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Abstract: Antimicrobial Resistance (AMR) caused by Carbapenem-Resistant Enterobacteriaceae
(CRE) is a global threat. Accurate identification of these bacterial species with associated AMR
is critical for their management. While highly accurate methods to detect CRE are available,
they are costly, timely and require expert skills, making their application infeasible in low-resource
settings. Here, we investigated the potential of Near-Infrared Spectroscopy (NIRS) for a range of
applications: (i) the detection and differentiation of isolates of two pathogenic Enterobacteriaceae
species, Klebsiella pneumoniae and Escherichia coli, and (ii) the differentiation of carbapenem resistant
and susceptible K. pneumoniae. NIRS has successfully differentiated between K. pneumoniae and E. coli
isolates with a predictive accuracy of 89.04% (95% CI; 88.7–89.4%). K. pneumoniae isolates harbouring
carbapenem-resistance determinants were differentiated from susceptible K. pneumoniae strains with
an accuracy of 85% (95% CI; 84.2–86.1%). To our knowledge, this is the largest proof of concept
demonstration for the utility and feasibility of NIRS to rapidly differentiate between K. pneumoniae
and E. coli as well as carbapenem-resistant K. pneumoniae from susceptible strains.
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1. Introduction

Infections caused by Carbapenem-Resistant Enterobacteriaceae (CRE) are emerging as a global
health concern. They are associated with difficulties in treatment and a major contributing factor
to global morbidity and mortality [1]. Carbapenem-resistant pathogens are also listed as a critical
priority in the World Health Organization global Priority Pathogens List [1], which primarily includes
Klebsiella pneumoniae and Escherichia coli. Performing accurate, efficient and fast detection of CRE
in clinical laboratories is a key factor to antimicrobial stewardship and appropriate management
of patients. Access to affordable and high throughput diagnostics for surveillance of CREs is also
needed, particularly in low-resource settings [2]. Various techniques are currently used in routine
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clinical diagnostics and surveillance to identify species and ascertain Antimicrobial Resistance (AMR).
These may depend on the settings and include traditional phenotypic methods such as biochemical
tests and gold standard bacterial culture methods [3].

Molecular methods, including commercial PCR-based platforms and Whole Genome Sequencing
(WGS), have revolutionised clinical diagnostics and play a significant role in bacterial typing [4].
However, these methods are costly, time and labour intensive. Consequently, the practical application
of these methods is not feasible in resource limited settings where disease burden is high and where
syndromic-based diagnosis is the mainstay [5–10]. Ultimately, a simple, cost-effective, rapid and
reproducible alternative for easy identification and characterisation of bacterial isolates and/or clinical
samples should be applied.

Near-Infrared Spectroscopy (NIRS) is a technique that uses the near-infrared region of the
electromagnetic spectrum (700–2500 nm) to characterise biological samples based on a reflected spectral
signature. The spectral signature is collected following the interaction of biological samples with
infrared light [11]. The resultant spectral signature is unique for various biological samples based on
their chemical profile. NIRS is rapid and non-invasive as well as a simple technique requiring little
to no sample preparation procedures and or reagents to operate [11]. NIRS is applied in multiple
fields such as agriculture (e.g., to assess food quality and safety and to detect seed viability) [12–14],
food microbiology (e.g., to assess contamination) [15], medical research (e.g., non-invasive diagnosis
and pathophysiology) [16], entomology (e.g., to detect viruses in mosquitos) [17–19] and chemistry
(e.g., measuring chemical properties of matters) [20].

There are only a handful of studies exploring NIRS to differentiate resistant from susceptible
strains and one species from another [21–25]. The data so far are encouraging yet limited by sample
size or insufficiently characterised sample banks using well-established reference methods. In addition,
the variability in data analysis approaches (i.e., machine learning algorithms) and sample preparation
makes it challenging to compare and assess further utility. Accordingly, in this study we aim to
further close the gap and elucidate NIRS feasibility in this arena. Here, we applied NIRS on unique,
well-characterised K. pneumoniae and E. coli sample banks from countries in the Middle East to (i)
differentiate K. pneumoniae from E. coli and (ii) evaluate its ability to differentiate between wild-type K.
pneumoniae from carbapenemase-producing strains.

