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Abstract
Tissue-resident immune cells stably localize in tissues largely independent
of the circulatory system. While initial studies have focused on the
recognition of CD8  tissue-resident memory T (CD8 T ) cells, it is now
clear that numerous cell types such as CD4  T cells, gd T cells, innate
lymphoid cells and mucosal-associated invariant T (MAIT) cells form stable
populations in tissues. They are enriched at the barrier surfaces and within
non-lymphoid compartments. They provide an extensive immune network
capable of sensing local perturbations of the body’s homeostasis. This
positioning enables immune cells to positively influence immune protection
against infection and cancer but paradoxically also augment autoimmunity,
allergy and chronic inflammatory diseases. Here, we highlight the recent
studies across multiple lymphoid immune cell types that have emerged on
this research topic and extend our understanding of this important cellular
network. In addition, we highlight the areas that remain gaps in our
knowledge of the regulation of these cells and how a deeper understanding
may result in new ways to ‘target’ these cells to influence disease outcome
and treatments.
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Introduction
The immune system is composed of millions of diverse cell 
types distributed amongst the circulatory systems and the  
tissues. Immune cells found in the blood and lymphoid tissues 
are the primary anatomic compartments that have been studied 
and form the foundation of our understanding of immune cell  
homeostasis. Indeed, recirculation of memory T cells is a  
hallmark of their functional capacity to affect their protective 
roles during immunosurveillance. Despite this, the vast majority  
of immune cells are not located in the circulation trafficking 
between the lymphoid tissues and blood or lymph. Instead, they 
are localized in non-lymphoid tissues where they can reside for 
extensive periods of time. The significant concentration of immune 
cells within the barrier tissues—the skin and digestive, reproduc-
tive and respiratory tracts—pivotally positions antigen-experienced  
cells to mediate local responses against antigenic and patho-
genic challenges. The identification of ‘tissue-resident’ T cells 
resolved a major problem in the immune system by positioning 
‘primed’ cytolytic cells in tissue compartments where they would  
first encounter a pathogen or breach the body’s surface.

But is tissue residency limited to CD8+ T cells? Despite the 
attraction of such a thesis, there is little evidence that this type 
of programing should be restricted to a single-cell subset when 
the immune system is colonized by a myriad of diverse cells, 
many of which occur at mucosal or barrier surfaces. If the  
program is broader, how is it regulated and is it fixed such 
that immune cells are predestined to a tissue-resident fate? 
Or is there plasticity in the system enabling resident cells to 
become mobile, and for mobile cells to change tactics and  
become sedentary?

Multiple cell types are now recognized to be highly enriched at 
the body’s barrier surfaces and in non-lymphoid tissues. This 
includes classic adaptive thymic-derived conventional and regu-
latory CD4+ and CD8+ T-cell subsets together with different 
subsets of innate immune cells and so-called non-conventional  
lymphocytes such as γδ T cells, natural killer (NK) T cells, 
mucosal-associated invariant T (MAIT) cells and CD8αα 
intra-epithelial lymphocytes. Our understanding of these dif-
ferent cell types is beyond the scope of this review but they pro-
vide important clues in understanding immune system recogni-
tion of antigenic types and how border protection might have  
evolved evolutionarily. Indeed, the emergence of the discov-
eries and functions around these diverse cell types opens the 
door to unexpected targeting approaches to temporally regulate 
immune cell subtypes and provide new strategies for harnessing  
control of infectious agents and elimination of tumor cells.

Recent studies have uncovered a number of the mechanisms 
that regulate the temporal positioning of tissue-resident cells, 
but they have also revealed unexpected cues such as sensory 
detection and stromal cell signals which set the threshold  
for the transition of tissue-resident cell retention within local  
tissues where they are focused on local responses and remodelling 
to systemic responses affecting distant organs.

