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Background. The prevalence of diabetes increases year by year, posing a severe threat to human health. Current treatments are
difficult to prevent the progression of diabetes and its complications. It is imperative to carry out individualized treatment of
diabetes, but current diagnostic methods are difficult to specify an individualized treatment plan. Objective. Clarify the dis-
tribution law of tongue features of the diabetic population, and provide the diagnostic basis for individualized treatment of
traditional Chinese medicine (TCM) in the treatment of diabetes. Methods. We use the TFDA-1 tongue diagnosis instrument to
collect tongue images of people with diabetes and accurately calculate the color features, texture features, and tongue coating ratio
features through the Tongue Diagnosis Analysis System (TDAS). Then, we used K-means and Self-organizing Maps (SOM)
networks to analyze the distribution of tongue features in diabetic people. Statistical analysis of TDAS features was used to identify
differences between clusters. Results. The silhouette coeflicient of the K-means clustering result is 0.194, and the silhouette
coeflicient of the SOM clustering result is 0.127. SOM Cluster 3 and Cluster 4 are derived from K-means Cluster 1, and the
intersections account for (76.7% 97.5%) and (22.3% and 70.4%), respectively. K-means Cluster 2 and SOM Cluster 1 are highly
overlapping, and the intersection accounts for the ratios of 66.9% and 95.0%. K-means Cluster 3 and SOM Cluster 2 are highly
overlaid, and the intersection ratio is 94.1% and 82.1%. For the clustering results of K-means, TB-a and TC-a of Cluster 3 are the
highest (P < 0.001), TB-a of Cluster 2 is the lowest (P < 0.001), and TB-a of Cluster 1 is between Cluster 2 and Cluster 3 (P < 0.001).
Cluster 1 has the highest TB-b and TC-b (P < 0.001), Cluster 2 has the lowest TB-b and TC-b (P <0.001), and TB-b and TC-b of
Cluster 3 are between Cluster 1 and Cluster 2 (P <0.001). Cluster 1 has the highest TB-ASM and TC-ASM (P < 0.001), Cluster 3
has the lowest TB-ASM and TC-ASM (P < 0.001), and TB-ASM and TC-ASM of Cluster 2 are between the Cluster 1 and Cluster 3
(P <0.001). CON, ENT, and MEAN show the opposite trend. Cluster 2 had the highest Per-all (P < 0.001). SOM divides K-means
Cluster 1 into two categories. There is almost no difference in texture features between Cluster 3 and Cluster 4 in the SOM
clustering results. Cluster 3’s TB-L, TC-L, and Per-all are lower than Cluster 4 (P < 0.001), Cluster 3’s TB-a, TC-a, TB-b, TC-b, and
Per-part are higher than Cluster 4 (P < 0.001). Conclusions. The precise tongue image features calculated by TDAS are the basis for
characterizing the disease state of diabetic people. Unsupervised learning technology combined with statistical analysis is an
important means to discover subtle changes in the tongue features of diabetic people. The machine vision analysis method based
on unsupervised machine learning technology realizes the classification of the diabetic population based on fine tongue features. It
provides a diagnostic basis for the designated diabetes TCM treatment plan.

1. Introduction by diagnostic methods, current treatment guidelines are

difficult to provide individualized treatment plans. There-
The number of diabetic patients worldwide is increasing  fore, existing treatment methods are still difficult to prevent
rapidly, posing a major threat to human health [1]. Limited ~ the progression of diabetes and the occurrence and
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development of complications. Further refined classification
of diabetes is conducive to individualized treatment [2].
Syndrome differentiation and treatment of TCM is the
practice of individualized treatment. The patient’s disease
information is collected through tongue diagnosis, pulse
diagnosis, and questioning, and the disease is further clas-
sified through analysis to formulate an individualized
treatment plan [3, 4]. Among them, tongue diagnosis is
convenient and noninvasive and can reflect a lot of physi-
ological and pathological information about the human
body, so it is an indispensable diagnostic method of TCM
[5].

