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Simple Summary: Development of endolysin is a promising strategy because of having the ability to
control problematic bacteria specifically. In this study, we developed and characterized the endolysin
having lytic activity against Streptococcus bovis (S. bovis), which is one of the initiators of ruminal
acidosis. Based on our findings, endolysin LyJH307 showed potent lytic activity in ruminal pH range
and ruminal temperature. In addition, LyJH307 was effective against not only S. bovis isolated from
rumen, but also several S. bovis groups. We suggest that LyJH307 may have a lytic effect in the ruminal
condition and prevent acute ruminal acidosis by controlling S. bovis specifically.

Abstract: Streptococcus bovis (S. bovis) is one of the critical initiators of acute acidosis in ruminants.
Therefore, we aimed to develop and characterize the endolysin LyJH307, which can lyse ruminal
S. bovis. We tested the bactericidal activity of recombinant LyJH307 against S. bovis JB1 under a range
of pH, temperature, NaCl, and metal ion concentrations. In silico analyses showed that LyJH307 has a
modular design with a distinct, enzymatically active domain of the NLPC/P60 superfamily at the
N-terminal and a cell wall binding domain of the Zoocin A target recognition domain (Zoocin A_TRD)
superfamily at the C-terminal. The lytic activity of LyJH307 against S. bovis JB1 was the highest at
pH 5.5, and relatively higher under acidic, than under alkaline conditions. LyJH307 activity was also
the highest at 39 ◦C, but was maintained between 25◦C and 55◦C. LyJH307 bactericidal action was
retained under 0-500 mM NaCl. While the activity of LyJH307 significantly decreased on treatment
with ethylenediaminetetraacetic acid (EDTA), it was only restored with supplementation of 10 mM
Ca2+. Analyses of antimicrobial spectra showed that LyJH307 lysed Lancefield groups D (S. bovis
group and Enterococcus faecalis) and H (S. sanguinis) bacteria. Thus, LyJH307 might help to prevent
acute ruminal acidosis.
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1. Introduction

Ruminal acidosis is one of the most common disorders found in the ruminant farm, and it is
induced by a severe decrease of ruminal pH above the buffering capacity of ruminants when ruminants
are fed high-grain diet for meeting high requirements for energy, especially early and mid-lactation
periods of dairy cattle and finishing period of beef cattle. It is important that ruminal acidosis can result
in a decrease in the production performance, and induce secondary metabolic diseases such as laminitis,
ruminitis, and liver abscessation [1]. Although there are many standards for dividing ruminal acidosis,
in general, ruminal acidosis is distinguished as sub-acute rumen acidosis (SARA) and acute acidosis
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based on ruminal pH range and clinical signs [2]. The reduction of ruminal pH in SARA is mainly due
to the accumulation of volatile fatty acids (VFAs) by excessing the absorption capacity of rumen [3],
while the onset of acute acidosis is induced by the accumulation of lactic acid in combination with a
decrease of lactic acid-utilizing bacteria (such as Megasphaera elsdenii and Selenomonas ruminantium)
and an increase of lactic acid-producing bacteria, especially Streptococcus bovis (S. bovis) [1,4].

The group D S. bovis is a gram-positive, facultative anaerobic bacterium that mainly resides in the
gastrointestinal tract of humans and the rumen of ruminants. In general, S. bovis primarily produces
acetate, formate and ethanol as main fermentation products when starch is limited or ruminal pH is
higher than 6.0, whereas main fermentation product of S. bovis is shifted to lactate when the feeding
level of starch excessively increased [5]. In the latter case, though production of ATP per glucose on
S. bovis decreased, S. bovis can generate more ATP per hour, thereby inducing overgrowth of S. bovis [6].
For this reason, S. bovis has been considered as one of the initiators in acute ruminal acidosis [4,7,8].

Traditionally strict cattle management, which is labor-intensive (for example, adaptation to
increasing concentrate feeds and the use of bases or buffers), has been applied to cattle to prevent
ruminal acidosis [9,10]. Ionophore antibiotics such as monensin, lasalocid, and salinomycin have also
been used to inhibit various Gram-positive bacteria in the rumen [11–13]. However, the emergence of
multi-drug resistant bacteria and the risk of antibiotic residues in animal products have curtailed the
use of antibiotics in livestock [14].