CD8+ T-cell tissue residency: rethinking immune cell 
lifestyles
The initial description of ‘tissue-resident’ T cells was based on 
the identification of specific markers that were deemed to reflect 
stable positioning in tissues (CD103, CD49a and CD69) and 
the lack of molecules associated with tissue egress and migra-
tion to secondary lymphoid organs (Klf2, S1Pr1, CCR7 and  
CD62L) (Figure 1). The localization of tissue-resident mem-
ory cells within tissues, particularly at barrier surfaces, theo-
retically positions them to be able to initiate a faster immune 
response towards a pathogen without the necessity to engage 
other immune or stromal cells1. The notion is that resident 
cells can undergo extensive proliferation within the tissues,  
allowing them to replenish, but that they do not appear to  
accumulate, remaining numerically stable over time2–4. This 
concept is supported by the failure to detect significant move-
ment of cells within a tissue in stark contrast to effector 
memory T cells that are found largely in the blood and patrol  
the body2,5–7. Recent evidence indicates that tissue preparation 
approaches greatly influence the detection of ‘tissue-resident’ 
cells, significantly underestimating their prevalence8. Furthermore,  
in peripheral sites, many T cells did not express CD103 or 
CD69, indicating that these molecules are not universal mark-
ers and their expression reflects site-specific characteristics8.  
It also highlights that these other T-cell populations exist in 
these sites and are likely to play an important role in rapid 
responses to secondary challenges. T cell analyses based on 
CX3CR1 expression revealed that effector memory (T

EM
) 

cells (CX3CR1+) themselves are largely excluded from tissues  
while central memory (T

CM
) cells and CX3CR1intermediate cells  

homed to lymph nodes but that CX3CR1intermediate cells were the 
dominant cell surveying peripheral tissues9. Furthermore, central  
memory cells are enabled to migrate to non-lymphoid tissues 
and form the predominant population in these tissues following  
inflammation10. This capability results from induction of the  
expression of E- and P-selectins due to interleukin (IL)-15-stim-
ulated enzymatic synthesis of core 2 O-glycans that regulate  
CD8+  T-cell migratory behaviour10. These studies highlight  
that tissue residency is not a static state for T cells or even  
other lymphocyte subsets.

Tissue-resident memory T (T
RM

) cells within peripheral tissues 
can not only mobilize to adjacent tissues but can also re-join 
the circulating memory T cell masses to maintain a stable  
equilibrium. Indeed, Fonseca et al.11 recently examined this 
in detail and demonstrated that small intestinal tissue-resident  
memory cells could re-enter the circulating pool of cells and 
exhibited the capacity to differentiate into effector and central 
memory cells. Although these memory cells contribute to the  
overall pool of T cells, they exhibit a predilection for homing 
back to the tissue of origin following reactivation consist-
ent with very early studies in the field that showed a similar 
phenomenon in which distinct immune cell subsets display 
restricted and often tissue-selective patterns of recirculation12.  
Thus, tissue-resident lymphocytes are distinctive by their  
location in non-lymphoid tissues but do appear able to undergo 
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some recirculation through a tightly regulated chemokine  
receptor and integrin expression pattern.

In this recent work examining the distribution of T cells in 
mice11 and NK cells in humans13, tissue-resident cells exhib-
ited a less activated phenotype compared with their more 
centrally deployed counterparts and this has led to the 
notion of ‘outside-in’ activation11. Studying the behaviour of  
immune cells in the face of the onslaught by an invading patho-
gen trying to kill us brings our attention into sharp focus on the 
armoury of effector molecules used to mitigate a pathogen inva-
sion. This, it would seem, is a rather artificial situation, how-
ever, as it reflects a last-ditch effort by the innate and adaptive 
immune system to fight back. It is much more greatly appre-
ciated now, though, that disease is a relatively rare state—an  
organism’s health depends on the maintenance of day-to-day  
homeostasis. Accompanying this is the very tight regu-
lation of effector responses in tissue-resident cells and  
more subtle expression profiles of a number of molecules11,13. 
The checks-and-balances by molecular regulators within the  
tissues, immune cells and non-immune cells, such as neurons, 
physiologically integrate signals that implement activation and 
simultaneously restrict the development of immunopathology.  

To date, our understanding of these tissue signals are not 
well characterised, and they are of significant interest in  
understanding how barrier immune health is maintained.

