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Abstract: Nontuberculous mycobacteria (NTM) are ubiquitous components of the soil and surface
water microbiome. Disparities by sex, age, and geography demonstrate that both host and
environmental factors are key determinants of NTM disease in populations, which predominates in
the form of chronic pulmonary disease. As the incidence of NTM pulmonary disease rises across
the United States, it becomes increasingly evident that addressing this emerging human health
issue requires a bold, multi-disciplinary research framework that incorporates host risk factors for
NTM pulmonary disease alongside the determinants of NTM residence in the environment. Such a
framework should include the assessment of environmental characteristics promoting NTM growth
in soil and surface water, detailed evaluations of water distribution systems, direct sampling of
water sources for NTM contamination and species diversity, and studies of host and bacterial factors
involved in NTM pathogenesis. This comprehensive approach can identify intervention points to
interrupt the transmission of pathogenic NTM species from the environment to the susceptible host
and to reduce NTM pulmonary disease incidence.

Keywords: mycobacterial infections; surface water; opportunistic plumbing pathogens;
geographic distribution

1. Introduction

The prevalence of pulmonary infections caused by nontuberculous mycobacteria (NTM) is
increasing [1–7]. The burden of NTM infections on the U.S. healthcare systems was estimated
to cost $815 million annually [8]. Many NTM species, including the most common pathogens,
are ubiquitous in both surface water (rivers, lakes) and water distribution systems, sharing the
designation of “opportunistic premise plumbing pathogens” with bacteria such Legionella pneumophila
and Pseudomonas aeruginosa [9].

Epidemiologic and environmental studies of NTM pulmonary disease often travel in
non-intersecting paths. Observational clinical studies provide insight into baseline patient
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characteristics associated with the development of NTM pulmonary disease or the likelihood of
a favorable response to NTM-directed treatment. Simultaneously, environmental sampling has been
used to define potential mechanisms of exposure for pathogenic NTM species. Often, a genetic link
can be established between the infecting NTM strain isolated from the patient and the NTM strains
in the household water source. However, there remain tremendous knowledge gaps regarding the
continuum that links the environmental reservoir of NTM species to clinical disease in susceptible
hosts. Consequently, basic questions regarding prevention strategies and therapeutic interventions
remain unanswered [10,11].

A comprehensive framework to address the rising challenge of NTM pulmonary disease must
combine population-based clinical epidemiology with community-based environmental assessments
into a single research framework. This approach has its origin in the classic “shoe leather” epidemiology
established in the mid-19th century by one of the founders of modern epidemiology, Dr. John Snow,
as he pursued the cause of an epidemic of diarrheal disease in London. Snow was skeptical of the
“miasma” theory of disease, and suspected that diarrheal disease in the London Soho neighborhood
was caused by the intake of contaminated water from the Thames River into the pumping system
destined for household use. By creating dot maps of incident cholera cases in the community, he
identified a single Broad Street water pump as a point source of the disease, and successfully ended the
epidemic simply by removing the pump handle. Although disease mapping tools have become much
more sophisticated since the dot maps created by Snow, the objectives of disease mapping remain
the same. The identification of geographic clusters of disease frequently provides insight into the
underlying mechanisms of disease transmission in the population.

The discipline of spatial epidemiology can be defined as the “description and analysis of
geographically indexed health data with respect to demographic, environmental, behavioral,
socioeconomic, genetic, and infectious risk factors” [12]. Such an approach is particularly well-suited
to address the challenge of NTM pulmonary disease. Our understanding of NTM biology and its
environmental niche, combined with increasing evidence of spatial clusters of NTM pulmonary disease
across the United States, demonstrate the need for a research framework that incorporates the host risk
factors for NTM pulmonary disease alongside the determinants of NTM residence in the environment.
The spatial variation of NTM pulmonary disease will be related both to the environmental-level
variability of soil and water characteristics that support NTM growth in the environment, as well as
engineering-driven aspects of water distribution systems that preferentially select and promote NTM
species at the human–microbe interface.