2. Materials and Methods

2.1. Bacterial Isolates and Sample Preparation

Two bacterial species were used for this experiment and are described in detail in Table 1. E. coli
(N = 40) and K. pneumoniae (N = 73). Clinical isolates were originally collected from Saudi Arabia (E. coli
n = 2; K. pneumoniae n = 40), Bahrain (K. pneumoniae n = 1), Qatar (E. coli n = 4; K. pneumoniae n = 5),
Oman (E. coli n = 2; K. pneumoniae n = 3), United Arab Emirates (E. coli n = 8; K. pneumoniae n = 6),
Jordan (E. coli n = 19; K. pneumoniae n = 10), Egypt (E. coli n = 5; K. pneumoniae n = 7), Syria (K. pneumoniae
n = 1). Bacterial species were confirmed by Matrix-Assisted Laser Desorption Ionization–Time of
Flight Mass Spectrometry (MALDI–TOF MS) on a Microflex platform (Bruker Daltonics, Victoria,
Australia) [26]. Initial carbapenem resistance was determined by measuring reduced susceptibility
to ertapenem by disk diffusion; and DNA extracts of the isolates were PCR tested for the presence
of carbapenemase determinants (blaNDM, blaOXA-48. blaKPC, blaVIM, and blaIMP types) as previously
described [27].
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Table 1. Summary of K. pneumoniae and E.coli biological samples; replicate numbers and characterised
molecular resistance mechanisms.

Species Biological
Samples Replicates Technical

Replicates
Resistance
Mechanism blaNDM blaOXA-48

blaNDM +
blaOXA-48

K.
pneumoniae 73 2 5 47 10 29 8

E. coli 40 2
5 (total of 10

data points for
each sample)

Not
provided - - -

2.2. Molecular Confirmatory Analysis of Bacterial-Resistance Determinants

All K. pneumoniae samples (n = 73) were further tested by a multiplex PCR method previously
described (SpeeDx Pty Ltd., Australia) [27]. Briefly, samples were screened for carbapenemase genes
blaKPC, blaNDM, blaOXA-48-like, blaIMP-4-like and blaVIM in a single multiplex reaction. Reactions were
amplified using ABI7500 real-time PCR instrument (Thermo Fisher Scientific, Waltham, MA, US) with
the following cycling conditions; an initial 95 ◦C 2 min hold, followed by 10 touch-down cycles at 95 ◦C
for 5 s and 61 ◦C (−0.5 ◦C per cycle) for 30 s, followed by 40 cycles at 95 ◦C for 5 s and 52 ◦C for 40 s.

2.3. NIR Spectroscopy

All isolates were sub-cultured twice on Mueller Hinton (MH; Becton Dickinson and company,
France) plates and incubated for 12 h at 37 ◦C before processing with NIRS analysis. Following
24 h incubation, bacterial isolates were inoculated into 2 mL of deionised water at a cell density
of 4.0 McFarland. Technical replicates (n = 5) of 3 µL of each bacterial suspension were placed on
microscopic glass slide and were left to dry for approximately 10 min before scanning with the NIRS
instrument. The dried spots were scanned with a Labspec 4i NIR spectrometer (Malvern Panalytical,
Malvern, UK) with wavelengths ranging from 350 to 2350 nm in 1 nm increments using a fibre optic
probe containing 6 illumination fibres with 600 microns surrounding a single collection fibre with
600 microns. As described in Table 1, a total of 40 biological samples of E. coli (with 2 replicates each;
n = 80) and 73 biological samples of K. pneumoniae (with 2 replicates each; n = 146) were scanned by
NIRS. Each spectrum is an average of 15 spectra. These were further split into 5 technical replicates
for each sample, resulting in 10 data points for each biological sample (Table 1). The first 5 technical
replicates of each biological sample were used as individual spectra in subsequent modelling.

