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Estimation of carbon dioxide 
emissions from the megafires 
of Australia in 2019–2020
Tomohiro Shiraishi* & Ryuichi Hirata

Catastrophic fires occurred in Australia between 2019 and 2020. These fires burned vast areas and 
caused extensive damage to the environment and wildlife. In this study, we estimated the carbon 
dioxide (CO2) emissions from these fires using a bottom-up method involving the improved burnt area 
approach and up-to-date remote sensing datasets to create monthly time series distribution maps 
for Australia from January 2019 to February 2020. The highest monthly CO2 emissions in Australia 
since 2001 were recorded in December 2019. The estimated annual CO2 emissions from March 2019 to 
February 2020 in Australia were 806 ± 69.7 Tg CO2 year−1, equivalent to 1.5 times its total greenhouse 
gas emissions (CO2 equivalent) in 2017. New South Wales (NSW) emitted 181 ± 10.2 Tg CO2 month−1 
in December 2019 alone, representing 64% of the average annual emissions of Australia from 2001–
2018. The negative correlation observed between CO2 emissions and precipitation for 2001–2020 was 
0.51 for Australia. Lower than average precipitation and fires in high biomass density areas caused 
significant CO2 emissions. This study helps to better assess the performance of climate models as a 
case study of one of the major events caused by climate.

Catastrophic fires pose risks to humans in Australia for many millennia1. Previous catastrophic fires include 
Black Friday in 1939, Ash Wednesday in 1983, and Black Saturday in 2009. Extensive fires again affected Australia 
in the 2019 to 2020 season. The burnt area from these fires exceeded that of the 1939 Black Friday fires, which 
burnt approximately two million hectares of temperate forests, the largest land area since European settlement2. 
The fires began before spring in June 2019, then significantly worsened in early November 2019. Although the 
fires were dampened by heavy rains in the middle of January 2020, they then re-emerged in early February due 
to rising temperatures, droughts, and strong winds. Finally, the fires were contained by severe rainstorms in the 
middle of February3. Approximately three million hectares were burnt in the eastern states of Queensland and 
New South Wales (NSW)4. Nolan et al.2 reported that these fires burnt 3.8 million hectares of mainly temperate 
forest in the state of NSW, and 0.5 million hectares in Victoria. Boer et al.5 reported that approximately 5.8 mil-
lion hectares of mainly temperate broadleaf forest were burnt in NSW and Victoria between September 2019 and 
early January 2020. According to the Center for Disaster Philanthropy (CDP) website3, the fires affected not only 
the landscape, but also humans and animals. At least 34 people, including 25 in NSW, one in Australian Capital 
Territory, five in Victoria, and three in South Australia (SA) have died since October 2019 due to the wildfires. 
Furthermore, approximately 3,000 houses and thousands of buildings were destroyed by the fires nationwide. 
The fires also affected ecosystems; over a third of the koala population has been estimated to have been killed, 
and hundreds of thousands of fish died in the Macleay River in northern NSW because of the ash and sludge 
from the fires. The CDP explained some of the causes of these fires as follows. Australia experienced its hottest 
year on record in 2019, with average temperatures 1.52 °C above the 1961–1990 average. The same year, 2019, 
turned out to be its driest year with rainfall 40% lower than average based on records going as far back as 1900.