Tongue diagnosis is a classic diagnosis method of TCM.
TCM doctors evaluate the disease state by observing changes
in tongue body (TB) and tongue coating (TC). They have a
long history and rich practical experience. However, on the
one hand, due to the influence of light, temperature, hu-
midity, and viewing angle, subtle changes in the color and
texture of the tongue require well-trained and experienced
physicians to observe. On the other hand, the written tongue
diagnosis information is inevitably subjective through visual
observation. In order to further improve the standardization
and information level of TCM diagnosis, the tongue diag-
nosis instrument was invented. The tongue diagnosis in-
strument is equipped with a high-definition camera and a
standard light source, which can capture a flat and clear
tongue image. It can effectively extract tongue image features
with computer image processing technology. These digital
tongue features can more accurately characterize the dif-
ferent states of the disease.

Machine learning has been widely used in the field of
tongue diagnosis, but the current research focuses on the
field of supervised learning, which requires manual cali-
bration of the tongue image [6-8]. It is not difficult to label
data with clear diagnostic criteria. However, applying high-
dimensional digital tongue features to the classification of
the diabetic population is a new research field, and it is
difficult to give clear diagnostic criteria, which makes it
difficult to explore its internal laws. Unsupervised learning
can discover the inherent laws of unlabeled data [9, 10].
Given this, we introduce unsupervised learning technology
to study the changing laws of tongue image in different states
of the diabetic population and use various methods to
evaluate the reliability of the clustering results (Figure 1).
Our research will provide an effective analysis method for
the classification of the tongue image of diabetes and provide
a basis for developing individualized treatment plans.

2. Method

2.1. Study Population. The subjects participating in our
study came from Shuguang Hospital affiliated to Shanghai
University of TCM and several Shanghai community hos-
pitals. The data collection period is from August 6, 2018, to
December 31, 2019. According to the diagnostic criteria
issued by ADA 2020 [11], it is determined that subjects with
diabetes have fasting blood glucose >7.0 mmol/L, blood
glucose two hours after a meal>11.1mmol/L, or
HbAlc>6.5%. A total of 598 diabetic subjects were included
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in the study (Table 1). All subjects signed an informed
consent form. The study was approved by the IRB of
Shuguang Hospital affiliated with Shanghai University of
TCM.

2.2. Tongue Image Collection and Analysis. The intelligent
diagnosis technology research team independently devel-
oped the TFDA-1 tongue diagnosis instrument (Figure 2) at
the Shanghai University of TCM. It is equipped with a
standard light source and a high-definition camera, which
can take images of the subject’s tongue in a stable light
environment. The Tongue Diagnosis Analysis System
(TDAS) is used to extract features from tongue images.
TDAS can realize the segmentation of tongue body (TB) and
tongue coating (TC) [12] and calculate the color feature,
texture feature, and tongue coating ratio feature of TB and
TC, respectively. Color features include RGB, Lab, YCrCb,
and other color space features. In order to facilitate data
analysis and interpretation, we chose the color feature of the
Lab color space. L is used to indicate brightness, the larger
the L value, the brighter, and vice versa, the darker; a in-
dicates the range from red to green, a positive value indicates
red, a higher value indicates red, a negative value indicates
green, and a lower value indicates green; b indicates the
range from yellow to blue, with positive values representing
yellow, higher values being more yellow, negative values
representing blue, and lower values being blue. Texture
features include angular second moment (ASM), entropy
(ENT), contrast (CON), and mean (MEAN). ASM has the
opposite meaning of ENT, CON, and MEAN. The larger the
ASM, the smaller the ENT, CON, and MEAN, and the finer
the texture of the tongue, and vice versa. Per-all is inversely
proportional to Per-part. The larger the Per-all, the smaller
the Per-part, the larger the tongue coating area, and vice
versa.

2.3. Cluster Analysis. The data analyzed by the clustering
algorithm are uncalibrated data. In order to evaluate the
reliability of the clustering results, we chose K-means and
Self-Organizing Maps (SOM) Network to confirm each
other [13, 14]. t-SNE and K-means are implemented and
performed in Scikit-learn version 0.23.2 [15].

2.3.1. K-Means Algorithm. Let X be the tongue feature and
the dimension be #n; then X ={x;:i=1,---,n}. Let the
clustering result be C and be divided into k clusters; then
C={C;: j=1,---,k} [16].