2.4. Data Pre-Processing

The absorbance spectral data generated from the labspec 4i were converted to reflectance spectra
using Equation (1). Each spectra was mean centred and normalised for variance [28,29] in R v3.5.1 [30].
Briefly, within the spectral region 700–2300 nm, all spectra were mean centred. The resulting spectra
were then divided by the absolute maximum value. Outcomes (e.g., species, resistance) were coded
in a binary format (0 or 1) for each classifier and predictions were generated on a continuous scale.
Partial Least Squares Discriminative Analysis (PLS-DA) was then performed, using a balanced
prediction cut-off of 0.5.

A =
log 1

R
(1)

where A = absorbance and R = reflectance.

2.5. Model Development and Calibration

Predictive models were developed using the PLS-DA method using the “pls” package implemented
in “R” software (3.5.1) [31]. K-fold cross validation was used (k = 10) to validate the model. That is,
data were divided into 10 groups, for each run, 9 sets of data were used to train the model with the
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last group used to test the accuracy. Stratified random sampling was performed (stratified according
to bacterial strain) to ensure each of the 10 folds contained equal numbers of spectra from each
species. Ten predictive models were developed with a different fold used as a testing set for each one.
Within each fold, between 65 and 66 biological samples of K. pneumonia were used in the training set
with the remaining 7–8 used for testing. Similarly, between 101 and 102 biological replicates of E. coli
were used in training with the remaining 11–12 used for testing. Since each of the folds are used once
and only once for testing, all 40 E. coli samples and 73 K. pneumoniae samples are reported in our testing
statistics, which are aggregated across all 10 runs. The maximum number of regression factors for each
model was 20. The number of factors used in each model were chosen based on the lowest number
of factors required to reach the maximum accuracy within the training dataset. This process was
repeated 10 times until each group had been held out once. Reported statistics are for the testing groups
only. Two classification models were developed to differentiate: (1) E. coli from K. pneumoniae, and (2)
K. pneumoniae carbapenem resistant–gene positive from K. pneumoniae carbapenem resistant–gene
negative. Each of the models was then applied to predict the identity of samples that were not used
in training the model. Accuracy, sensitivity and specificity were calculated by comparing the results
against the reference methods for bacterial species confirmation and carbapenem genes detection.

3. Results

3.1. Differentiation of E. coli and K. pneumoniae

Using PLS-DA, E. coli and K. pneumoniae were differentiated with an accuracy of 89.05% (95%CI
88.7–89.4%, p < 0.0001) (N = 113). Sensitivity and specificity for differentiating the two species were
92.7% and 84.7%, respectively (Table 2). The derived models were accurate on blind data; K-fold cross
validation (k = 10) was used. Results presented here are for the testing set.

Table 2. Results summary for accuracy, specificity and sensitivity for each of study analysis.

Classification Model Accuracy% Specificity% Sensitivity% p-Value Total Sample
Numbers (N)

E. coli and K. pneumoniae
differentiation 89.04% 84.74% 92.75% <0.0001 113

K. pneumoniae resistant vs.
wild-type differentiation 85% 81% 89% <0.0001 73

Figure 1A illustrates the normalised spectra in the region of 700–2350 nm for E. coli and K.
pneumoniae. Accordingly, a PLS-DA was used to develop the prediction algorithm, whereby a value of
0 was assigned to K. pneumoniae and a value of 1 was assigned to E. coli. Overlapping between the two
data (Pink colour was used to represent E. coli and Blue to represent K. pneumoniae) of the continuous
interval were considered as misclassified.
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3.2. Differentiation of Susceptible and Resistant K. pneumoniae Using NIRS