Endolysins, also termed phage lysins, are bacteriophage-encoded peptidoglycan (PG) hydrolases
that can degrade the host bacterial PG layer at the end of the bacteriophage replication cycle [15].
Externally supplemented endolysins can attach to the PG and lyse gram-positive host bacteria that lack
an outer membrane, such as a lipopolysaccharide layer in their cell walls [16]. Endolysins are promising
candidates to replace antibiotics and modulate specific bacteria, owing to their high specificity,
selective bacterial toxicity, rapid lytic action, and, most importantly, a low likelihood of inducing
resistance. Endolysins have been developed to treat several pathologies caused by streptococci, such as
meningitis (by S. suis), streptococcal toxic shock-like syndrome (by S. pyogenes), and pneumonia
(by S. pneumoniae) [17–19]. However, an endolysin to control S. bovis remains unknown.

In recent, several endolysins developed using prophage annotation technologies have been
reported [20,21]. Therefore, we expected that a novel endolysin against S. bovis can be developed using
genomic information of the S. bovis prophage.

Thus, the objective of this study was to develop a novel endolysin (LyJH307) having specific lytic
activity against S. bovis using annotation techniques and evaluate the optimal lytic condition and lytic
spectrum of LyJH307.

2. Materials and Methods

2.1. Bacterial Strains and Growth Conditions

A recombinant endolysin to inhibit S. bovis (LyJH307) was cloned and expressed in Escherichia coli
(E. coli) DH5α and E. coli BL21 (DE3), respectively. S. bovis JB1 (ATCC® 700410™), S. equinus
(ATCC® 15351™), and S. infantarius subspecies infantarius (ATCC® BAA-102™) were obtained from
the American Type Culture Collection (ATCC; Manassas, VA, USA) and Bacillus subtilis (B. subtilis,
KCTC 3014), S. sanguinis (KCTC 3284), S. mutans (KCTC 3065), S. alactolyticus (KCTC 3644), S. gallolyticus
subspecies pasteurianus (KCTC 3878), and Enterococcus faecalis (E. faecalis, KCTC 5191) were obtained
from the Korean Collection of Type Cultures (KCTC; Jeongeup-si, Korea). All five strains isolated from
Korean native cattle (Hanwoo) and goat were indicated as S. equinus CG14, S. lutetiensis HCD23-3,
S. equinus DMF7, S. equinus HCD42-2, and S. lutetiensis HCD23-1 based on the 16s rRNA sequence
similarity results using Basic Local Alignment Search Tool of National Center for Biotechnology
Information (NCBI). S. bovis JB1 served as an indicator of LyJH307 lytic activity and was grown
anaerobically in minimal medium containing (L−1): 292 mg of K2HPO4, 292 mg of KH2PO4, 480 mg of
(NH4)2SO4, 480 mg of NaCl, 100 mg of MgSO4·7H2O, 64 mg of CaCl2·2H2O, 1 g of Hemin, 10 mL of
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Wolfe’s vitamin solution, 4 g of glucose, and 0.6 g of L-cysteine·HCl (pH 6.7). All other streptococcal
species were grown in brain heart infusion (BHI) broth (Difco Laboratories Inc., Detroit, MI, USA) under
anaerobic conditions and B. subtilis and E. faecalis were grown aerobically in BHI broth. Anaerobic
buffer was dispensed under O2-free CO2 into glass tubes (18 × 150 mm) that were sealed with butyl
rubber stoppers.