Lung-resident memory T cells
Lung-resident memory T cells are important to delay the spread 
of pathogens and recruiting recirculating T

EM
 cells. They are 

known to play a vital role in mounting protection against 
respiratory viral, bacterial and parasitic infections, includ-
ing influenza virus14, coronaviruses such as SARS-CoV and 
MERS-CoV15,16, Bordetella pertussis17 and Nippostrongylus  
brasiliensis18,19. T

RM
 cells expand during infection and specifi-

cally target infected cells17. In some cases, this response elimi-
nates the virus and drives resolution of the illness but, in the 
case of influenza and coronaviruses, can lead to highly vigorous 
responses that induce severe pathology and may be lethal. In the 
lungs, T

RM
 cell populations include CD8+ T

RM
, CD4+ T

RM
 and 

regulatory T (T
reg

) cells. CD8+ T
RM

 cells are found in the epithe-
lial layer of the airways and the lung parenchyma involved in  
gas exchange1,20. However, the main cell type that affords  
protection in the lung parenchyma is the CD4+ T

RM
 cell both  

following lung infection and in providing protection in  
vaccine models1,14,15,17,19,21–23. CD8+ T

RM
 cells have also been  

Figure 1. Tissue residency and modulation across lymphoid subsets and tissues. Effector T cells enter peripheral and non-lymphoid 
tissues and establish themselves as non-recirculating tissue-resident memory T (TRM) cells. Transforming growth factor-beta (TGF-β) and Hobit 
act as master regulators of tissue residency and regulate the expression of CD103, CD69 and CD49a of tissue-resident cells such as innate 
lymphoid cell 1 (ILC1) and TRM cells. Natural killer (NK) cells appear to continuously circulate around the body. In the presence of TGF-β, NK 
cells can transdifferentiate into ILC1-like cells. ILC1, 2 and 3 are generally non-circulating and establish in tissues. Their activity is intimately 
modulated by numerous tissue-related factors. These include neuropeptides such as vasoactive intestinal peptide (VIP) and neuromedin U 
(NMU) that can activate (+) or inhibit (−) cytokine secretion. In response to an immunological threat, T cells and ILCs can relatively readily 
become mobile and exit tissues via the lymphatics to join circulating immune cells. Nevertheless, these cells exhibit a preference for returning 
to their ‘tissue of origin’ when they re-establish tissue residency. IL, interleukin.
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identified as a useful target for vaccines. CD8+ T
RM

 cells located 
in the lung parenchyma are a more appropriate target for vaccine 
strategies as epithelial T

RM
 cells are short-lived and the capac-

ity to develop new niches for this cell population is important 
prior to vaccination20,21,24,25. Following lung injury, CD8+ T

RM
  

cells have been found to localize in niches where tissue regenera-
tion has occurred and have been referred to as repair-associated  
memory depots20. CD4+ T

RM
 cells, however, localize to the  

airways or around B-cell follicles and form clusters in induc-
ible bronchus-associated lymphoid tissue (iBALT) where they  
can affect long-term immune protection20,26.

Lung CD4+ T
RM

 cells have been shown to be maintained at con-
stant numbers over time following allergen exposure26,27. They 
have also been found to expand in the lungs during B. pertussis  
infection and more rapidly after reinfection17,28. In contrast, 
CD8+ T

RM
 cell populations appear to wane over time24,29. Thus, 

CD8+ T
RM

 cells in the epithelium of the airways must be replen-
ished from recirculating T

EM
 cells29 or from CD8+ T

RM
 cells in the 

lung parenchyma20. This is likely due to a process in the lungs  
where tissue-resident cells in the epithelium are continuously 
cleared by phagocytic cells or via mucociliary clearance29. In the 
case of respiratory infections such as influenza and respiratory 
syncytial virus, this might explain in part why complete protec-
tion is not afforded in individuals with secondary infection24. 
T

reg
 cells in the lungs have been found to permanently reside in 

tissues. This has been confirmed by their expression of CD69 
and CD103, which are markers of tissue residency30. CD103  
(αE), an integrin protein encoded by the gene Itgae, is not  
simply a marker of tissue residency but can heterodimerize 
with the integrin beta 7 (β7) to form the molecule αEβ7. This  
complex confers specificity for binding to E-cadherin and thus 
acts as a tether for cells in the epithelium, including CD8+ T

RM
 

cells31. Resident T
reg

 cells have been found to protect against 
lung injury and evidence has shown that they communicate 
with other tissue-resident cell types that together promote lung  
homeostasis30. T

reg
 cells are located in iBALT and function by 

inhibiting B-cell responses, which can be beneficial in cases 
such as lung transplantation, where they prevent alloimmune  
responses32. Therefore, lung T

RM
 cells are an important cell type 

that could be used as a future target for vaccines for respiratory 
infections.