Further analysis was conducted to predict susceptibility and resistance among K. pneumoniae
samples. The samples were previously characterised and classified as susceptible/not detected AMR
mechanisms (n = 29) or resistant (with OXA-48 (n = 28), NDM (n = 10), and OXA-48 with NDM
(n = 6)). In this analysis, we evaluated NIRS for its ability to differentiate susceptible K. pneumoniae
from resistant samples regardless of the mechanism of action. The PLS model resulted in an accuracy,
sensitivity and specificity of 85% (95% CI; 84.16–86.06%, p < 0.0001), 89% and 81%, respectively (Table 2).
Figure 2A illustrates the normalised average spectra of resistant and susceptible K. pneumoniae. Similar
to the above PLS model analysis, which was conducted as binary (1, 0) in density plot Figure 2B,
a value of “0” was assigned to resistant K. pneumoniae and a value of “1” was assigned to susceptible
K. pneumoniae. Overlapping between the two data of the continuous interval was considered as
misclassified (Pink colour was used to represent carbapenem susceptible, while Blue colour was used
to represent carbapenem resistant strains) (Figure 2B).

Diagnostics 2020, 10, x FOR PEER REVIEW 4 of 9 

 

 

Figure 1. (A) Average Near-Infrared Spectroscopy (NIRS) spectra in the 350 to 2500 nm region from 
K. pneumoniae (red) and E. coli (black) and (B) density plot showing NIRS differentiation of E. coli 
(Pink) and K. pneumoniae (Blue) using test samples. 

3.2. Differentiation of Susceptible and Resistant K. pneumoniae Using NIRS 

Further analysis was conducted to predict susceptibility and resistance among K. pneumoniae 
samples. The samples were previously characterised and classified as susceptible/not detected AMR 
mechanisms (n = 29) or resistant (with OXA-48 (n = 28), NDM (n = 10), and OXA-48 with NDM (n = 
6)). In this analysis, we evaluated NIRS for its ability to differentiate susceptible K. pneumoniae from 
resistant samples regardless of the mechanism of action. The PLS model resulted in an accuracy, 
sensitivity and specificity of 85% (95% CI; 84.16–86.06%, p < 0.0001), 89% and 81%, respectively (Table 
2). Figure 2A illustrates the normalised average spectra of resistant and susceptible K. pneumoniae. 
Similar to the above PLS model analysis, which was conducted as binary (1, 0) in density plot Figure 
2B, a value of “0” was assigned to resistant K. pneumoniae and a value of “1” was assigned to 
susceptible K. pneumoniae. Overlapping between the two data of the continuous interval was 
considered as misclassified (Pink colour was used to represent carbapenem susceptible, while Blue 
colour was used to represent carbapenem resistant strains) (Figure 2B). 

 
Figure 2. Cont.



Diagnostics 2020, 10, 736 6 of 9Diagnostics 2020, 10, x FOR PEER REVIEW 5 of 9 

 

 

Figure 2. (A) Normalised NIR spectra in the 350–2500 nm region from susceptible K. pneumoniae (red 
line) and resistant K. pneumoniae (black line) Panel (B) Density plots showing NIRS differentiation of 
K. pneumoniae AMR-genes negative or susceptible (Pink) and AMR harbouring or resistant (Blue). 

4. Discussion 

The overall objective of this study was to explore the applicability and feasibility of NIRS to 
differentiate between E. coli and K. pneumoniae, and to differentiate between K. pneumoniae harbouring 
AMR genes from strains that are absent of AMR genes (or otherwise, wild type). Here, it was 
demonstrated that NIRS has the potential to differentiate these species with a predictive accuracy of 
89% and can predict certain carbapenemase-encoding genes with an accuracy of 85%. Specificity and 
sensitivity for differentiating species (E. coli and K. pneumoniae) were 85% and 92%, respectively, and 
specificity and sensitivity for the AMR-gene harbouring vs. wild-type (K. pnuemoniae) strains were 
81% and 89%, respectively. 