2.2. Identification, Cloning, and Overexpression of Recombinant LyJH307

LyJH307 was isolated from the whole genome sequence of S. bovis strain MPR4 deposited
in GenBank (Accession Number: NZ_FOOP00000000.1) using a Rapid Annotations using
Subsystems Technology (RAST) server [22]. The chemically synthesized LyJH307 gene
was amplified by the polymerase chain reaction (PCR) using HiPi™ plus thermostable
Taq DNA polymerase (Elpis-biotech, Daejeon, Korea) and the primers LyJH307_BamH1_F
(5′-GGGGGATCCATGAATACAGATGTTTTAATCAATTGG-3′) and LyJH307_Xho1_R
(5′-CCCCTCGAGTTACTTGTAATAATTGACCAAATCG-3′), which introduced a TAA stop
codon. We also added BamH1 and Xho1 restriction sites to the 5′ and 3′ ends of the products,
respectively. Purified DNA fragments were digested using the restriction enzymes BamH1 and Xho1
(New England Biolabs Inc., Ipswich, MA, USA), then cloned into the expression vector pET28b
(Novagen Inc., Madison, WI, USA) containing an N-terminal hexahistidine-tag (6xHis tag) sequence.
The cloned plasmid was transformed into competent E. coli BL21 (DE3) cells that were grown in
Luria–Bertani medium (Difco Laboratories Inc.) until the optical density at 600 nm (OD600nm)
reached 0.4. Thereafter, 1 mM isopropyl-β-D-thiogalactoside (IPTG) was added to the medium, and
the cells were further incubated for 4 h at 37 ◦C. Harvested cells were suspended in lysis buffer
(50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, and pH 8.0), and lysed by sonication (KYY-80,
Korea Process Technology Co., Ltd., Seoul, Korea). After centrifugation at 10,000× g for 15 min,
the supernatant was passed through Ni-NTA Agarose (Qiagen GmbH, Hilden, Germany) and the
recombinant LyJH307 purified as described by the manufacturer, was resolved by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The purified endolysin was pooled and
dialyzed against elution buffer containing (L−1): 50 mM NaH2PO4, 300 mM NaCl, and pH 8.0.

2.3. Structure and Metal Docking Site Prediction of LyJH307

The amino acid sequences of the LyJH307 were uploaded onto an Iterative Threading ASSEmbly
Refinement (I-TASSER) server with standard settings to predict the secondary and three-dimensional
(3D) structures of LyJH307 [23]. The predicted structures were visualized using PyMOL. The 3D
modeled protein was further analyzed to find Ca2+ binding motifs using metal ion-binding site
prediction and docking server (MIB) [24]. The MIB server was built using a fragment transformation
method in which the query protein was aligned to metal binding templates that were extracted from
metal-bound proteins in the Research Collaboratory for Structural Bioinformatics Protein Data bank
(RCSB PDB).

2.4. Characterization of LyJH307

The lytic activity of LyJH307 was assayed as a decrease in OD600nm [25]. To determine
dose-dependent responses, S. bovis JB1 was cultivated to an OD600nm of 0.4–0.5, then harvested
and resuspended in minimal medium to adjust the OD600nm to 0.8–1.0. Serially diluted endolysin
(20 µL, 3.125 µg/mL to 100 µg/mL of concentration) was added to the wells of 96-well plates (SPL Life
Sciences Co., Ltd., Pocheon, Korea) along with cell suspensions (180 µL) and incubated at 39 ◦C. The
OD600nm values were monitored every 10 min for 30 min using an iMark microplate reader (Bio-Rad
Laboratories Inc., Hercules, CA, USA). The optimal temperature was determined by measuring the
lytic activity of LyJH307 (50 µg/mL) as described above at 4 ◦C, 25 ◦C, 39 ◦C, 45 ◦C, 50 ◦C, and 55 ◦C.
The optimal pH was determined by suspending S. bovis JB1 in 50 mM sodium acetate (pH 4.5 to 5.5),
50 mM sodium phosphate (pH 6.0 to 7.5), and 50 mM Tris-HCl (pH 8.0). The influence of NaCl
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concentration on the LyJH307 activity was tested by adding 0, 31.3, 62.5, 125, 250, and 500 mM NaCl
at the empirically determined optimal pH buffer. The effect of divalent cations was determined as
described [26]. Briefly, the endolysin (50 µg/mL) was incubated with 5 mM ethylenediaminetetraacetic
acid (EDTA) at 25 ◦C for 30 min to chelate divalent cations attached to the endolysin. The EDTA
was removed by replacing the buffer with the empirically determined buffer at the optimal pH using
Amicon Ultra-4 (10 kDa) (Merck KGaA, Darmstadt, Germany) [27]. The lytic activities of the endolysin
incubated with EDTA, 10 mM CaCl2, or 10 mM MgCl2 were assessed. All these experiments were
conducted in triplicate.

