence and Statistics, Cadiz, Spain, 9–11 May 2016; pp. 370–378.

44. Wilson, A.; Nickisch, H. Kernel interpolation for scalable structured Gaussian processes (KISS-GP). In Proceedings of the 32nd
International Conference on Machine Learning, Lille, France, 7–9 July 2015; pp. 1775–1784.

45. Gardner, J.; Pleiss, G.; Weinberger, K.Q.; Bindel, D.; Wilson, A.G. Gpytorch: Blackbox matrix-matrix gaussian process inference
with gpu acceleration. Adv. Neural Inf. Process. Syst. 2018, 31.

46. Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A next-generation hyperparameter optimization framework. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA,
4–8 August 2019; pp. 2623–2631.

47. Roy, K.; Kar, S.; Ambure, P. On a simple approach for determining applicability domain of QSAR models. Chemom. Intell. Lab.
Syst. 2015, 145, 22–29. [CrossRef]

48. Kar, S.; Roy, K.; Leszczynski, J. Applicability domain: A step toward confident predictions and decidability for QSAR modeling.
In Computational Toxicology; Springer: Berlin/Heidelberg, Germany, 2018; pp. 141–169.

49. Makarov, D.; Fadeeva, Y.A.; Shmukler, L.; Tetko, I. Beware of proper validation of models for ionic Liquids! J. Mol. Liq. 2021,
344, 117722. [CrossRef]

50. Muratov, E.N.; Varlamova, E.V.; Artemenko, A.G.; Polishchuk, P.G.; Kuz’min, V.E. Existing and developing approaches for QSAR
analysis of mixtures. Mol. Informat. 2012, 31, 202–221. [CrossRef] [PubMed]

51. Oprisiu, I.; Novotarskyi, S.; Tetko, I.V. Modeling of non-additive mixture properties using the Online CHEmical database and
Modeling environment (OCHEM). J. Cheminform. 2013, 5, 4. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/aic.690481220
http://dx.doi.org/10.1002/aic.13910
http://dx.doi.org/10.1021/acs.est.7b03023
http://dx.doi.org/10.1016/j.jhazmat.2020.122964
http://dx.doi.org/10.1016/j.jhazmat.2021.126705
http://dx.doi.org/10.1002/aic.11338
http://dx.doi.org/10.1016/j.jhazmat.2019.121429
http://www.ncbi.nlm.nih.gov/pubmed/31732345
http://dx.doi.org/10.1016/j.chemosphere.2011.06.088
http://www.ncbi.nlm.nih.gov/pubmed/21794892
http://dx.doi.org/10.1007/s10994-021-05946-3
http://dx.doi.org/10.1063/1.2204959
http://dx.doi.org/10.1021/acs.jcim.7b00616
http://dx.doi.org/10.1021/ci049714+
http://dx.doi.org/10.1021/ci3001277
http://dx.doi.org/10.1093/nar/gkr777
http://dx.doi.org/10.1016/j.chemolab.2015.04.013
http://dx.doi.org/10.1016/j.molliq.2021.117722
http://dx.doi.org/10.1002/minf.201100129
http://www.ncbi.nlm.nih.gov/pubmed/27477092
http://dx.doi.org/10.1186/1758-2946-5-4
http://www.ncbi.nlm.nih.gov/pubmed/23321019

	Introduction
	Materials and Methods 
	Data Preparation
	Molecular Descriptors and Features
	Deep Kernel Learning 
	Training Details and Model Hyperparameters
	Performance Evaluation Metrics

	Results and Discussion
	Applicability Domain
	Prediction Web Server

	Conclusions
	References