Biomass burning occurs in all vegetated terrestrial ecosystems and strongly affects global carbon cycles by 
releasing a massive amount of carbon dioxide (CO2) into the atmosphere6–9. The largest source of global carbon 
emissions, excluding fossil fuel emissions, is fires—mainly in grasslands and savannas8. Vegetation in Africa 
and Australia significantly contribute to the global emission budget10. The Australian government established 
the Emissions Reduction Fund in 2014 to store carbon or reduce greenhouse gas (GHG) emissions11. Extremely 
severe fires had been relatively rare in southeast Australia, due to strategic fuel management conducted by the 
government12,13. Despite these efforts, massive fires broke out in 2019–2020 season and emitted significant 
amounts of CO2 into the atmosphere. It is important to understand the causes of these large-scale fires and their 
impact on the climate, ecosystems, society, and economy.
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Pickrell4 and Nolan et al.2 documented the extent of the land areas affected by these fires up to December 2019. 
The fires continued in NSW and Victoria until February 20203, and CO2 emissions for January and February 2020 
have not been quantified. Therefore, we estimated the CO2 emitted by the Australian fires until February 2020 and 
created monthly CO2 emission maps from these fires to understand changes in the time series and distribution 
of the fires across the whole of Australia. This paper covers the following: (1) providing CO2 emissions and its 
spatio-temporal distribution; (2) quantitation of the effect on the CO2 emission estimation by input sources; (3) 
evaluation of the relationships between CO2 emissions and precipitation and CO2 emissions and temperature. It 
is important to evaluate many case studies of major events to understand the global environment. As an assess-
ment of one of the major events, this study helps to better assess the performance of climate and fire models.

Results
CO2 emissions from fires were estimated for six states and one territory (Fig. S1). The spatio-temporal distribu-
tion of estimated monthly CO2 emissions between January 2019 and February 2020 are shown in Fig. 1. CO2 
emissions, which began in northern Western Australia (WA) in March 2019, passed through Northern Territory 
(NT) and reached Cape York Peninsula in Queensland in June 2019. While continuing to emit CO2 in the north-
ern area of the country, the CO2 emissions increased in the eastern parts of both Queensland and NSW from 
April 2019. Afterwards, CO2 emissions were estimated in Queensland and NSW from November to December 
2019, and in Victoria in January 2020. Other CO2 emissions were also noted in southwestern WA from April to 
May 2019. Although CO2 emissions were estimated in Queensland in February 2020, emissions had disappeared 
in most of the regions by this time (Fig. 1).

Annual CO2 emissions from fires in Australia for 2019 were 674 ± 57.6 Tg CO2 year−1, which was estimated to 
be 2.4 times the average annual CO2 emissions in 2001–2018 (Table 1). Focusing on the monthly CO2 emissions, 
the average emissions from April to October 2001–2018 were consistently large and the emissions in 2019–2020 
season increased again after October. In particular, the emissions in November, December 2019, and January 
2020 were 157 ± 23.1, 304 ± 16.9, and 173 ± 6.14 Tg CO2 month−1, respectively. These emissions correspond to 
3.6, 9.7, and 6.4 times the average monthly CO2 emissions in 2001–2018, respectively.

To comprehensively understand the CO2 emissions from the fires, we focus on the emissions in each state. The 
largest estimated monthly CO2 emissions were 181 ± 10.2 Tg CO2 month−1 in NSW, in December 2019 (Table 2). 
CO2 equating to 52% of the emissions from the fires in Australia was emitted from NSW across the 14 months 
evaluated in this study. The emissions from NSW in the latest year, March 2019 to February 2020, were 443 ± 40.4 
Tg CO2 year−1, equivalent to 1.6 times average annual emissions through Australia in 2001–2018. In Victoria, 
126 ± 8.50 Tg of CO2 was emitted over just two months between December 2019 and January 2020, and the 
annual emissions in the latest year, March 2019 to February 2020, were 149 ± 14.3 Tg CO2 year−1, equivalent to 
53% of Australia’s average annual emissions for 2001–2018.

Although the highest monthly CO2 emissions through Australia since 2001 occurred in December 2019, 
the largest burnt area did not occur in this month (Fig. 2). The burnt areas in September 2011 and October 
2012 were both larger than that of December 2019, however CO2 emissions were not as high during this month 
(46.8 ± 5.07 and 57.3 ± 7.58 Tg CO2 month−1, respectively). One of the reasons for this phenomenon is the above-
ground biomass (AGB) density in the fire regions. We estimated the CO2 emissions from fires by multiplying the 
burnt areas by the AGB densities and few coefficients (Eqs. (1) and (2)). The inland areas in NT and WA, which 
comprised most of the burnt area in September 2011 and October 2012, respectively, had relatively low AGB 
distributions. Eastern NSW, however, which exhibited the highest emissions in December 2019, had a higher 
AGB distribution than the above two regions (Fig. 3).