Transcriptional regulation in tissue-resident T cells
Tissue-resident cells exhibit a number of features that are dis-
tinct from their circulating counterparts. The hallmark molecu-
lar profile of tissue-resident cells is a shared expression of genes 
encoding adhesion (Itga1 and Itgae) and immunoregulatory 
(Cd244, Icos and Ctla-4) molecules together with downregula-
tion of genes required for tissue egress, such as S1pr1 (which  
encodes the receptor S1P1 for sphingosine 1-phosphate), which 
is regulated by Krüppel-like factor 233. Indeed, enforced expres-
sion of S1PR1 in CD8+ T cells results in a phenotype that no 
longer reflects tissue-resident cells33. Similarly, downregula-
tion of Eomes (encoded by Eomesodermin) and T-bet (encoded 
by Tbx21) expression through transforming growth factor-beta 
(TGF-β) responsiveness appears necessary to maintain tissue  

residency34. This suggests that repression of S1PR1 is essen-
tial to the tissue-resident phenotype but also implies that the 
program is not fixed. Other transcription factors such as Hobit 
(homolog of B lymphocyte-induced maturation protein, Blimp-1)  
in T cells (Hobit; also known as ZFP683) are not individu-
ally required for tissue-resident cells in tissues, but loss of 
Hobit combined with Blimp-1 (encoded by Prdm1), which 
alone is normally associated with terminal differentiation of  
CD8+ T cells, revealed a more centrally regulated program 
required by some populations such as tissue-resident cells35,  
whereas lung-resident cells depended more strongly on  
Blimp-136. Precisely how these factors are all regulated is still 
unclear, particularly in the case of Hobit as expression pat-
terns in humans appear quite different from those in mice37,38.  
Indeed, detailed analyses of the transcriptome of different T-cell  
populations that had already encountered antigens demonstrated 
that the central memory and tissue-resident memory cells exhib-
ited a highly similar epigenetic program and were distinct from 
recently activated effector cells. This program indicated that 
cells exhibit considerable plasticity enabling tissue-resident  
cells to re-join the circulatory pool of CD8+ T cells although 
they were heritably imprinted to favour homing to their  
originating tissues11.

Most studies that have examined the developmental profile 
(effector and memory fate decisions) and localization of  
lymphocytes have been predicated on the notion that the start-
ing point is a relatively homogeneous population for which 
fate outcomes are defined by stochastic and environmental or  
external triggers. Although this approach simplifies model-
ling outcomes, several studies suggest that heterogeneity may 
reflect the several waves of layering that occur during the devel-
opmental distribution of activated fetal-derived cells across 
different tissues39–42. However, underlying intrinsic programs  
appear to be already established in fetal cells. Elegant  
analyses of ‘time stamped’ fetal and adult CD8+ T cells highlight  
this early establishment of diversity which establishes the 
blueprint from which subsequent tissue-specific shaping 
in response to environmental and pathogen challenge occurs41. 
These temporal fate-mapping approaches combined with 
extensive single-cell multi-tissue transcriptional analyses in 
T cells41, innate lymphoid cells (ILCs)39,43 and monocytes40  
comparing fetal and adult lymphocytes have been critical in 
uncovering this additional level of complexity. Unfortunately, 
we do not generally have markers with good resolution to  
distinguish fetal from adult cells and this will be necessary to  
comprehensively integrate the many layers of programming  
that contribute to the effector function and localization properties  
of protective immune cells.

Tissue residency: not just for adaptive cells
Although the first discovery of tissue residency was uncovered 
in CD8+ T cells6,44–47, non-adaptive immune cells also popu-
late mucosal and peripheral sites following antigen encounter, 
suggesting that localization of innate cells is necessary for 
optimal protective immunity to pathogens. NK cells have  
classically been considered to circulate through the body, 
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allowing them to patrol tissues and localize and destroy  
transformed or virally infected cells. However, a very recent 
global survey of different anatomical sites for human NK cell 
subsets revealed that these cells exhibit tissue-specific phe-
notypes and distributions that varied across age, sex and  
exposure to infection such as cytomegalovirus13. Thus, NK 
cells, like T cells, can also be positioned at the front line for  
pathogen encounters and the features of these cells are exten-
sively and specifically shaped by their tissue localization. 
Molecularly, they exhibited transcriptional signatures that  
included the genes CCR7, SELL, CXCR3 and CCR5 provid-
ing post codes for tissue-specific localization and TCF1 and 
LEF1 enabling them to maintain populations at the tissue site 
through homeostatic proliferation. Thus, in addition to expressing  
many effector molecules that align NK cells with CD8+  
T cell function, they have a similar distribution in the body.