2.5. The Spectrum of Lytic Activity

Bacterial cells grown as described above to an OD600nm of 0.4–0.5, were harvested and resuspended
in minimal medium to adjust the OD600nm to 0.8–1.0. Endolysin (50 µg/mL) was then added to 96-well
plates (SPL Co. Ltd., Pocheon-si, Korea) along with the cell suspension and incubated at 39 ◦C.
The OD600nm values were monitored after 1 h in the iMark microplate reader to evaluate the lytic
spectrum of LyJH307.

2.6. Optical Microscopy

The lytic activity of LyJH307 on S. bovis JB1 was visually assessed using optical microscopy as
follows. The S. bovis JB1 prepared as described above was resuspended in 50 mM sodium phosphate
buffer (pH 6.0); then 45 µL of the suspension was mixed with LyJH307 treated with 10 mM CaCl2
(5 µL). The activity was assessed using a CKX53 phase-contrast optical microscope (Olympus, Tokyo,
Japan) equipped with Tech Xcam-III (Techsan Co., Ltd., Pusan, Korea).

2.7. Statistical Analysis

Statistical analysis was conducted using R software (R version 3.6.3, R Foundation for Statistical
Computing, Vienna, Austria). For the comparison of differences in lytic activity of LyJH307
under different characterization conditions, we used a non-parametric Kruskal–Wallis test using
the kruskal.test function because residuals did not follow the normal distribution after various
transformation (log, square-root, or arcsine). Differences among different groups were compared with
the Dunn’s multiple comparison using dunnTest function from the FSA package, if a significant effect
was observed. All p-values were adjusted by the Benjamini–Hochberg false discovery rate. A statistical
significance was declared at p < 0.05.

3. Results

3.1. Sequence Analysis and Overexpression of LyJH307

Amino acid sequencing using NCBI conserved domain database showed that LyJH307
had a modular design with two distinct domains, namely, the NLPC/P60 superfamily
(cl21534, e-value = 1.45 × 10−19) with a hydrolytic function at the N-terminal, and the Zoocin A target
recognition domain (Zoocin A_TRD) superfamily (cl25103, e-value = 1.81 × 10−25) at the C-terminal
that might be involved in recognizing and binding the PG layer (Figure 1A).

According to the primary structure, the calculated isoelectric point of LyJH307 was 4.47, and the
instability index was smaller than 40 (instability index of LyJH307 = 26.57), indicating that LyJH307
may be a stable form of the protein [28]. The secondary structure of LyJH307 determined by the
I-TASSER server [23], consisted of an alpha-helix (17%), a beta-strand (20%), and a coil (63%) (Figure 1B).
The HMMTOP server that predicts transmembrane helices and topology did not detect a transmembrane
helix. Considering a lower B-factor value, we assumed that most residues in LyJH307 were stable
(Figure 1B). Figure 1C shows the predicted 3D model of LyJH307 in a ribbon form, and Figure 1D
shows a Connolly surface representation of LyJH307 in PyMOL.
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Recombinant LyJH307 was expressed in E. coli BL21 (DE3) and purified by nickel affinity
chromatography via the N-terminal 6xHis tag. The major band of purified soluble LyJH307 endolysin
resolved on SDS-PAGE at a molecular mass of 32 kDa (Figure 2A).Animals 2020, 10, x FOR PEER REVIEW 5 of 11 

 

 
Figure 1. Domain and structure analysis of LyJH307. (A) Conserved domain of LyJH307. Gray square 
represents the N-terminal enzymatically active domain (NLPC/P60), and white square describes the 
C-terminal cell wall binding domain (Zoocin A target recognition domain, Zoocin A_TRD); (B) 
Normalized B-factor and secondary structure region of LyJH307 from Iterative Threading ASSEmbly 
Refinement (I-TASSER) server. (C) Three-dimensional model of LyJH307 made using I-TASSER 
server. Ribbon form shows NLPC/P60 domain (magenta) and Zoocin A_TRD (blue) of LyJH307; (D) 
Connolly surface of LyJH307 created by PyMOL (blue and red, most positive and negative polar 
activities, respectively). 