First, k samples {u;, .-+, 4} are randomly selected
from X as initial cluster centers. Calculate the distance d;; =
llx; — pthI2 from the sample x; to each cluster center
#j (1<j<k). The cluster center closest to the sample is
recorded as the category of the sample A; = argmin
je(1,2,--kyd;j> and the sample x; is placed in the corresponding
cluster C) = C, U{x;}.

Then calculate the new cluster center u,
pj= (1/C)Yyec,x. If p#p;, then update y; to p;.
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TaBLE 1: Dataset description.

Class Item Mean + SD/median (P55, P;s5)
.. . Male (%) 357 (59%)
Basic information Age (years) 58.00 (49.00, 63.00)

GLU (mmol/L) 7.22 (6.05, 8.50)
HbAlc (%) 6.75 (6.50, 7.40)
. ‘ TCHO (mmol/L) 5.20 (4.54, 5.92)
Glucose and lipid metabolism TG (mmol/L) 1.79 (1.25, 2.61)
LDL (mmol/L) 2.91+0.96
HDL (mmol/L) 1.20 (1.03, 1.41)
ALT (U/L) 23 (16, 38)
Liver function AST (U/L) 21 (17, 29)
GGT (U/L) 32 (21, 51)
UA (umol/L) 338 (287, 411)
Kidney function CREA (umol/L) 69 (58, 80)
BUN (mmol/L) 5.19 (4.47, 6.08)

Note. Laboratory results included the following: (1) glucose and lipid metabolism including blood glucose (GLU), glycosylated hemoglobin (HbA1c), total
cholesterol (TCHO), triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL); (2) liver function including alanine ami-
notransferase (ALT), aspartate transaminase (AST), and gamma-glutamyl transpeptidase (GGT); (3) kidney function including uric acid (UA), creatinine
(CREA), and blood urea nitrogen (BUN).

The K-means algorithm needs to specify the number of ~ sum of the squared errors (SSE) will gradually become
clusters k value and determine the real k value through the smaller (Equation (1)). When k is less than the true number
elbow method. As the number of clusters k increases, the  of clusters, the decrease in SSE increases. When k is greater
division of clusters becomes more and more refined. The than the number of true clusters, the decrease in SSE tends to
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FIGURE 2: TFDA-1 tongue diagnosis instrument.
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FIGURE 3: Elbow diagram.

be flat. The relationship graph between SSE and k presents an
elbow shape, and the k value corresponding to the elbow is
the true number of clusters (Figure 3).

k
ssE=Y Y [p-mg/, (1)

i=1 peC;

where C; is the i cluster, p is the sample in C;, and my, is the
mean value of all samples in C;.

2.3.2. SOM Networks. SOM can classify uncalibrated data
without additional help. Compared with K-means, there is
no need to set the number of categories in advance, and the
initial impact is small. Introduce the competitive learning
mechanism, and determine the winning neuron by calcu-
lating the similarity. The spatial position of the output
neuron in the topographic map corresponds to the specific
domain or feature drawn from the input space. Finally, the

TaBLE 2: Key parameters of t-SNE.

Parameter Value
Perplexity 30
Early_exaggeration 12
Learning_rate 200
N_iter 1000
Min_grad_norm le-7
Metric Euclidean
Method Barnes-Hut

input high-dimensional signal is converted into a two-di-
mensional discrete map [17].

Let the dimension of tongue feature be N and the
number of neurons in the computational layer be M. Then
the tongue feature is expressed as X = {x;: i = 1,---, N} and
the network weight can be expressed as W ; = {wﬁ: j=1
<,M;i=1,---,N}L

Normalize the input vector and network weight:

X
= IXT (2)
WJ’-=L, 1<j<M. 3)
[wil

Input the sample into the network, the sample and the
weight vector do a dot product, the output neuron with the
largest dot product value wins the competition, and it is
recorded as the winning neuron.

S;=W;-X. (4)

Update the neurons in the topological neighborhood of
the winning neuron, and renormalize the learned weights.

Awj = n(8) Ty () - (x; - wy). (5)

Update the learning rate # and the topological neigh-
borhood so that the distance becomes smaller as time in-
creases. If # <, or reach the preset number of iterations,
the algorithm ends.
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FIGURE 5: Visualization of SOM clustering results based on t-SNE algorithm.

t-SNE converts the distance relationship into a proba-
bility distribution, which can efliciently perform dimen-
sionality reduction calculations for high-dimensional
nonlinear tongue feature data. Table 2 shows the key pa-
rameters we set for the t-SNE algorithm.