Furthermore, clustering of NTM infections, whether in time, space, or among certain individuals
in a population, may identify additional causal factors that suggest interventions to be applied at
different levels. A comprehensive population-based approach, combining environmental and clinical
data, should include standardized assessments of patient-associated factors related to NTM pulmonary
disease acquisition and clinical response, characterization of environmental distribution of pathogenic
NTM species in water distribution systems and household water supplies, and ascertainment of specific
environmental characteristics that support NTM growth and propagation in the underlying soil and
surface water.

In this review, we will follow the path traveled by pathogenic NTM species from the environmental
reservoir to the patient, identify aspects of NTM microbiology and clinical epidemiology essential
to a population-based NTM research program, and review recent efforts to understand the spatial
epidemiology of NTM pulmonary disease based on these characteristics. With the integration of
environmental and host factors, interventions designed to limit the spread of NTM can then be planned
and evaluated.

2. A Microbial Niche in Soil and Draining Surface Waters

Contamination from soil to surrounding water bodies establishes the primary environmental
reservoir for transmission of pathogenic NTM species to humans [13–19]. First, properties of soil are
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major determinants of NTM prevalence in microbial communities. In soil, the content of sodium, copper,
and silt promotes growth of NTM species, while manganese and clay content inhibits growth [20,21].
High atmospheric water content may also promote NTM growth in soil [16]. In this manner, geographic
variability in soil composition imposes an initial determinant of NTM prevalence in the environment
(Figure 1).
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Once established in soil, additional environmental factors support the growth and propagation of
NTM in the draining surface waters. Drivers of NTM growth in surface waters include low pH [13];
water temperature up to 55 ◦C [22]; low dissolved oxygen content [14]; and a high content of salt [23],
soluble zinc, humic acid, and fulvic acid [24]. These atmospheric and surface water properties introduce
a second layer of geographic variability into the factors that support NTM growth in the environment,
such as evapotranspiration, the process by which water is transferred from the land to the atmosphere
by evaporation from the soil and other surfaces and by transpiration from plants (Figure 2).

As a consequence of lipid-rich outer membranes composed of mycolic acids [19], NTM species are
hydrophobic [25], impermeable [26,27], and relatively slow-growing [26]. These biological properties
allow NTM species to attach to surfaces and form biofilms, supporting adherence to rocks, plant
material, and other environmental substrates in bodies of surface water [28,29]. The combination of a
slow growth rate and cellular impermeability is advantageous under conditions of nutrient starvation
or toxin exposure [30]. Moreover, NTM species are capable of intracellular growth in water-associated
protozoa and amoebae, which can promote virulence and perhaps ‘train’ NTM species to grow in
animal macrophages [17,18].
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By adhering to surfaces, remaining impermeable to toxins, growing intracellularly, surviving
under stress conditions, and maintaining comparatively slow growth rates overall, NTM species are
ideally suited to thrive in surface water environments. Notably, surface water sources, as opposed to
groundwater from wells, provide the majority of public-supply freshwater in the United States [31].
However, NTM species have been reported in public [32,33] and private distribution systems [32,33]
transmitting treated groundwater [34], as well as private wells [33,35]. NTM species were observed
in groundwater-fed drinking water systems at comparable rates to those fed by surface water [36].
It is possible that similar selecting conditions present in treated groundwater systems as treated
surface water systems (i.e., disinfection removing competition, long residence time) are providing
suitable conditions for NTM proliferation despite differences in source water microbial ecology.
Households with water from treated systems, whether public or private, had a higher relative risk
of NTM observation in water than in water from private wells [32]. Likewise, Mycobacterium avium,
M. intracellulare, and M. scrofulaceum were rarely detected in a survey of untreated southern U.S.
groundwater [37].

3. The Role of Household Water Systems

Understanding how NTM pulmonary disease has become a public health threat requires a detailed
understanding of how these bacteria have progressively gained a foothold in water systems of the
United States and elsewhere. Intake pipes draw surface water into treatment facilities, followed by
distribution into municipalities and eventually households, through intake pipes, and ultimately in
household faucets and showerheads [38,39]. NTM species persist in drinking water sampled from
point-of-use sites at cold water outlets despite the introduction of ozonation and filtration systems
into the water treatment facility [40,41]. Cellular impermeability confers resistance to commonly used
water disinfectants such as chlorine [42–46], chlorine dioxide [45,46], and chloramine [45,46]. Some
NTM species are 100-fold more resistant to these disinfectants than P. aeruginosa and E. coli, and thus
disinfectant use in water systems can select for NTM species over chlorine-sensitive competitors [46].



