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Introduction 

Speckle interferometry or speckle photography is one of the most moderate-sensitivity measuring 

non-contact method that can be used in wide spectrum of technical and social praxis. This method

may also be convenient in medicine, e.g., when the stiffness of cadaveric lumbar spines stabilized

with several anterior interbody fusion devices is studied [9] . The information obtained proceeds

a foundation for determining how methods of anterior lumbar fixation can maximize rigidity and

promote development of body fusion. Until now the measurements of the deformations of the lumbar

spines have been realized by contact-mechanical and electro-tensometrical methods [1 , 2] . To bring

some new knowledge of this problem we propose to use the non-contact measuring method, e.g., the

mentioned incoherent method of speckle-interferometry (double exposure speckle-photography) [3 , 4] . 

Methodology 

Speckle patterns in laser light 

When one observes or photographs a diffusely reflecting (or transmitting) object in laser light, its

image has a granular appearance. It seems to be covered with fine, randomly distributed light and

dark speckles. If one focuses in front of or behind the object, this speckle pattern is still visible. If the

observer moves, the speckles appear to twinkle and move relative to the object. This phenomenon of

speckle is inherent in the use of highly coherent light (laser light). The physical origin of speckle

is quite simple. Each point on the object scatters some light to the observer. Because of its high

coherence, the laser light scattered by one object points interferes with the light scattered by each

of the other object point. When a detector such as a film, a camera or the retina of an eye is placed

in the optical field, it observes a random pattern of interference field which is termed “speckle”. The

randomness is caused by the surface roughness because the phase of light scattered will vary from

point to point in proportion to the local surface height. For our purposes the most important statistical

characteristics of laser speckle is its size. In most cases a diffusely reflecting or transmitting object ABC

will be viewed through a lens L or imaging system, as indicated in Fig. 1 . 

To estimate the speckle size in the image plane of the lens L , the distance of which from the lens is

z , we need only to treat the disk enclosed by the pupil of the lens as a uniformly illuminated diffuse

surface. If the diameter of the lens pupil is D an analysis of this problem [3 , 4] leads to the expression

b s 
. = 1 . 22 

(
λz 

D 

)
, (1) 

Where b s is considered as a typical speckle width in the image plane and λ is the wavelength of the

laser light. If the imaging system is focused on a relatively distant plane, 
Fig. 1. Surface with randomly scattering laser light imaged by lens L. 
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Fig. 2. Experimental set up to form Young s fringes. 
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z ̇ = f = focal length of the lens, then 

b s ˙ = 1 . 22 λ

(
f 

D 

)
(2)

here f / D is the f number of the lens. The diameter of a lens of typical imaging systems vary

rom about f /1.4 to f /32. If the speckle pattern is formed by imaging scattered He-Ne laser light

 λ = 633 nm ) , the corresponding speckle size varies from 1 μm to 24 μm . 

oung’s fringes 

If we consider a simple opaque screen in which two small holes A 1 and A 2 separated by a distance

 have been cut, then if this screen is illuminated by a laser beam B , the light diffracted by two holes

orms an interference pattern which can be observed on a screen placed some distance r 0 away ( Fig.

 ). 

Let us study the interference pattern on this screen in the point M which has the vertical coordinate

 from the origin 0. The distances of the point M from the holes A 1 and A 2 are r 1 and r 2 , respectively.

he phase difference ϕ in the point M can be expressed in the form [5] 

ϕ = 

2 π

λ
( r 2 − r 1 ) (3)

nd the interference pattern characterized through the intensity I can be written by the relation 

I = I 1 + I 2 + 2 
√ 

I 1 I 2 cos ϕ, (4)

here I 1 and I 2 are the light intensities generated from the holes A 1 and A 2 . If I 1 = I 2 = I 0 , then the

implified form of the relation ( 4 ) can be derived [6] . 