2.4. Statistical Analysis. The statistical analysis program is
coded in Python version 3.8.8. Multiple independent sam-
ples are compared using the Kruskal-Willis H test in SciPy
version 1.4.1 [18], and the post hoc analyses are performed
using the Conover test in Scikit-posthocs 0.6.7 [19]. Machine
learning and silhouette coefficient are implemented in
Scikit-learn version 0.23.2. Statistical image drawing is

implemented in Seaborn version 0.11.1 [20] and Matplotlib
version 3.2.2 [21].

_ b-a
" max(a,b)

(6)

where a is the mean distance between a sample and all other
points in the same cluster and b is the mean distance between
a sample and all other points in the next nearest cluster.

3. Results

The silhouette coeflicient of the K-means clustering result is
0.194, and the silhouette coefficient of the SOM clustering
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result is 0.127 (Figures 4 and 5). SOM Cluster 3 and Cluster4  overlapped, and the intersection accounts for the ratios are
are derived from K-means Cluster 1, and the intersections 66.9% and 95.0%. K-means Cluster 3 and SOM Cluster 2 are
account for (76.7%, 97.5%) and (22.3%, 70.4%), respectively. highly overlapped, and the intersection ratio is 94.1% and
K-means Cluster 2 and SOM Cluster 1 are highly  82.1% (Figure 6).



Evidence-Based Complementary and Alternative Medicine

X%t
I *okok 1
35.00 bk 1
1
30.00
X%
% '—|
1
25.00 .
20.00
15.00
TB-a TC-a
1 Cluster 1
1 Cluster 2
1 Cluster 3

FIGURE 8: TB-a and TC-a of K-means clustering results.

%%
T 1
%%
: —
15.00 . il
| —— 4%t
T 1
%
12.50 , _ T
—
10.00 3 T % B .
7.50 & g % i
i T
5.00 1 %E
2.50 | 3
0.00
TB-b TC-b
1 Cluster 1
1 Cluster 2
1 Cluster 3

F1GURE 9: TB-b and TC-b of K-means clustering results.

We performed statistical analysis on the clustering re-
sults of K-means. Cluster 2 had the highest TB-L and TC-L
(P<0.001). Cluster 1 had the lowest TB-L (P <0.05,
P <0.001), and Cluster 1 had the lowest TC-L (P <0.001).
TB-L of Cluster 3 is between Cluster 1 and Cluster 2
(P <0.05; P<0.001), TB-L of Cluster 3 was between Cluster
1 and Cluster 2 (P < 0.05; P < 0.001), and the TC-L of Cluster
3 was between Cluster 1 and Cluster 2 (P < 0.001) (Figure 7).
Cluster 3 had the highest TB-a and TC-a (P < 0.001), Cluster
2 had the lowest TB-a (P < 0.001), and TB-a of Cluster 1 was
between Cluster 2 and Cluster 3 (P<0.001) (Figure 8).

Cluster 1 had the highest TB-b and TC-b (P < 0.001), Cluster
2 had the lowest TB-b and TC-b (P <0.001), and TB-b and
TC-b of Cluster 3 were between Cluster 1 and Cluster 2
(P <0.001) (Figure 9). Cluster 1 had the highest TB-ASM
and TC-ASM (P < 0.001), Cluster 3 had the lowest TB-ASM
and TC-ASM (P <0.001), and TB-ASM and TC-ASM of
Cluster 2 were between Cluster 1 and Cluster 3 (P <0.001)
(Figure 10). CON, ENT, and MEAN showed the opposite
trend (Figures 11-13). Cluster 2 had the highest Per-all
(P<0.001). The Per-part of Cluster 2 was the lowest
(P<0.001), the Per-part of Cluster 3 was the highest
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(P<0.01, P<0.001), and the Per-part of Cluster 1 was
between Cluster 2 and Cluster 3 (P<0.01; P<0.001)
(Figure 14). Figure 15 shows the representative tongue
images in the three groups.