Recombinant LyJH307 was expressed in E. coli BL21 (DE3) and purified by nickel affinity 
chromatography via the N-terminal 6xHis tag. The major band of purified soluble LyJH307 endolysin 
resolved on SDS-PAGE at a molecular mass of 32 kDa (Figure 2A). 

 
Figure 2. LyJH307 purification and lytic activity against Streptococcus bovis JB1 (ATCC® 700410™). (A) 
Purified LyJH307 resolution on a 15% SDS-PAGE. Lane 1 was stained protein molecular weight 
markers, and Lane 2 was purified LyJH307; (B) Lysis of S. bovis JB1 by the purified LyJH307 protein; 

Figure 1. Domain and structure analysis of LyJH307. (A) Conserved domain of LyJH307. Gray square
represents the N-terminal enzymatically active domain (NLPC/P60), and white square describes
the C-terminal cell wall binding domain (Zoocin A target recognition domain, Zoocin A_TRD);
(B) Normalized B-factor and secondary structure region of LyJH307 from Iterative Threading ASSEmbly
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Figure 2. LyJH307 purification and lytic activity against Streptococcus bovis JB1 (ATCC® 700410™).
(A) Purified LyJH307 resolution on a 15% SDS-PAGE. Lane 1 was stained protein molecular weight
markers, and Lane 2 was purified LyJH307; (B) Lysis of S. bovis JB1 by the purified LyJH307 protein;
(C) Lytic activity of LyJH307 against S. bovis JB1. S. bovis JB1 was incubated with various doses of LyJH307
or elution buffer. Data are presented as means ± standard deviation of triplicates. OD, optical density.
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3.2. Characterization of Recombinant LyJH307

We selected S. bovis JB1 as the reference strain for measuring the lytic activity of LyJH307
because it is highly prevalent in the rumen. LyJH307 clarified the culture media of S. bovis JB1
(Figure 2B) and dose-dependently reduced the optical density of the S. bovis JB1 above a concentration
of 3.125 µg/mL (Figure 2C). Both LyJH307 levels (50 and 100 µg/mL) effectively inhibited S. bovis
JB1; therefore, we characterized the activity of LyJH307 at 50 µg/mL. Moreover, S. bovis JB1 started
to undergo lysis after 2 min, and most S. bovis JB1 cells were removed within 10 min by LyJH307
(Figure 3).
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Figure 3. Optical microscopy of lytic activity of LyJH307 against Streptococcus bovis JB1 (ATCC®

700410™). S. bovis JB1 was cultured overnight, harvested, and suspended in 50 mM sodium phosphate
buffer (pH 6.0). Suspensions of S. bovis JB1 (45 µL) were mixed with LyJH307 after incubation with
10 mM CaCl2 (5 µL, 50 µg/mL) and visualized at 1000×magnification. The white one in the red ring
is live cell of S. bovis JB1, and the disappearance of the white one in the red ring means the death of
the cell.