I = 2 I 0 ( 1 + cos ϕ ) . (5)

rom this form we can see that the Young ́s pattern is formed by light and dark fringes ( Fig. 3 ) which

pacing p (period) depends on the path difference 

�r = r 2 − r 1 . (6)

rom Fig. 2 we can write 

r 2 1 = r 2 0 + 

(
x − d 

2 

)2 

(7)

nd 

r 2 2 = r 2 0 + 

(
x + 

d 

2 

)2 

. (8)



4 V. Janák, L. Barton ̌ek and J. Keprt / MethodsX 7 (2020) 100833 

Fig. 3. Intensity distribution of Young’s fringes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then equation 

r 2 2 − r 2 1 = ( r 2 − r 1 ) . ( r 2 + r 1 ) = 2 xd (9) 

can be rearranged as 

�r = 

xd 

r 0 
(10) 

because r 1 , r 2 , r 0 are much greater than x and d . The Young’s fringes become then the final form [5] 

I = 2 I 0 

(
1 + cos 

2 π

λ
. 

d 

r 0 
.x 

)
(11) 

with the spacing p (or spatial frequency ν) 

p = 

1 

ν
= 

λr 0 
d 

. (12) 

Speckle photography 

Speckle photography is a technique for making moderate-sensitivity measurements of in-plane 

translation, strain, rotation, and vibration. It can also be used to measure out-of-plane rotation

(tilt). Its principal attractions are the simplicity of the optical system and the relative simplicity of

displaying and interpreting the results. The sensitivity of the method can be varied during the readout

process. To introduce the basic concepts of speckle photography we consider the arrangement on Fig.

1 . 

The system for measuring in-plane translation supposes that an image of the object surface is

formed in the detection of a plane by lens of diameter D . The object distance u and image distance z

are related by Eq. (13) where β is the magnification of the imaging system. 

β = 

z 

u 
(13) 

From the discussion in the second chapter we know that the image formed in the recording plane

is modulated by a random pattern of speckles having a characteristic size b s given by Eq. (1) . If the

object translates vertically by an amount d 1 , the relative phase of the light in each of the various rays

that contribute to the formation of each speckle will be unchanged. 

Hence the speckle pattern will be simply translated as a whole in the image by the amount d =
βd 1 , where β is the lateral magnification of the imaging lens given by Eq. (13) . The translation of

the speckle pattern for these in-plane motions is independent on the angle of illumination of the

laser beam [3 , 4] . To measure the in-plane translation of the object surface (in case of continuous

recording), the film (optical detector) is exposed twice-one before the translation, and once after it. 

If we assume that the magnitude d of the in film translation is greater than the speckle size b s , the

developed film will contain a pair of identical speckle patterns separated by a distance d . Naturally,

the separation distance d of each speckle pair can be measured directly by microscopic examination
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Fig. 4. Processing system for two-exposure speckle photography. 

Fig. 5. Fringe pattern formed in back focal plane by processing system in Fig. 4 . 
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f the film, but by simple coherent optical processing of the developed film, the displacement can be

isplayed in the form of a fringe pattern. 

The film is placed in a converging spherical wave of laser light formed by lens, as shown in Fig. 4 .

The irradiant distribution in the back focal plane of the lens consists of a bright central spot

urrounded by a speckle pattern modulated by cosinusoidal fringes, as shown in Fig. 5 . This is due

o the fluctuation of the classical coherent speckle. 

The bright central spot is formed by un-diffracted light transmitted by the transparency. The

odulated speckle pattern is generated by light diffracted by the speckle pattern recorded in the

ransparency. The cosinusoidal fringes are formed because each pair of corresponding speckles acts

s a pair of identical sources of coherent light which form Young’s fringes. Since all speckle pairs are

eparated by the same distance d , all of the Young’s fringes overlap to form the pattern shown in Fig.

 . Interpretation of the fringes is straight forward. First, their orientation is normal to the in-plane

ranslation. Second, the magnitude of the translation on the film can be determined by applying Eq.

12) . 