The annual precipitation in 2019 was only 53% of the average for 2001–2018, with the monthly precipitation 
values in each region in 2019 often below the average precipitation of 2001–2018 (Fig. 4). The annual precipita-
tion in 2019 in NSW, Queensland, and Victoria, the areas that emitted large amounts of CO2, were 50%, 73%, and 
73%, respectively, of the average precipitation of each region for 2001–2018. The precipitation in NSW, Queens-
land, and Victoria for the three months from October to December 2019 was 29%, 29%, and 57%, respectively, 
of the average precipitation for the same months for 2001–2018. This was one month ahead of the period with 
significantly increased CO2 emissions (from November 2019 to January 2020). Focusing on the relationship 
between CO2 emissions, which was conducted using base 10 log transformation, and precipitation, all regions 
excluding SA had a negative correlation coefficient including Australia with the negative correlation (0.51) as 
shown in Figure S2. These results indicate that lower than average precipitation was one of the causes inducing 
the significantly greater CO2 emissions for the 2019–2020 seasons.

Figure 5 shows the results of the monthly CO2 emissions and the monthly mean temperatures14 between the 
average values in 2001–2018 and the values in 2019–2020, respectively. The monthly mean temperatures for 
evaluation in each region (six states and one territory) were used in the capitals in each region as a representa-
tion. The temperatures in each region in 2019–2020 were on average 2–5% higher than those of 2001–2018. 
Although the CO2 emissions in NSW from November 2019 to January 2020 and in Victoria from December 
2019 to January 2020 were conspicuously higher than those of 2001–2018, the significant difference does not 
prevail when compared with the other regions and the other periods. There was a weak correlation between the 
CO2 emissions and the temperatures in Tasmania, Victoria, and NT; however, no evident relationship was found 
in the other regions (Fig. S3). The higher-than-normal temperatures may have little effect on CO2 emissions 
directly; however, they indirectly contribute to the expansion of burning areas and CO2 emissions by causing 
the drying of fuel and soil.
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Figure 1.   Estimated monthly CO2 emissions (Tg CO2 grid−1 month−1) time series between January 2019 and 
February 2020. CO2 emissions are the total amount in each 50 km × 50 km grid. Abbreviations in the top-left 
figure for January 2019 indicate the state names, namely, New South Wales (NSW), Queensland (QU), South 
Australia (SA), Tasmania (TA), Victoria (VI), Western Australia (WA), and Northern Territory (NT). Maps were 
created with ArcGIS version 10.5 (https://​www.​arcgis.​com/).

https://www.arcgis.com/
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Discussion
Effect of input data on the estimated CO2 emissions.  We used land cover (LC) maps (GLC2000 and 
MCD12Q1), AGB maps (Globbiomass and GEOCARBON), and fire distribution (FD) maps, which are the map 
with high and nominal confidences (NC–M) and the map with high, nominal, and low confidences (LC–M) 
created from Moderate Resolution Imaging Spectroradiometer (MODIS) MOD14A1 product, to estimate the 
CO2 emissions from fires. We created the eight CO2 emission inventories in combinations (23) using two LC 
maps, two AGB maps, and two FD maps. Note that the eight inventories were named by the three characters 
in each of the three inputs in the order of LCC (G: GLC2000 or M: MCD12Q1), AGB (W: GEOCARBON or E: 
Globbiomass), and FD (N: NC–M or L: LC–M) maps, for example, the GWN inventory is the combination of 
inputs in GLC2000 for LCC, GEOCARBON for AGB, and NC–M for FD (see Table S2 for every inventory). The 
highest CO2 emission inventory was MWL by 69.8 ± 92.6 Tg CO2 month−1, the smallest inventory was GEN by 
55.7 ± 76.1 Tg CO2 month−1, and the difference was 25% (Fig. S4 and Table S2).