Tissue-resident but not immobile
The term ‘tissue residency’ implies that cells are not mobile. 
It reflects that cells remain generally confined within a  
single tissue. However, it is clear that a cell’s existence in a  
tissue is far from static. Conventional NK cells are highly 
mobile. Other subsets of ILCs or their precursors, however, are  
distributed to the tissues during the perinatal period where 
they undergo proliferation and appear to establish in long-term  
tissue-specific niches, features reflected in their transcriptome39  
(Figure 1). Seeding of these tissues depends on a number of 
receptors, including α4β7 integrin, CXCR5, CXCR6 and (to  
a lesser extent) CCR743,48–51. Retention within the tissues them-
selves is less well understood but is likely to depend on recep-
tors similar to those tethering T cells in tissues such as CD69, 
which antagonizes the receptors S1PR152, CD49a53 and CD103  
(αE integrin)54,55. CD49 expression by T

RM
 cells is indica-

tive of poised cytotoxic function, but CD49a−CD8+ T cells 
have also been identified in healthy human skin and enriched 
in psoriasis. This latter population is associated with IL-17  
production, highlighting the dichotomy in T

RM
 cell function 

and receptor expression in different settings53. Following from  
a number of studies, however, was whether ILCs undergo  
recirculation. Initial studies examining movement of ILCs 
in parabiont mice and stem cell transplantation models sup-
ported the notion that ILCs were mandatorily tissue-resident.  
Emerging evidence strongly argues otherwise, and although 
ILCs do not undergo mass migration at steady state, they do 
indeed respond to various stimuli and rewire their molecular 
programs to undergo migration56,57. It has been demonstrated  
that ILC2s particularly are capable of intra-tissue mobility, 
a critical feature that dictates effective immune responses. 
Mature ILC2s residing in the gut have been shown to undergo  
proliferation, lymph node migration and dissemination into the 
blood in response to activation of alarmins, such as those found  
during N. brasiliensis infection. Migration to diverse tissue sites 
depends on S1P-mediated chemotaxis, which is also impor-
tant for NK cells58–60. Thus, local perturbations allow extru-
sion of ILCs for distribution to distant tissue sites61. This is in 
addition to the capacity for ILC2s to exit the bone marrow to 
replenish tissue pools following IL-3362 or fungal aeroallergen  
challenge63. Similarly, ILC3s exhibit a constant influx and egress 

from the cryptopatch during inflammation, a circuitry driven by 
stromal cell oxysterol activation of the GPR183 receptor64–66.  
Collectively, these studies highlight that a highly orchestrated 
receptor expression pattern guides the recruitment and strate-
gic positioning of innate cells in tissues and their deployment to  
distant sites when local perturbations occur.

Sensory neurons broadcast local tissue 
perturbations
Recent major studies have highlighted the link between the 
immune and nervous systems at the mucosal barrier. Both sys-
tems can sense cytokines and neurotransmitters, allowing direct 
communication. For example, receptors for IL-6, TGF-β, IL-1-β  
and tumor necrosis factor-alpha (TNF-α) are found in both 
the brain and enteric neurons67–69 while immune cells express  
receptors for neuropeptides (Figure 1). Several neuropeptides  
have been described to regulate immune cell activity and main-
tain tissue homeostasis but also the optimal immune response 
during infections. ILC2s are important to initiate responses to 
parasitic infections and allergic reactions that are directly regu-
lated by neuromedin U (NMU)70–72. NMUR1 is specifically 
expressed on ILC2s and is found in close contact with NMU-
expressing cholinergic neurons70–72. NMU is induced during para-
sitic helminth N. brasiliensis infection and directly induces the  
production of IL-5 and IL-13 by ILC2s. In the absence of 
NMUR signalling, these type 2 responses are impaired, resulting  
in poor control of worm infection.