If we use for the film exposure the arrangement in Fig. 6 (see Fig. 1 ), then the magnitude d 1 of

he object translation is given by Eq. (13) , where d means the speckle translation in the film. Then 

d = βd 1 (14)

nd with a session ( 12 ) 

d 1 = 

λ

β

r 0 
p 

(15)

here p is the Young’s fringes spacing and r 0 is the distance of the back focal plain, from the plane

f the film. For illustration let us take the spacing p = 1 cm = 10 mm in the back focal plane and the

istance r 0 = 1m = 10 3 mm ( Fig. 4 ). For the simplicity we can consider λ
. = 0 . 5 μm = 5 . 10 −4 mm . Then
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Fig. 6. Geometrical arrangement of the imaging system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the separation distance d on the film is by Eq. (12) 

d = λ
r 0 
p 

= 5 . 10 −4 10 3 

10 
= 0 . 05 mm (16) 

If the object distance u = 2m = 2 . 10 3 mm and the distance z = 20 cm = 2 . 10 2 mm , then using result

( 16 ) we get 

d 1 = 

u 

z 
d = 

2 . 10 3 

2 . 10 2 
0 . 05 = 0 . 5 mm . (17) 

If we use in an optical system f 
. = z 

. = 50 mm than the spacing p = 10 mm appoints a deformation

d = 2 mm . This example shows the high flexibility of the measuring method. 

Double - exposure speckle photography (continuous display) in laser light 

To show the possibility of the lumbar spines measurement by double - exposure speckle

photography we designed and constructed a model of human cadaveric lumbar spines. Four wooden 

cylinders of the diameter 6 cm and the height 4cm were connected with four rubber cylinders

(tablets) of the diameter 3cm and the high 1 cm by a metal stick and screwed into a magnetic

holder standing on the metal desk (table). The rubber tablets were put between each couple of

wooden cylinders. On this model we have simulated the most important strains connected with the

loads of lumbar spines. That means, we have to measure axial compression, axial torsion and lateral

bending (flexion-extension) during the simultaneous loads of the model. The model was illuminated 

by the light of He-Ne laser λ = 633 nm and photographed by a lens of diameter D = 30 mm . The object

distance u = 2m , the image distance z = 20 cm . The considered speckle width b s in the image plane

given by Eq. (1) b s = 5 μm = 0 . 005 mm . That is why the recording material had to have high resolving

power. The holographic film 24 x 36mm Agfa Gevared 10E75 was used for the exposure. The developed

film was put into narrow converging laser beam. Then the image of each wooden cylinder diffracted

the light separately. The Young’s fringes characterized by the direction and by spacing period p enabled

to determine the direction and the quality of deformation, e.g., the shift of the wooden cylinder.

Simulation of axial compression was practiced by 15 N compressive load ( Fig. 7 ). Axial torsion we

realized through a small turn of the screw-key ( Fig. 8 ) and the tilt (bending, flexion, extension) by a

20 cm long bar loaded on the end with 2 N weight ( Fig. 9 ). 

The mentioned strains and corresponding deformations are presented in Fig. 10 . The direction and

the quantity of displacement of separated parts of the model are clear from the system of Young’s

fringes on the right side of Fig. 10 . The signs L 2, L 3, L 4, L 5 determine corresponding wooden cylinders

that correlate to single lumbar spines (vertebras). 

Fast Fourier transformation method in discrete domain 

The results obtained, see Fig. 10 , can also be obtained by digital recording (CCD camera) of the

initial and displaced field produced by laser light, their sum and computer computation of their

spectrum by means of discrete Fourier transform. 
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Fig. 7. Simulation of bending. 

Fig. 8. Simulation of axial compression. 