To understand the effect of AGB on the emissions, we compared the inventories with the same inputs of LC 
and FD (GWN and GEN, GWL and GEL, MWN and MEN, and MWL and MEL, respectively). The inventories 
using GEOCARBON had 11–14% more emissions than those of Globbiomass (Table S3). One of the reasons is 

Table 1.   Average and one standard deviation of monthly CO2 emissions (Tg CO2 month−1) between 2001–
2018 and 2019–2020 in Australia. Note that the average and one standard deviation for 2001–2018 were 
measured for each month of the year, and those of 2019 and 2020 indicate the eight results from a combination 
of input sources.

Month

Monthly CO2 emissions (Tg CO2 
month–1)

2001–2018 2019 2020

Jan 27.1 ± 10.3 37.3 ± 3.95 173 ± 6.14

Feb 11.2 ± 2.57 29.6 ± 8.25 26.8 ± 1.94

Mar 6.70 ± 0.81 13.5 ± 3.63 –

Apr 13.1 ± 0.73 12.1 ± 2.19 –

May 17.4 ± 2.45 16.5 ± 2.00 –

Jun 11.4 ± 1.44 9.39 ± 0.47 –

Jul 13.4 ± 2.11 12.5 ± 0.70 –

Aug 24.0 ± 4.58 15.4 ± 1.89 –

Sep 34.8 ± 5.23 33.2 ± 5.86 –

Oct 47.3 ± 7.93 33.7 ± 4.93 –

Nov 43.1 ± 6.15 157 ± 23.1 –

Dec 31.3 ± 7.40 304 ± 16.9 –

Year 281 ± 130 674 ± 57.6 –

Table 2.   Monthly time series of estimated CO2 emissions (Tg CO2 month−1) in six states and one territory 
between January 2019 and February 2020. The values show the average and one standard deviation of the eight 
results from a combination of input sources.

Year Month NSW Queensland SA Tasmania Victoria WA NT

2019

Jan 2.02 ± 0.40 5.31 ± 1.31 0.00 ± 0.00 18.9 ± 1.40 4.99 ± 0.75 5.79 ± 2.59 0.24 ± 0.12

Feb 5.16 ± 0.88 7.03 ± 2.02 0.00 ± 0.00 2.77 ± 0.30 2.05 ± 0.37 12.5 ± 5.46 0.08 ± 0.01

Mar 1.51 ± 0.18 1.09 ± 0.07 0.00 ± 0.00 0.38 ± 0.10 8.89 ± 3.98 1.52 ± 0.32 0.13 ± 0.03

Apr 3.20 ± 0.83 0.84 ± 0.21 0.01 ± 0.01 1.81 ± 0.19 2.18 ± 0.44 3.55 ± 0.97 0.45 ± 0.13

May 4.78 ± 0.80 0.98 ± 0.06 0.23 ± 0.14 1.40 ± 0.33 3.14 ± 0.80 4.40 ± 0.73 1.55 ± 0.23

Jun 1.58 ± 0.16 1.52 ± 0.24 0.23 ± 0.10 0.24 ± 0.08 0.23 ± 0.13 0.96 ± 0.16 4.63 ± 0.63

Jul 2.68 ± 0.30 2.77 ± 0.20 0.01 ± 0.01 0.00 ± 0.00 0.48 ± 0.12 1.16 ± 0.16 5.41 ± 0.47

Aug 5.57 ± 0.57 4.79 ± 1.04 0.00 ± 0.00 0.12 ± 0.01 0.03 ± 0.03 0.4 ± 0.10 4.47 ± 0.56