Int. J. Environ. Res. Public Health 2019, 16, 4250 5 of 17

The ability to form biofilms provides NTM species with a competitive advantage over other
microorganisms in adhering to surfaces within pipelines [47,48] and household plumbing systems [49].
As a result, biofilm-associated NTM microbial communities can become long-term, stable components
of water distribution pipelines, shedding bacteria downstream to the human–microbe interface [41,50].
NTM species have been isolated from biofilms within plumbing systems composed of stainless steel,
glass, zinc-galvanized steel, and polyvinyl chloride (PVC), and are particularly well-adapted to growth
on copper surfaces [51]. As evidence of this selection process, the NTM species comprise a greater
component of household water microbiome as compared with their proportion in the source surface
water [52]. This selection process is further amplified by longer durations of water stagnation time [52].

A final NTM enrichment step is driven by the household water heater. In many ways, household
water heater systems provide an ideal habitat for heat-tolerant NTM species: warm water, suitable
surface areas for biofilm formation, and little competition [53]. For many plumbing pathogens, such as
Legionella pneumophila, exposure to water temperatures greater than 46.1 ◦C (115 ◦F) leads to decreased
survival, and above 50.0 ◦C (122 ◦F) leads to cell death [54]. In contrast, some NTM species can tolerate
the set-point temperatures found in many household water heaters [55]. In one study, household
water heaters maintained at temperatures less than 52.2◦C (126 ◦F) were more likely to yield NTM
species compared with households that maintained water heater temperatures greater than 54.4 ◦C
(130 ◦F) [32]. Thus, water heater temperatures in a certain range provide selective pressure that
disproportionately promotes NTM growth [48,56,57]. These are critical observations in light of the
ongoing debate regarding the most appropriate set-point for the household water heater for the
prevention of scalding injuries [58]. For example, the U.S. Consumer Product Safety Commission
recommends a manufacturer reduction in temperature set-point of 48.9 ◦C (120 ◦F) [59].

4. Transmission from the Microbial Reservoir to the Individual

With repeated exposure to NTM-contaminated water in the household, infection may be established
through two potential mechanisms: inhalation of aerosolized droplets containing NTM or ingestion
with subsequent aspiration. NTM species easily aerosolize from water thanks to their hydrophobic
cellular surfaces [60,61], and can be detected in water aerosolized from showerheads [28], taps [28],
humidifiers [28], and heating/ventilation systems [28]. The concentration of NTM in aerosolized water
has been shown to be 1000 to 10,000 times higher than in the cellular suspensions from which they
arise [60]. They are found in aerosolized water droplets small enough to enter the alveoli, likely a
dominant mechanism that drives pulmonary disease acquisition [60]. Ingestion and chronic aspiration
is the more likely mechanism among individuals with gastric reflux disease [62,63].

Using environmental sampling in the household water supplies of patients with established NTM
disease, DNA sequencing has confirmed that the NTM patient isolate matches the household isolate in
many instances. Bacterial isolates from drinking water as well as hot tubs [64], bathroom inlets [65,66],
showerheads [67], and spa pools [68] from facilities [69–71] or homes [64–67,69] of patients with an
NTM infection have been shown to match the NTM isolates from the patient [72]. It must be noted
that genotyping has sometimes found related, but non-identical matches between the environmental
isolates and clinical isolates, which may be a consequence of the high degree of genetic variability in
NTM colonies [67,73,74].