SOM divides K-means Cluster 1 into two categories.
Through statistical analysis, it was found that there was
almost no difference in texture features between Cluster 3
and Cluster 4 of SOM. Cluster 3’s TB-L, TC-L, and Per-all
were lower than Cluster 4 (P <0.001), Cluster 3’s TB-a, TC-
a, TB-b, TC-b, and Per-part were higher than Cluster 4
(P <0.001) (Figure 16 and Table 3). Table 4 shows the results

of the statistical analysis of the laboratory tests based on
K-means clustering. Table 5 shows the results of the sta-
tistical analysis of the laboratory tests based on SOM
clustering.

4. Discussion

In order to comprehensively and objectively characterize the
tongue image, the tongue features extracted by the TDAS
include high-dimensional structural data such as color
features, texture features, and tongue coating ratio features.
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These fine tongue features describe tongue changes from
multiple angles and explain the tiny differences in tongue
features of different states of disease. It is difficult for us to
use manual observation and general statistical methods to
measure the internal correlation of tongue features and
specify diagnostic criteria. Clustering algorithms group
samples with similar characteristics into a group through
repeated iterations, and are often used to identify outliers,
explore the inherent laws of complex data, and make pre-
dictions [22, 23].

An adequate evaluation of the clustering results is
necessary for reaching a reliable conclusion. We take many
measures to evaluate the clustering results. Firstly,
K-means and SOM are used to calculate the results of two
completely different clustering algorithms and confirm
each other. Through the t-SNE algorithm and Venn dia-
gram to visually analyze the clustering results, K-means
Clusters and SOM Clusters are highly overlapping. Next,
through statistical analysis, it is found that there are ex-
tremely significant differences in the tongue features
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FiGure 15: Examples of tongue images of K-means’ 3 clusters. Note. To the naked eye, there are significant differences between the three
types of tongue images. (a) Cluster 1 has the most delicate texture, (b) Cluster 2 has the most purple color, and (c) Cluster 3 has the roughest

texture.

between the clusters, which proves that the differences
between the clusters are extremely large. Finally, by
displaying the representative tongue samples of each
cluster, it is found that the differences are visible to the
naked eye.

The classification of the diabetic population based on the
tongue features provides a new understanding of the het-
erogeneity of diabetes. We found that the tongues of people
with diabetes are divided into three types through cluster
analysis. The first type of tongue is characterized by a red
tongue and a dry and rough tongue; the second type of
tongue is characterized by a purple tongue and a large and
thick tongue coating; the third type of tongue is mainly
characterized by its fine texture. Chinese medicine believes
that the first tongue is a sign of heat syndrome, the second
tongue is a sign of phlegm and blood stasis, and the third
tongue is a sign of deficiency syndrome. The above classi-
fication is expected to provide an objective basis for the

individualized treatment of diabetes and has potential
clinical value. K-means divides the diabetic population into
3 categories, while SOM divides the diabetic population into
4 categories, of which two clusters are highly overlapping.
SOM subdivides one cluster in K-means into two categories.
The difference between the two categories is mainly reflected
in the color features and coating ratio features. Our research
proves that digital tongue features can characterize subtle
changes in the tongue of diabetic people. High-precision
image measurement technology combined with unsuper-
vised machine learning technology is the key means to
discover this difference.

Our research found that machine vision can keenly
perceive the subtle changes in the tongue of diabetic patients
and realize the fine classification of the diabetic population,
providing a diagnosis basis for the individualized treatment
of diabetes in TCM. We verify each other through two
clustering algorithms with completely different mechanisms.
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TaBLE 3: Tongue feature comparation based on SOM 4 clusters.

Item Cluster 1 Cluster 2 Cluster 3 Cluster 4

TB-L 49.905 (47.923, 51.967)  47.959 (46.683, 49.431)***  47.057 (45.501, 48.402)"**444 48706 (47.468, 50.538)"7F**
TB-a 23.918 (22.537, 25.220)  27.014 (25.663, 28.404)***  27.660 (25.975, 28.907)""4  23.780 (22.818, 25.239)7"F**
TB-b 5.949 (4.614, 6.866) 7.999 (7.065, 9.162)*** 9.174 (8.118, 10.371)* " 444 7.478 (6.750, 9.075)~AA%**
TC-L 53.518 (50.644, 55.435)  51.717 (49.192, 53.752)***  46.691 (43.692, 49.318)"**444 51142 (49.669, 52.920) " 4***
TC-a 15.905 +1.915 18.518 £2.043*** 19.220 +2.189"" 744 16.948 + 1.8334 44000
TC-b 3.575+2.035 5.304 +1.863*** 6.590 + 1.8547"* 444 5.730 + 1.811°44%**