ILC2s are also sensitive to the vasoactive intestinal pep-
tide (VIP), a neurotransmitter expressed in neurons found in 
the lung and gut73. VIP can stimulate the secretion of IL-5 by 
lung ILC2s which regulate systemic eosinophil numbers74. In 
turn, lung nociceptors can sense IL-5 released to promote the  
production of VIP. This inflammatory signalling loop needs to 
be tightly controlled as dysregulation can lead to the develop-
ment of allergic inflammation75. VIP also regulates the activity 
of enteric ILC3s and their secretion of IL-2276,77. It variously 
upregulates76 or inhibits77 IL-22 production by ILC3s, depend-
ing on the study. What is clear, however, is that VIP is induced  
after ingestion of food and this directly links informa-
tion from the digestive system to enteric ILC3s driving their  
function76,77. Dampening the VIP signal to ILC3s increases sus-
ceptibility to inflammation-induced gut injuries and infection76,77.  
This rapid delivery of information is affected by clustering of 
ILC3s around VIP+ neurons providing a mechanism to rapidly  
influence ILC3 activity76.

While the nervous system can sense pathogens to activate 
immune cells in tissues, it also provides negative feedback loops 
which act to protect the host by preventing excessive inflam-
mation that could lead to chronic inflammation. For example, 
beta-adrenergic receptors are activated by norepinephrine that 
inhibits ILC2 proliferation and function78. This mechanism  
may function as a molecular rheostat to fine-tune the ILC2 
response. Vagal nerve activation can modulate the secretion 
of pro-inflammatory cytokines in macrophages79. This in turn 
leads to a negative regulatory loop which controls inflammation 
through the release of acetylcholine. Vagal disruption induces a  
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reduction in the number of ILC3s in the peritoneum and in 
the protectin biosynthetic pathway, PCTR180. PCTR1 is a  
pro-resolving mediator produced by ILC3s in response to 
acetylcholine and disruption of this pathway delays the  
resolution of inflammation associated with infection80.

Collectively, these studies highlight the critical crosstalk that 
occurs between the immune and nervous systems which is  
necessary to both initiate and control the immune activity  
during inflammation. Disruption in this crosstalk leads to the  
development of chronic inflammation or suboptimal immune 
responses to pathogen infections73–78,80.

Resident innate cells are new potent drivers of tumor 
protection and immune targeting
Tumor formation results from a lack of detection and/or eradi-
cation of transformed cells by immune cells, leading to the pro-
gressive emergence of malignant tumors81,82. A combination 
of host- and tumor-related mechanisms is responsible for the 
development of neoplasms83. These seminal studies that have 
built our current view of modern tumor immunology have mark-
edly increased our understanding of tumor immunity, but the  
underlying models were built on the study of systemic  
immunity largely neglecting more localized immune cell  
contributions, particularly those driving early peripheral immu-
nosurveillance. Recent investigations using high-throughput 
cellular and molecular methods have shed light on the enor-
mous diversity of immune cell types within tissues84,85, including  
tumors86–88. Critically, this has provided insights into the role 
of tissue-resident cells demonstrating that tumor-infiltrat-
ing CD103-expressing T cells that align to a tissue-resident 
memory cell phenotype could be found in multiple cancer  
types89–93. While CD69 and CD103 are commonly used to iden-
tify T

RM
 cells, these markers might also be upregulated on acti-

vated tumor-infiltrating T-cell subsets in the context of tumors. 
Thus, it remains unclear whether CD69+CD103+T cells are 
true T

RM
 cells or alternately the expression of these molecules  

identifies effector T-cell subsets that have infiltrated the 
tumor bed where abundant TGF-β found in a large quantity in  
many tumors drives CD103 expression. Nevertheless, numer-
ous studies have found a positive association between 
tumor CD69+CD103+T-cell infiltration and clinical out-
comes, suggesting the beneficial role of this immune cell 
population in restricting tumor development and therapeutic  
responses86,88,94–98. In addition, tumor-infiltrating T

RM
 cells 

express several immune checkpoint molecules (for example, 
CTLA-4, TIGIT, TIM-3, LAG3 and programmed cell death-1 
 [PD-1]), indicating that they might respond effectively to 
immune checkpoint blockers86,88,98. This is highlighted by the 
association of tumor enrichment of T

RM
 cells, or in genes pref-

erentially expressed by T
RM

 cells, during anti-PD-1 therapy  
with increased responsiveness to treatment88,94,99. However, 
despite the expression of immune checkpoint molecules, tumor 
T

RM
 cells do not seem to harbor an exhausted phenotype and 

express high levels of IL-2, interferon gamma, TNF-α and cyto-
toxic molecules99. These cells also proliferated more and had 
reduced T cell receptor diversity compared with non-T

RM
 cells. 