Fig. 9. Simulation of axial torsion. 
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The Fourier Transform is defined in the continuous domain as 

F ( u, v ) = 

∫ ∝ 

−∝ 
f ( x, y ) e − j2 π( xu + y v ) d xd y (18)

here f ( x, y ) is the light intensity of the point ( x, y ), and ( u, v ) are the horizontal and vertical spatial

requencies. The Fourier transform assigns a complex number to each set ( u, v ). Inversely, a Fourier

ransform F ( u, v ) can be transformed into a spatial image f ( x, y ) of resolution NM using the following

ormula: 

f ( x, y ) = 

N−1 ∑ 

u =0 

M−1 ∑ 

v =0 

F ( u, v ) e j2 π( ux 
N 

+ v y 
M ) . (19)

n the discrete domain, the Fourier Transform is calculated with an efficient algorithm called the Fast

ourier Transform (FFT). It can be written in the form 

F ( u, v ) = 

1 

NM 

N−1 ∑ 

x =0 

M−1 ∑ 

y =0 

f ( x, y ) e − j2 π( ux 
N 

+ v y 
M ) (20)
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Fig. 10. By double exposure laser speckle photography demonstrated measurements; a) bending; b) compression; c) torsion. 

 

 

 

 

 

 

 

where N x M is the size of the image f ( x, y ). Derived calculation was programmed by the help of

development environment NI LabView according to [10] . Fig. 11 shows the movements of the fields

with laser speckle and its spectrum obtained by discrete Fourier transform. 

It is clear from Fig. 11 c that the displacement of the field corresponds to low frequencies. To ensure

that the period of the strips is read, it is necessary to suppress the high frequencies that occur when

recording coherent laser images. 

Simulation of interference image 

For our simple case of tracking shift changes, the speckle field can be simulated by a computer

random number generator ( Fig. 12 ). 

The advantage of this solution is the possibility of high frequency suppression. The required grain

size of the spot may be determined by the standard deviation σ derived from the histogram and the

cumulative histogram [13] , where: 

Mean value M is selective (arithmetic) mean (estimate of medium value) calculated according to 

the formula: 

M = 

1 

n 

255 ∑ 

i =0 

i.h ( i ) . (21) 
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Fig. 11. Record of laser speckle fields; (a) Initial state; (b) Shifted field; (c) FT of sum of records. (d) Fourier spectrum after application of low-pass filter. 
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Fig. 12. Simulated graphics files M(μ) = 127 , (a) σ = 20 and (b) σ = 50 . 
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Fig. 13. Simulated speckle field; (a) Initial state; (b) Shifted field x = 2 pixel, y = 4 pixel; (c) 2D FFT of sum (a), (b) field. 

Fig. 14. The example of the interferograms and size periods ( p x and p y ~ shift in x and y axis, r ~ equivalent period). 
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ariance S 2 - sample variance (variance estimate D ≈ deviation) is calculated according to the

ormula: 

S 2 = 

1 

n 

255 ∑ 

i =0 

( i − M ) 
2 
.h ( i ) . (22)

tandard deviation 

σ ( x ) = 

√ 

D ( x ) , (23)

 indicates the number of all pixels in the image and h ( i ) an absolute frequency of class i . The depth

f one pixel of intensity is 1B ( 2 8 = 256 ) . 

Fig. 13 (a) shows a simulated initialization spot pattern generated by a computer random number

enerator. Standard deviation σ = 20. Fig. 13 (b) displays speckled field from Fig. 13 (a) shifted in the

-axis = 2 pixels and y = 4 pixels. Fig. 13 (c) then shows the calculated Fourier 2D spectrum of the

um of the fields of Fig. 13 (a) and (b). 

To measure the displacement of the individual vertebrae, the simulated speckle fields were printed

n aluminum circular targets that were attached to the spinal vertebrae of interest. 

Fig. 14 shows examples of the dependence of the distance r of two neighbor fringes in the Fourier

pectrum on the distance p of the number of pixels in the image file [10–12] . The p and r values are

xpressed in pixels. 

From Fig. 15 is clear that the image distance p is in indirect proportion to the period r of the

ourier spectrum. The curve (line 1) in Fig. 15 can be approximated by the line 2 (hyperbola).
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Fig. 15. The dependence of the spectral period r on the image distance p. 