TB-CON  80.025 (70.801, 92.922)  91.638 (80.664, 110.948)***  53.213 (45.052, 63.684)"" 444 5] 768 (44.479, 58.037)~ 44000
TB-ASM 0.072 (0.066, 0.077) 0.068 (0.062, 0.074)** 0.091 (0.082, 0.100)"**444 0.092 (0.085, 0.101)*447"7
TB-ENT 1.238 (1.212, 1.275) 1.268 (1.236, 1.310)*** 1.143 (1.096, 1.188)"**444 1.134 (1101, 1.164)>44777
TB-MEAN  0.027 (0.026, 0.029) 0.029 (0.027, 0.032)*** 0.022 (0.020, 0.024)" 444 0.022 (0.020, 0.023)~~A770
TC-CON  96.448 (82.107, 107.996) 125.628 (109.574, 149.131)*** 60.078 (48.983, 72.450)""*444 65916 (55.146, 74.215)~4400
TC-ASM 0.064 (0.060, 0.072) 0.055 (0.050, 0.060)*** 0.084 (0.075, 0.094)"**444 0.080 (0.073, 0.087)*4477

TC-ENT 1.282 (1.245, 1.306) 1.343 (1.312, 1.381)*** 1166 (1.125, 1.218)*#444 1.194 (1.152, 1.225)444000
TC-MEAN  0.030 (0.028, 0.032) 0.035 (0.032, 0.037)*** 0.024 (0.021, 0.026)"""444 0.025 (0.023, 0.027)4A000
Per-all 0.456 (0.429, 0.481) 0.341 (0.297, 0.400)*** 0.303 (0.250, 0.363)" 7" 444 0.422 (0.400, 0.468)~HHE***
Per-part 1.076 (1.042, 1.132) 1.188 (1.099, 1.363)"*" 1.190 (1.106, 1.338)"** 1112 (1.044, 1.177)750%*

*denotes the comparison of Cluster 1 and Cluster 2, *P<0.05, **P<0.01, and ***P<0.001." denotes the comparison of Cluster 1 and Cluster 3,
"P<0.05,""P<0.01, and "*P <0.001. © denotes the comparison of Cluster 1 and Cluster 4, “P <0.05, ““P <0.01, and “**P<0.001. * denotes the
comparison of Cluster 2 and Cluster 3, P < 0.05, #4P < 0.01, and “**P < 0.001. “ denotes the comparison of Cluster 2 and Cluster 4, “P <0.05, ""P < 0.01,
and "7PP <0.001. * denotes the comparison of Cluster 3 and Cluster 4, *P <0.05, **P <0.01, and ***P <0.001.

TaBLE 4: Laboratory results (K-means).

Item Cluster 1 (n=256) Cluster 2 (n=172) Cluster 3 (n=170)
Gender (n, %) 144 (56) 112 (65) 86 (51)
Age (years) 57 (49, 63) 57 (49, 63) 60 (52, 65)**
GLU (mmol/L) 7.300(516.:2;2,6)8.412) 7.480 ((7163?;,1 )9.045) 6.845 (5(.:9:2i 786;00)“"**
TCHO (mmol/L) 5?22621241141)06 52(24211;?)66 5}1118:ilé£)51
TG (mmol/L) 1.730(2532,4)2.420) 1.920((;5?(;,3)2.960) 1.660((711321‘2,4)2.468)
LDL (mmol/L) 2.935((33;213,2)3.652) 2.915((5;2?(3)‘21)3.485) 2.890(;2;1??1})3.485)
HDL (mmol/L) 1.185 ((;22(3,2)1455) 1.190((”1.2(3,4)1.300) 1.230((;2)?2,7)1.400)
UA (umol/L) 333.500 ((252;?23 412.750) 341.000 ((Z;Si(;(;(l)3 421.000) 346.500 ((Z:iigg,) 399.750)
ALT (U/L) 23.000 ((’115:.020506,)40.000) 24.000 EL6:.510;)1,)35.500) 24.000 ((25;215706)38.000)
AST (U/L) 21.000 (17.000, 30.000) 21.000 (17.000, 27.000) 21.000 (18.000, 29.000)
(n=252) (n=167) (n=169)
GGT (U/L) 31.000 Efllz.OZOSO(;)Sl.750) 35.500 84:.2156(2)51.750) 31.000 81;0{)2{)46‘000)
TBIL (umol/L) 12.400 ((:f(z)(z),l )16.200) 13.000 5;0:.31526,)16.775) 11.400 ((’19:1(1)2,1 )15.500)
CREA (umol/L) 68.500 87:.020506,)80.000) 71.000 EflO:.OIO’;)l,)SO.OOO) 70.000 Ei9:.010706)80.000)
BUN (mmol/L) 5.055((::12221)6.000) 5.275((:;5(1)(7),0)6.250) 5.190 ((;1:6(1)(;,0)6000)
eGER (ml/min+1.73 m2) 107.900 82:.220107,)121.100) 104.220 82:.214307,)117.500) 101.000 Ei6:.010;)é)114.900)