Recently, direct patient-to-patient transmission of highly pathogenic NTM species has also been
described in the cystic fibrosis patient population. Direct transmission of M. abscessus was identified by
detection of nearly identical strains in a cohort of cystic fibrosis patients at a single clinical site [75].
Subsequently, genotyping of clinical isolates of M. abscessus from cystic fibrosis centers worldwide
identified three M. abscessus clones responsible for the majority of pulmonary disease. Furthermore,
these clustered M. abscessus isolates demonstrated increased virulence compared with unclustered
isolates [76]. Whether these observations represent a phenomenon unique to the cystic fibrosis patient
population, rather than a more general mechanism of virulent M. abscessus disease transmission,
remains to be determined.
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Hospital-related infections [77–79] and outbreaks [80,81], owing to various forms of contaminated
water [81–84] or improper disinfections [85], have been reported. Pathogenic NTM species have
been cultured from hospital water reservoirs, where their heat resistance allows them to survive
in temperatures up to 55 ◦C [57,81–83]. NTM species that are not heat-tolerant can colonize cold
water distribution systems in healthcare facilities [81,86–91]. As NTM can also grow in distilled
water, presumably using carbon compounds leaching out from the water container, contaminated
distilled water sources have also been implicated in nosocomial NTM disease outbreaks [92–94]. Not
surprisingly, there have been numerous reports of nosocomial NTM disease outbreaks favored by the
intrinsic properties of these bacteria, including pulmonary NTM disease presentations [95,96]. The
additional contribution of antibiotic overuse as a selective pressure on NTM strains in nosocomial
environments, including drug-resistant NTM strains, has not yet been unexplored. More work is
needed to link NTM strains in the nosocomial environment and the strains found in community water
distribution systems.

5. At-Risk Individuals with Repeated NTM Household Exposures: A Perfect Storm

Clinical experience demonstrates that NTM exposure is necessary, but not sufficient to establish
NTM infection in the human host. Widespread exposure to NTM and periods of intermittent
colonization are suggested by the presence of antibodies against NTM in various populations.
Although NTM exposure may be widespread in certain geographic clusters, owing to numerous
mechanisms discussed above, progression from NTM exposure to disease is related in part to underlying
co-morbidities or immunologic deficiencies. Many of these chronic underlying diseases that promote
NTM disease also demonstrate geographic variability across the United States (such as chronic
obstructive pulmonary disease (COPD)), which adds an additional layer to the uneven geographic
distribution of NTM disease in NTM-exposed populations (Figure 3).

Primary immunologic and pulmonary diseases associated with NTM disease acquisition have
been extensively reviewed elsewhere [97]. Higher rates of progression to NTM infection in individuals
with defects in immune response have identified essential pathways, signaling molecules, and
effectors of NTM disease protection [95], including interleukin (IL)-12 [98–100], interferon-gamma
(IFNγ) [101–103], STAT1 gene [104–108], TYK2 gene [109], IRF-8 gene [110], ISG-15 gene [111], and
RORC gene [112]. Underlying lung conditions, particularly cystic fibrosis [113–115], COPD [116–118],
α-1-antitrypsin (AAT) anomalies [119], chronic bronchiectasis [120], pneumoconiosis [121,122], primary
ciliary dyskinesia [123], calcified chest adenopathy [124], and pulmonary alveolar proteinosis [125–132],
have all been identified as risk factors for acquisition of NTM disease. Systemic illnesses that
target the immunologic pathways involved in response to NTM infection [2,30], or therapies that
inhibit individual components of these pathways, have also been implicated as risk factors for NTM
disease progression [97]. These include the receipt of tumor necrosis factor alpha (TNFα)-antagonist
therapies [133,134], immunosuppressive regimens [135], B cells lymphocyte suppressors [136], and
immunosuppressive therapies in the setting of solid organ transplantation [137]. Increasing the use of
these particular classes of immunosuppressant therapies may contribute to the rise in the prevalence
of NTM lung disease [138].