We assessed LyJH307 activity against S. bovis JB1 in the presence of variable pH, temperatures,
salt concentrations, and metal cations to determine the optimal conditions for lysis. Lytic activity
was the highest at pH 5.5 (generally high between 4.5 and 8.0) (Figure 4A) and 39 ◦C (maintained
between 25 ◦C and 55 ◦C) (Figure 4B). Salt concentrations from 0 to 250 mM NaCl did not adversely
influence LyJH307 lytic activity, but the lytic activity on the highest concentration of salt is significantly
lower than 31.5 mM concentration of salt (Figure 4C). Previous studies have shown that the activity of
endolysins against streptococci such as Ply700, B30, and Ly7917, is dependent on calcium cations [29–31].
Therefore, we investigated the effects of metal cations on the LyJH307 enzyme activity. We initially
incubated LyJH307 with EDTA (5 mM) for 30 min to remove residual divalent metals. This procedure
decreased LyJH307 activity by ~57%, indicating that LyJH307 requires metal ions to exert lytic activity
(Figure 4D). Adding Ca2+ significantly restored the activity of LyJH307 that had been reduced by
EDTA, by ~67% (Figure 4D). We incubated LyJH307 with Mg2+ to determine whether its activity is
specifically Ca2+-dependent. Magnesium ions did not affect the activity of the LyJH307 incubated with
EDTA, indicating that the activity is indeed Ca2+ dependent. We investigated binding and docking
sites of Ca2+ on LyJH307 using MIB to support our findings [24]. We predicted 10 Ca2+ docking sites on
LyJH307 and visualized them using PyMOL (Figure 5). The binding score was the highest at aspartate
132nd and glutamate 133rd in the protein sequence, reaching 1.526 (Figure 5A).
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Figure 5. Docking positions of calcium metal ions (yellow spheres) in the three-dimensional model
of LyJH307. (A) Binding residues, 132D and 133E; Template, Research Collaboratory for Structural
Bioinformatics Protein Data Bank (RCSB PDB) ID 1ayoB0; Score, 1.526. (B) Binding residues, 212D and
213E; Template, RCSB PDB ID 1je5B0; Score, 1.419. (C) Binding residues, 272D and 273K; Template,
RCSB PDB ID 1jhnA0; Score, 1.391. (D) Binding residues, 8N and 11E; Template, RCSB PDB ID 1e7dA0;
Score, 1.338. (E) Binding residues, 168S, 169K, 214N, 235E, and 237D; Template, RCSB PDB ID 1k9uA0;
Score, 1.329. (F) Binding residues, 189D, 190Y, 197D, and 199T; Template, RCSB PDB ID 1ktwA1;
Score, 1.291. (G) Binding residues, 167D, 214N, 237D, 238E, and 261G; Template, RCSB PDB ID 1i82A0;
Score, 1.290. (H) Binding residues, 220D and 221G; Template, RCSB PDB ID 1fi5A0; Score, 1.253.
(I) Binding residues, 29D and 30G; Template, RCSB PDB ID 1fbl_3; Score, 1.251. (J) Binding residues,
168S, 214N, 235E, 237D, and 262Q; Template, RCSB PDB ID 1ht9A1; Score, 1.25. Magenta and blue
represent NLPC/P60 domain and Zoocin A_TRD, respectively.
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3.3. Antimicrobial Spectrum of LyJH307

We determined the lytic spectrum of LyJH307 against 11 Gram-positive and two Gram-negative
bacteria using turbidity reduction tests (Figure 6). Among the Gram-positive bacteria, LyJH307
potently lysed S. bovis JB1, S. equinus, S. gallolyticus subspecies pasteurianus, S. infantarius subspecies
infantarius, S. sanguinis, and all Streptococcus species isolated from the rumen (relative lytic activity,
>90%). LyJH307 was moderately lytic against S. alactolyticus and E. faecalis (relative lytic activity range,
40–60%) and had <25%, relative lytic activity against S. mutans (KCTC 3065) and B. subtilis (KCTC 3014).
However, Gram-negative bacteria were not affected by LyJH307.
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4. Discussion

The isolation of bacteriophages with specific lytic activity against bacteria is generally a prerequisite
to developing endolysins, but we aimed to create an endolysin using genomic data from the NCBI
nucleotide database. We successfully identified an endolysin, LyJH307, from the whole genome
sequence of te S. bovis strain MPR4 using the RAST server [22], and we firstly characterized a novel
endolysin LyJH307 having potent lytic activity against S. bovis group organisms.