Sep 17.3 ± 3.19 11.4 ± 2.45 0.02 ± 0.02 0.41 ± 0.08 0.11 ± 0.06 0.74 ± 0.04 3.15 ± 0.31

Oct 16.6 ± 2.46 8.96 ± 2.48 0.02 ± 0.02 0.33 ± 0.05 0.31 ± 0.05 1.5 ± 0.27 5.99 ± 0.28

Nov 126 ± 15.6 16.0 ± 4.07 0.03 ± 0.01 0.58 ± 0.12 4.73 ± 0.06 7.88 ± 3.25 1.92 ± 0.19

Dec 181 ± 10.2 23.7 ± 4.84 3.23 ± 0.38 1.93 ± 0.55 56.7 ± 2.33 33.9 ± 12.1 2.86 ± 0.19

2020
Jan 68.2 ± 4.90 4.23 ± 0.64 2.64 ± 0.30 4.09 ± 0.70 69.6 ± 6.17 22.0 ± 7.93 0.27 ± 0.04

Feb 14.8 ± 1.16 0.98 ± 0.14 0.00 ± 0.00 0.01 ± 0.02 2.56 ± 0.12 6.18 ± 1.62 0.02 ± 0.01

Total 451 ± 23.2 89.6 ± 19.0 6.43 ± 0.55 33.0 ± 2.62 156 ± 11.3 102 ± 31.0 31.2 ± 2.54
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Figure 2.   Monthly burnt area of LC–M and estimated CO2 emissions in Australia from January 2001 to 
February 2020.

Figure 3.   Distribution maps of AGB (Mg ha−1), burnt area, and LC. AGB map (a) was created by averaging the 
GEOCARBON and Globbiomass maps. Burnt area maps based on LC–M represent: (b) September 2011, (c) 
October 2012, and (d) December 2019. LC maps for 2018 at 500 m spatial resolution are: (e) GLC2000 and (f) 
MCD12Q1. The numbers in (e) and (f) indicate the category values for LC maps (Table S1). The grid size for 
maps from (a–f) was 20 km × 20 km. Maps were created with ArcGIS version 10.5 (https://​www.​arcgis.​com/).

https://www.arcgis.com/
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Figure 4.   Comparison between monthly precipitation (mm) and monthly burnt area (km2) of LC–M in six 
states and one territory for 2001–2018, and for 2019–2020, respectively. Note that the horizontal axis shows the 
period from January to February of the subsequent year to avoid confusion from showing just two months for 
2020.

Figure 5.   Comparison between monthly CO2 emissions (Tg CO2 month−1) and monthly mean temperatures 
(°C) in six states and one territory for 2001–2018 and for 2019–2020, respectively. Note that the average and one 
standard deviation of the CO2 emissions for 2001–2018 were measured for each month of the year, and those of 
2019–2020 indicate the eight results from a combination of input sources.
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the difference in AGB density between AGB maps. The AGB density in GEOCARBON is 14% higher in Australia 
than those of Globbiomass.

To understand the effect of LC on the emissions, we compared the inventories with the same inputs of AGB 
and FD (GWN and MWN, GWL and MWL, GEN and MEN, and GEL and MEL, respectively). The inventories 
using MCD12Q1 had 4–6% more emissions than those of GLC2000. CO2 emissions from forest areas with high 
AGB density were generally greater than the other LC areas. However, although the emissions of inventories using 
MCD12Q1 were greater than those of GLC2000, the forest areas in GLC2000 were 11% larger than MCD12Q1 
(Table S4). The large difference region for the forest area is NT with low AGB density. Furthermore, NSW, Tasma-
nia, and Victoria, where there is high AGB density, were evaluated to be 8–14% larger in forest area than GLC2000 
on MCD12Q1. These results indicate the AGB density is more effective in CO2 emission estimation than LC.