In addition, increased clonal expansion was observed which 
might be associated with the specific recognition of tumor-
associated antigens that would drive antigen-specific T

RM
 cell  

proliferation99. However, formal identification of antigen-specific  
T

RM
 cells through tetramer staining is required to confirm 

that these cells are not exhausted and are able to secrete a 
large amount of pro-inflammatory cytokines and cytotoxic  
molecules upon antigen re-exposure. Collectively, T

RM
 cells 

represent an emerging and highly valuable immune cell  
population with potent effector functions important in anti-tumor 
immunity.

In addition to identifying adaptive resident T lymphocytes, 
pioneering work has identified tissue-resident ILCs in both 
murine and human tumors100–103. Our understanding of the 
characteristics of these cells in the cancer microenvironment  
is just beginning to emerge. They exhibit both pro- and anti-
tumorigenic functions depending on the tissue involved100–103. 
While tumor-infiltrating NK cells are often associated with a 
good prognosis, the accumulation of ILC1s that have transdif-
ferentiated from NK cells is correlated with a loss of anti-
tumor protection104. Although immunosuppressive functions 
have been attributed to ILC2s found in tumors through their  
production of type 2 cytokines and enhancement of myeloid-
derived suppressor cell function105, the role of these cells in 
tumor immunity is still fairly limited106. A recent study dem-
onstrated that ILC2s could induce potent anti-tumor responses 
in pancreatic cancer and were associated with anti-PD-1  
therapy efficacy107. This elegant work revealed that ILC2s can  
accumulate in pancreatic tumors and are associated with posi-
tive outcomes for patients. IL-33-dependent ILC2 tumor 
infiltration drove intra-tumoral dendritic cell accumulation,  
collectively improving anti-tumor immunity. However, IL-33-
activated tumor-infiltrating ILC2s expressed PD-1. This normally 
inhibits their anti-tumor functions but ablation of PD-1 expres-
sion, or blocking the interaction with its ligand using mono-
clonal antibodies, negated this effect and enhanced the anti-tumor  
response107.

Local tissue immunosurveillance is of extreme importance 
to constrain early tumor development. Increased understand-
ing of tissue-resident cells would allow the design of specific 
anti-tumor therapeutics for tumor eradication and long-term  
protection. The dynamic and temporal regulation of circulat-
ing and resident lymphocytes has opened new models to help 
us envisage how immune cells communicate with epithelia,  
neurons and stromal cells in tissues and coordinate regional and  
systemic remodelling in response to local perturbations.

Conclusions
Tissue-resident cells are highly abundant throughout the body. 
They have been generally considered to be a static popula-
tion. More recent evidence makes it clear that these cells 
can sense changes in the environment and implement new  
programs that allow these cells to move, either locally, or even 
enter the circulatory system to re-join trafficking immune  
cells, at least for a short while. At present, we have only a  
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superficial understanding of these regulatory mechanisms. 
Although being tethered within a tissue offers a strong capacity  
to effect immunosurveillance, how we can target them thera-
peutically and deliver precise signals to optimize the positive  
effector activity of resident immune cells is not clear. Understand-
ing the rules around this pathway offers significant opportunity  
for vaccine delivery and amplification of engineered cells (for 
example, chimeric antigen receptor T cells) to target particular  
tissues.

Key questions remain:

•   �What does heterogeneity of tissue-resident cells  
indicate—do they have enhanced or diminished protective 
functions?

•   �How can short-lived resident memory cells be modu-
lated to enhance their long-term value for enhancement 
of barrier protection and thus potential for vaccination or  
anti-tumor responses at these surfaces?

•   �While tissue-resident cells are mainly thought to pro-
tect barriers, do they impede vaccine or anti-tumor  
targeting?

•   �How do we dampen down exuberant tissue-resident 
responses to prevent disease?

•   �How are tissue-resident cell numbers regulated? Is this 
niche-dependent and can tissue-resident cells be ampli-
fied to fill niches, or is the number of tissue-resident  
cells finite and defined homeostatically?

Although the categorization of immune cells as tissue-resident 
has only recently occurred, this understanding of a dedi-
cated population with properties specific to barrier protection 
potentially opens many doors to therapeutic targeting and a  
reassessment of our approaches and previous failures. Future 
research will undoubtedly uncover new and tangible approaches 
that might be readily implemented and have immediate  
impact on treatment and prevention of disease.
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