Endolysins taking lytic activity against Gram-positive bacteria generally have at least two
functional conserved domains, an N-terminal enzymatically active domain (EAD) and a C-terminal
cell-wall binding domain (CBD) [15]. Therefore, having both of them is important to predict the effective
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lytic activity of endolysin against target bacteria. Bioinformatic analyses using NCBI conserved revealed
that LyJH307 had an N-terminal EAD comprising the NLPC/P60 superfamily and a C-terminal CBD
comprising Zoocin A_TRD, thereby inferring a general type of endolysin that targets gram-positive
bacteria [16]. The NLPC/P60 superfamily plays various roles in the dynamics of bacterial cell walls [32],
and it hydrolyzes D-γ-glutamyl-meso-diaminopimelate or N-acetyl-muramate-L-alanine linkages
within the PG stem peptides [32,33]. The NLPC/P60 superfamily generally has three significant motifs
in its domains, namely, an N-terminal cysteine, a central glycine, and a C-terminal histidine that are
involved in catalytic activities [32], and the EAD of LyJH307 also had three significant motifs in the
catalytic domain (data not shown). The main role of CBD is to recognize and bind to ligands within the
PG layer of target bacteria, thereafter, helping the EAD to act effectively [16]. The C-terminal Zoocin
A_TRD superfamily is the CBD of Zoocin A, which is an exoenzyme secreted by S. equi subspecies
zooepidemicus 4881 [34]. Zoocin A has been known to have lytic activity against several streptococci that
are associated with a streptococcal sore throat and dental caries [34,35]. Therefore, we used turbidity
reduction assays to determine LyJH307 lytic activities against several streptococcal species. The results
showed that LyJH307 (25 µg/mL) killed S. bovis JB1 within 30 min (decrease >60%). LyJH307 activity
was relatively higher under acidic than under alkaline conditions, remained high between 25 ◦C to
55 ◦C, and was dependent on the presence of Ca2+. A high dose of LyJH307 under optimal conditions
not only clarified S. bovis broth but also decreased viable bacterial cells within 10 min. A high starch
diet is essential to ruminants for high production but this can induce the rapid growth of amylolytic
bacteria (especially S. bovis), reduce fibrolytic bacteria, and decrease ruminal pH when ruminants
are not adapted to high-grain diets [1]. The retained bactericidal activity at acidic pH and rumen
temperatures indicated that LyJH307 might be a good candidate antimicrobial molecule to prevent
acute acidosis by specifically controlling S. bovis.

Viridans streptococci have been classified into Mitis, Sanguinis, Mutans, Salivarius, Anginosus, and
Bovis categories [36]. The S. bovis group comprises S. bovis/equinus, S. infantarius subspecies infantarius,
S. lutetiensis, S. alactolyticus, S. gallolyticus subspecies gallolyticus, S. gallolyticus subspecies macedonicus,
S. gallolyticus subspecies pasteurianus [37]. Recently, not only a pathogenetic role of S. bovis group in
bacteremia but also the appearance of antibiotic-resistant S. bovis group has been emphasized [37].
Considering that LyJH307 was potently lytic against all S. bovis strains isolated from the rumen and
commercial S. sanguinis and S. bovis groups except S. alactolyticus and S. mutans, thus, LyJH307 can
be used as an effective replacement of antibiotics. In addition, LyJH307 was moderately lytic against
E. faecalis. Zoocin A has major lytic activity against S. pyogenes, S. gordonii, and S. mutans. The Zoocin A
consists of N-terminal M23 (EAD) having high similarity to lysostaphin, and C-terminal Zoocin A_TRD
(CBD) is linked by a threonine-proline rich putative linker sequence [38]. However, the homology
was only observed in the Zoocin A_TRD domain between LyJH307 and Zoocin A (32.1%, amino acid
basis). Therefore, the low homology might explain the difference in the lytic spectrum. In addition,
considering that the Lancefield group D (E. faecalis and S. bovis group) and H (S. sanguinis) organisms
were lysed by LyJH307, the CBD of LyJH307 might recognize the carbohydrate moiety of bacterial
antigens located on the PG of the Lancefield groups D and H [36]. Further studies are needed to
verify the effect of endolysin LyJH307 against S. bovis and impact on rumen microbiota in the ruminal
anaerobic condition.

5. Conclusions

In the present study, we firstly developed a novel endolysin LyJH307, using a genomic database
without searching for a bacteriophage, having potent lytic activity against S. bovis group organisms.
LyJH307 had a unique domain combination (NLPC/P60 with Zoocin A_TRD) but its lytic spectrum
differed from that of the bacteriocin Zoocin A. LyJH307 was highly lytic at pH 5.0–6.5 and a ruminal
temperature of 39 ◦C, and its activity was Ca2+ dependent. Therefore, LyJH307 might also be a
good candidate with which to prevent acute ruminal acidosis and control bacteremia caused by
antibiotic-resistant S. bovis strains.
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