To understand the effect of FD on the emissions, we compared the inventories with the same inputs of AGB 
and LC (GWN and GWL, GEN and GEL, MWN and MWL, and MEN and MEL, respectively). The inventories 
using LC–M had 6% larger emissions than those of NC–M. The method of creation of FD maps caused the dif-
ference. The LC–M was created from the three confidence flags on MOD14Q1 and includes the whole burnt 
area of the NC–M created from the two flags. We consider input sources to be of influence on the CO2 emission 
estimation, especially AGB density.

Comparison with previous studies.  Previous studies calculated burnt areas to cover 3.0 million hectares 
in the eastern states of Queensland and NSW4, 3.8 and 0.5 million hectares in the temperate forest of NSW and 
Victoria, respectively, for the fire season until 29–12–20192, and 5.8 million hectares of temperate broadleaf 
forest across NSW and Victoria between September 2019 and early January 20205 (Table S5). We measured the 
burnt areas from NC–M and LC–M to be approximately 4.3 and 4.5 million hectares, respectively, in NSW; 2.8 
and 3.0 million hectares, respectively, in Queensland; and both 0.6 million hectares in Victoria between Sep-
tember and December 2019. Although the evaluated area and period do not completely match with the three 
previous studies, our results were 12–16% higher for NSW and 17% higher for Victoria than those of Nolan 
et al.2, 58–60% higher than those of Pickrell4, and 6–12% higher than those of Boer et al.5. The difference in the 
burnt areas between our results and the previous studies may be because we measured the burnt areas for the 
entire states, whereas there is the possibility that the previous studies concentrated on forest areas. MOD14A1 
was mainly updated to decrease the omission errors in fire detection of all sizes and the obscuring fire detection 
by thick smoke. However, with MOD14A1, burnt areas were larger than actual owing to the low spatial resolu-
tion (1 km) because a burnt grid may have areas that are not burnt, smoldering areas, or flame areas. The factors 
that contributed to smaller evaluation for the burnt areas are the detection omission by burning periods outside 
satellite observation timing and the fire detection failure due to thick smoke or cloud cover as it is reported that 
the fire detection rate is 84% in Australia15. The CO2 emission estimation using a newly burned area product and 
the development of an accurate burned area product will be studied in future work.

The combined CO2 emissions of Australia and New Zealand (AUST region in Fig. S5) were determined 
to be comparable with previous studies (Fig. 6). Data from the Global Fire Emissions Database (GFED4.1 s)9 
and Global Fire Assimilation System (GFASv1.2)7 were used to estimate average monthly CO2 emissions from 
January 2003 to December 2019 to be 32.4 and 38.6 Tg CO2 month−1, respectively. Our estimated CO2 emis-
sions (an average of one standard deviation for the eight results for combined input sources) in the same period 
were 33.5 ± 7.59 Tg CO2 month−1. These were 3% larger and 15% smaller than that of GFED4.1s and GFASv1.2, 
respectively. However, the uncertainty (one standard deviation) of our estimated emissions by input sources is 
23%, and the average emissions in both of GFED4.1s and GFASv1.2 were within the uncertainty. One of the 
reasons for these products showing relatively close values against the different estimation approaches is that the 
product used a common input dataset. GFED4.1s uses GEOCARBON for adjusting the AGB as one of the input 
sources of the Carnegie–Ames–Stanford Approach model, which is the basis for calculating the carbon pools9. 
Furthermore, GFASv1.2 sets the several scaling parameters for the estimation to fit the emissions of GFED9.