Notably, many cases of NTM pulmonary disease occur in individuals without defined risk
factors [97]. Thin, postmenopausal women, with either white or Asian/Pacific Islander race/ethnicity,
have increased risk of pulmonary NTM disease for unknown reasons. Estrogen has been shown
to bind macrophages and augment their phagocytic function, and the reduced estrogen levels in
postmenopausal women have been speculated as an underlying cause of increased rates of pulmonary
infection in postmenopausal women [139,140]. The mechanisms that promote infection among exposed
individuals without identifiable risk factors, and likewise the subsequent progression of disease, are
likely to be multifactorial. Both host-related and pathogen-related factors likely determine whether
environmentally driven repeated exposures eventually lead to an established infection [141].
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6. Evidence of Geographic Clustering of NTM Disease

It is clear that the distribution of NTM disease across the United States follows a non-uniform
pattern, with several geographical clusters clearly identified. In a population-based analysis of
Medicare data, with NTM disease identified by a single diagnosis code, geographic clusters of NTM
disease were identified in California, Florida, Hawaii, Louisiana, New York, Oklahoma, Pennsylvania,
and Wisconsin (Figure 4) [6]. These clusters had a tendency to include urban areas with comparatively
higher education and income levels, although this distribution may also be influenced by underlying
patterns of Medicare eligibility in the U.S. population. From an environmental perspective, cluster
regions had higher mean daily evapotranspiration levels and higher percentages of area covered by
surface water. Soil content in these areas includes greater copper [20] and sodium levels [20] and lower
manganese levels [20]. As discussed above, these are environmental conditions that appear to promote
NTM growth and persistence in surface water bodies.
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Our understanding of the spatial epidemiology of NTM disease is beginning to achieve more
granular levels of analysis with regards to environmental determinants. In a Colorado-based study,
NTM infections were distributed in clusters that shared a common water source [21]. In addition to
the role of air and water temperatures, this approach confirmed that soil acidity and silt content were
significantly associated with disease risk, while manganese and clay content were protective against
NTM disease [21]. Although water has been uniformly implicated in harboring NTM, these findings
illustrate that soil characteristics are the underlying determinant of NTM growth in the environment,
with downstream distribution from soil into the draining surface waters. Similar relationships between
soil composition and NTM disease clusters were observed in Queensland, Australia [142].

Mapping water distribution systems in conjunction with environmental and clinical data will
provide additional insights into NTM disease mechanisms. Environmental sampling studies have
demonstrated that the abundance of NTM species in water systems increases in proportion to the
distance from the point of entry into the water distribution system, which reflects the residence time in
the system [41,52]. As distance increases, the genetic diversity of NTM species decreases overall, with
increasing abundance of pathogenic NTM species, including M. avium [52]. This may be a consequence
of increased stagnation time in the water pipes and proliferation of slow-growing M. avium in biofilms,
as discussed above. Similarly, the Colorado-based geographic study observed increasing rates of
NTM infection with increasing distance from the treatment plant to the household [21,52]. These
are intriguing initial observations of the potential role of the water distribution system geography
(including source water type, service areas, and stagnation times) in driving pathogenic NTM species
prevalence in household water supplies, leading to colonization at the human–microbe interface in
faucets and showerheads.
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7. Summary

Studies in the field of NTM biology and disease have predominantly focused on either the
patient characteristics that promote the acquisition of NTM infection and disease progression, or
the environmental drivers of NTM growth and propagation in soil and water systems. We propose
that addressing the emerging public health threat of NTM pulmonary disease depends upon a
multi-disciplinary research framework that includes the assessment of environmental characteristics
promoting NTM growth in soil and surface water, evaluation of associated water distribution systems
(piping, chlorination, geography), and direct sampling of water supplies for NTM contamination
and diversity. These environmental-based studies should complement investigations of the clinical
epidemiology of NTM pulmonary disease within populations drawn from the same geographic
areas, and may shed light on poorly understood phenomena such as relapse or re-infection following
treatment. For example, prospective cohort studies of patients with NTM pulmonary disease could
routinely include environmental sampling in the patient’s household, performed at regular intervals
during follow-up, in order to disentangle patient-focused and environment-focused drivers of treatment
response or disease relapse. This unified framework will be required to identify the NTM “pump
handles” for removal and interrupt the continuum that leads from NTM soil colonization to clinical
disease. A comprehensive approach that follows the lessons of John Snow is essential to reverse the
trends of NTM pulmonary disease in the 21st century and beyond.
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