*denotes the comparison of Cluster 1 and Cluster 3, *P < 0.05, **P < 0.01, and ***P < 0.001. * denotes the comparison of Cluster 2 and Cluster 3, *P < 0.05,

**P <0.01, and ***P <0.001.
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TaBLE 5: Laboratory results (SOM).
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Item Cluster 1 (n=121) Cluster 2 (n=195) Cluster 3 (n=201) Cluster 4 (n=281)
Gender (1, %) 82 (68) 99 (51) 112 (56) 49 (60)

Age (years) 56 (48, 62) 61 (54, 65)** 57 (50, 63)* 54 (46, 61)7°-
GLU (mmol/L) 7.565 ((nﬁ.j?gb)mso) 6.900 ((5’1.5:8?9 ;3).100)* . 7.200 ((ns.:a;g,l )8.240) 7.810 (6(520;%19)'670)%
TCHO (mmol/L) 5'?Z6= il };11)28 5.(221:1 é .90)22 S%Zi i1 ; .20)84 5.3(8’14 =i 716.())98
TG (mmol/L) 1.935(5113?1,4 )2.860) 1.610((”1.:2?(;,9 )2.420) 1.745(511.:2?9),2)2.433) 1.975 éli.is7s6,)2.832)
LDL (mmol/L) 2.960 823905)3'580) 2.790((712.:21(6),7 )3.370) 2.940((”2.:3?2;1)3.570) 2.990 821;)7,)3.705)
HDL (mmol/L) 1.190 81 .22955,)1.365) 1.230(511 f?g} )1.440) 1.180((”1.:04%4 )1.450) 1.110 Elﬂ .22657,)1.325)
oA R - R = i
EE e R U
R R U
AT At Py
W ow W T
BUN (mmol/L) 5.295(5?1:11(2)6)6.455) 5.120((:512,4 ;3.975) 5.100((::13,9 )6.000) 5.000 E:isgol,)moo)
¢GFR (ml/min1.73 m2) 10421(9:291)17) 10(2n(f71,5;;7) 10(7n(:911,7(1)§2) 103( ’1(922881)15)

* denotes the comparison of Cluster 1 and Cluster 2, * P < 0.05, ** P <0.01, and *** P < 0.001. * denotes the comparison of Cluster 2 and Cluster 3, *P < 0.05,

AAp<0.01, and 24P <0.001. © denotes the comparison of Cluster 2 and Cluster 4, “P <0.05, "®P<0.01, and ""“P <0.001.

Statistical analysis, t-SNE, Venn diagram visualization
analysis, and tongue image examples fully prove the reli-
ability of the clustering results. However, our data lack
information on the course of the disease, and it is impossible
to further infer the evolutionary law of tongue features in the
course of diabetes.

5. Conclusion

The fine tongue features calculated by TDAS are the basis for
classifying the diabetic population. We have discovered the
inherent law of tongue features of people with diabetes
through unsupervised machine learning technology. The
application of statistical analysis to compare the differences
between the clusters clarified the meaning of the tongue
features of each cluster. Our study laid the foundation for
implementing individualized treatment of diabetes in TCM.
In the future, we will expand the sample size and build a
standard tongue feature database for diabetic population
classification.
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