Figure 6.   Comparison of monthly CO2 emissions from fires based on four inventories in AUST region (Fig. S5) 
from January 2003 to February 2020. The compared inventories are our results (red), GFED4.1 s (green), and 
GFASv1.2 (blue).
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Uncertainty.  The uncertainty in the estimated CO2 emissions was propagated from the remote sensing data, 
scaling coefficients, and features of this method itself. Regarding the uncertainty of remote sensing products, the 
overall fire detection rate of MOD14A1 has been calculated to be 84% for Australia15; the overall accuracies of 
GLC2000 and MCD12Q1 for LC maps were 68.6%16 and 73.6%17, respectively; and the root mean square error 
values of GEOCARBON18 and Globbiomass19 for the AGB maps were 87–98 Mg ha−1 and 52.8 Mg ha−1, respec-
tively. The combination of these remote sensing datasets, which were used for the CO2 emissions estimation as 
inputs, introduced significant deviation into the estimation results. Our method used one-time fire instance for 
estimation and did not consider the burning term or the fire scale. Although the incinerated biomass density 
is considered in Eq. (2), biomass growth and recovery were not considered. These uncertainties influence each 
other and complicate evaluations of estimation results, which means that it is difficult to specify the uncertainty, 
similar to previous studies9.

Although we used BE and EF data sourced from Mieville et al.20 and Shi et al.21 as shown in Table S1, several 
authors have reported other values for Australia’s regions and LC categories. Regarding BE and EF for tem-
perate forest, Paton–Walsh et al.22 reported the values of 0.88–0.91 and 1620 ± 160, respectively; furthermore, 
Guérette et al.23 reported 0.89–0.91 and 1620 ± 160 in NSW, 0.91–0.93 and 1650 ± 170 in Victoria, and 0.88 and 
1621 ± 160 in Tasmania, respectively. Similarly, for savanna, Smith et al.24 reported the values of 0.90 ± 0.06 
and 1674 ± 56, respectively, whereas Desservettaz et al.25 reported 0.90 ± 0.06 and 1536 ± 154, respectively. In 
forest, BE contributes particularly high levels of CO2 emissions and are 55–73% higher than the value we used. 
Therefore, to understand the impact of BE and EF on CO2 emission estimation as an examination, we estimated 
CO2 emissions using the BE and EF (g Kg−1) values of 0.895 and 1620 for forest, and 0.90 and 1613 for savanna, 
respectively, for January 2001 to February 2020 (Fig. S6). The estimated average monthly CO2 emissions was 
40.0 ± 6.19 Tg CO2 month−1, which is 1.8 times higher than our result shown in Sect. 3. Both BE and EF are 
known to change, depending on the season and precipitation levels; they further strongly influence CO2 emis-
sion estimations from fires. Further verification of our results is required by comparing with the atmospheric 
concentration of CO2 using a top-down method, because the emissions estimated in this experiment were high 
compared to previous studies.

Conclusions
This study presents the monthly changes in the time series and distribution of CO2 emissions from Australian 
fires across 2019–2020. In our results, although the burnt area was not the largest to have occurred since 2001, 
the CO2 emissions from this period were the highest, by 806 ± 69.7 Tg CO2 year−1 from March 2019 to February 
2020. The emissions in the latest year were equivalent to 2.9 times the average annual emissions in 2001–2018, 
and 1.5 times total GHG emissions without land use, land use change and forestry emissions of CO2 equivalent 
for the whole of Australia in 2017. We found that lower than average precipitation and fires in high biomass 
density areas caused large CO2 emissions, and there was a correlation between CO2 emissions and precipitation 
for 2001–2020. The CO2 emission inventories shown in this study will be opened to include all inventories by 
combining them into an input dataset. The scope for future research in this topic includes a reflection of the 
time series change of biomass density and the incorporation of the scale and duration of fires into the estimation 
method to reduce the uncertainty associated with estimated CO2 emissions. Optimal BE and EF scenarios based 
on seasonal and precipitation changes, comparison of our estimated result with atmospheric concentrations, and 
the effect analysis of the emissions on regional/global carbon cycle need to be determined in future research. 
We expect that the CO2 emissions estimation and its evaluations from the catastrophic fires in Australia help to 
better assess the performance of climate and fire models.