 

 

 

 

 

 

 

 

 

 

 

 

Mathematical expression is than in the form 

p = 

c 

r 
, (24) 

where value c shows constant, which can be determined by a specific measurement from Figs. 14 and

15 by relation ( 20 ). 

c = pxr ≈ 512 . (25) 

The empirical relation for dependence between distance point in graphics file and distance 

neighbor fringes in the Fourier spectrum is then 

p = 

512 

r 
. (26) 

For example, with knowledge of Eq. (26) and size period r = 128 in interferential picture we can

simply determine that size displacement p = 

512 
128 = 4 pixels. 

Eq. (26) does not represent the complete accuracy of the whole system. Total accuracy is discussed

in [8] . 

The study of the movement of the individual spine parts was performed by observing round

aluminum targets with printed simulated speckle field from two mutually perpendicular directions 

using two Vision Marlin F131B CCD cameras from Allied Technology and AVENIR SW2514 25.0 mm

lenses ( Fig. 16 ). The optical signal was fed to the computer memories for further processing using an

analogue digital unit. 

Experimental results 

Application of non-coherent speckle interferometry in BS-II experimental equipment 

To ensure repeatability and statistical processing, a second-generation computer system BS-II was 

designed ( Fig. 16 ), [7 , 8] . The basis of the machine chassis is a massive metal plate, standing on four

metal legs ( Fig. 17 ) including mounting holes for individual components. The system of levers and

drawers passes through the center of the structure which together with the clamping system and

four step-motors ensure movement of the sample during the measurements. 

The sample was completed with two aluminum jigs which, by means of self-tapping hexagon, bolt

it fixed firmly in both axial and radial directions with L1 and L5. 

The mechanically fixed sample is inserted into the BS-II device and is connected to next parts of

the device that are adapted to each type of sample load by other mechanical elements. 

In the case of biomechanical measurement of a cadaveric sample of the human spine, round discs

with simulated spots were attached to the vertebrae of interest ( Fig. 18 ). 
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Fig. 16. Block diagram of BS-II. 

Fig. 17. Designed BS-II. 

Fig. 18. (a) A pattern of a dead human lumbar spine; (b) with round targets covered with generated speckle patterns. 
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The untreated (intact) spine sample was mechanically circularly shifted at 0.1 Hz several times

rior to measurement. 

During sample acquisition, images from both cameras were saved from each position for bend

front bend), elongation (back bend), right and left side bend (lateral bend), left and right axial

wist (rotation), and axial compression (pressure). The direction and displacement of the individual

omponents was determined by the band of the calculated 2D FT spectrum. You see in Figs. 19 –21 . 
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Fig. 19. Movements of L2, L3 and L4 by calculated Fourier transformation in the case of bending. 

Fig. 20. Movements of L2, L3 and L4 by calculated Fourier transformation in the case of compression. 

Fig. 21. Movements of L2, L3 and L4 by calculated Fourier transformation in the case of torsion. 

 

 

 

 

 

The resulting measurement images visualize the movement of individual vertebrae of the spine 

under load. The movement of the monitored parts is proportional to the number of interference

strips and is perpendicular to them. The main advantage, however, is that the speckle field

image information captured by the cameras allows a cheap camera to achieve greater accuracy in

determining changes than in direct tracking. 

Conclusion 

It was demonstrated that the non-coherent speckle interferometry can be used for the study of

separated deformations of the human cadaveric specimens sequentially loaded in axial compression 

and torsion, flexion and extension, and lateral bending. The very simple theory of the speckle double-

exposure method enables the simple evaluation of the deformations during the mentioned strains. We 
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ave designed a special BS-II device enabling to evaluate before and after the application of various

xation methods for measuring the amount of cadaverous specimen load and corresponding amount

f deformation. This may be a very important contribution to modern medical practice. 
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