Materials and methods
Estimation method of fire CO2 emissions.  The remote sensing datasets were resampled at a 500  m 
spatial resolution, using the NEAREST function in ArcGIS version 10.5 to match the same spatial resolution. As 
MOD14A1 is a daily dataset, we created monthly burnt area datasets, including the number of fires occurring, to 
evaluate the burnt biomass in more detail.

CO2 emissions from fires (EMISSION, g CO2) were generally calculated using Eq. (1)20,21,26. However, this 
equation cannot evaluate the number of fires occurring within a single region over a period. Therefore, here we 
represented the decrease in biomass density by fires over a year using Eq. (2) to determine the AGB density in 
Eq. (1), though this method does not consider annual changes in biomass density.

where m is the target month for calculating CO2 emissions, p is the grid position on the map, c is the LC categories 
of the grid (p), i and I are the cumulative number of fire occurrences until the last month (m–1) and the target 
month (m), respectively, BA is the burnt area (m2), BD is the total burnt biomass density (kg m−2), Agb is the 
biomass density (kg m−2) from the AGB map, BE is the burning efficiency (0 to 1), and EF is the emission fac-
tor of dry matter (g CO2 kg−1). We assigned the BE and EF values sourced from Mieville et al.20 and Shi et al.21 
to fit the categories of GLC2000 and MCD12Q1, respectively, as shown in Table S1. Finally, the eight types of 
estimated CO2 emissions were combined into input datasets (23), namely two FD maps (NC–M and LC–M), 
two LC maps (GLC2000 and MCD12Q1), and two AGB maps (GEOCARBON and Globbiomass), were applied 
as an ensemble average to estimate optimal CO2 emissions.

(1)EMISSION(m,p) = BA(m,p) · BD(m,p) · BE(c) · EF(c),

(2)BD(m,p) =

∑I

j=i+1

{

Agb(p) ·
(

1− BE(c)
)j−1

}

,
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Remote sensing data.  The remote sensing products of FD, LC, and AGB were used to estimate CO2 emis-
sions from fires.

FD maps were used with the Thermal Anomalies and Fire MODIS data product version 6 (MOD14A1), 
which provides daily fire data with 1 km spatial resolution27,28. Every fire pixel is assigned as having either low 
(0–30%), nominal (30–80%), or high (80–100%) confidence levels29. We used two types of FD maps with data 
on the number of fire occurrences, dependent on confidence level: NC–M, with high and nominal confidences; 
and LC–M, with high, nominal, and low confidences. We counted the number of fire occurrences recorded on 
the maps, and an ongoing fire on the same grid position in MOD14A1 daily datasets was considered a single fire.

LC maps, the Global Land Cover 2000 Project (GLC2000) data product30,31 and the MODIS Land Cover 
Type (MCD12Q1) Version 6 data product17,32, were used to obtain optimal scaling factors for each LC category. 
GLC2000 is a global LC map for the year 2000 and has 1 km spatial resolution. MCD12Q1 comprises a series 
of global LC maps from 2001 to 2018, with 500 m spatial resolution. The land use types used for the LC cat-
egory were obtained from the Food and Agriculture Organization Land Cover Classification System (LCCS) for 
GLC2000 and from the International Geosphere-Biosphere Program for MCD12Q1. Note that MCD12Q1 of 
2019 was applied to estimate the CO2 emissions for 2020, because the 2020 datasets were not published at the 
time of study.

AGB maps, namely the GEOCARBON global forest biomass map18,33 and the Globbiomass AGB map34, were 
used. The GEOCARBON map is a global AGB map with 1 km spatial resolution. Globbiomass is also a global 
AGB map with 25 m resolution; it is produced by the European Space Agency (ESA)19.

The Global Precipitation Measurement (GPM) level 3 product, with 0.1 degrees spatial resolution and monthly 
temporal resolution35, was used to evaluate the relationships between the estimated CO2 emissions, burnt areas, 
and precipitation. The monthly mean temperatures from ClimatView system14 from Japan Meteorological Agency 
were used to evaluate the relationship between CO2 emissions and temperatures.
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