Spectroscopy techniques to identify clinical bacteria are an emerging diagnostic approach in the 
medical field but are already widely applied in the food industry [32]. However, only three studies 
have previously explored the differentiation of bacterial species utilising NIRS that can be assessed 
against our study. Although sample preparation, sample size and machine learning techniques across 
these studies differed, predictive accuracies obtained are comparable to our results. One study 
utilised a miniature portable Fourier-transform NIR spectrometer (900–2600 nm) to differentiate 
blaKPC-2-harbouring from blaKPC-2-negative K. pneumoniae clinical isolates by collecting spectral 
signatures of bacteria DNA on aluminium-plated backing plate. Genetic Algorithm–Linear 
Discriminant Analysis (GA–LDA) and Successive Projection Algorithm (SPA–LDA) models were 
used to analyse spectral data. Predictive sensitivity using GA–LDA and SPA–LDA for blaKPC-negative 
was 100% and 76%, respectively, compared to the predictive sensitivity of 66% for blaKPC-2-harbouring 
K. pneumoniae using either model [25]. These data are comparable to our findings where we 
demonstrated that sensitivity of NIRS for predicting blaNDM-type and blaOXA-48-type-genes harbouring K. 
pneumoniae was slightly lower (81%) than that of wild-type (92%). 

A plausible limitation for the differentiation of resistant and susceptible strains in our study is 
the potential that the organism harbours additional resistance determinants or variations which were 
not previously characterised, resulting in a “false negative” call. Alternatively, the detection of a gene 

Figure 2. (A) Normalised NIR spectra in the 350–2500 nm region from susceptible K. pneumoniae
(red line) and resistant K. pneumoniae (black line) Panel (B) Density plots showing NIRS differentiation
of K. pneumoniae AMR-genes negative or susceptible (Pink) and AMR harbouring or resistant (Blue).

4. Discussion

The overall objective of this study was to explore the applicability and feasibility of NIRS to
differentiate between E. coli and K. pneumoniae, and to differentiate between K. pneumoniae harbouring
AMR genes from strains that are absent of AMR genes (or otherwise, wild type). Here, it was
demonstrated that NIRS has the potential to differentiate these species with a predictive accuracy of
89% and can predict certain carbapenemase-encoding genes with an accuracy of 85%. Specificity and
sensitivity for differentiating species (E. coli and K. pneumoniae) were 85% and 92%, respectively, and
specificity and sensitivity for the AMR-gene harbouring vs. wild-type (K. pnuemoniae) strains were
81% and 89%, respectively.

Spectroscopy techniques to identify clinical bacteria are an emerging diagnostic approach in
the medical field but are already widely applied in the food industry [32]. However, only three
studies have previously explored the differentiation of bacterial species utilising NIRS that can
be assessed against our study. Although sample preparation, sample size and machine learning
techniques across these studies differed, predictive accuracies obtained are comparable to our results.
One study utilised a miniature portable Fourier-transform NIR spectrometer (900–2600 nm) to
differentiate blaKPC-2-harbouring from blaKPC-2-negative K. pneumoniae clinical isolates by collecting
spectral signatures of bacteria DNA on aluminium-plated backing plate. Genetic Algorithm–Linear
Discriminant Analysis (GA–LDA) and Successive Projection Algorithm (SPA–LDA) models were used
to analyse spectral data. Predictive sensitivity using GA–LDA and SPA–LDA for blaKPC-negative was
100% and 76%, respectively, compared to the predictive sensitivity of 66% for blaKPC-2-harbouring K.
pneumoniae using either model [25]. These data are comparable to our findings where we demonstrated
that sensitivity of NIRS for predicting blaNDM-type and blaOXA-48-type-genes harbouring K. pneumoniae
was slightly lower (81%) than that of wild-type (92%).

A plausible limitation for the differentiation of resistant and susceptible strains in our study is
the potential that the organism harbours additional resistance determinants or variations which were
not previously characterised, resulting in a “false negative” call. Alternatively, the detection of a gene
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which is not expressed, in-turn resulting in “false positive” call. Despite the compromise on sensitivity,
a way to improve accuracy is to assign a cut-off zone/value, whereby a sample will not be classified
if its spectra do not fit within. This reinforces the need for further validation and testing on large
well-characterised (genotype and phenotype) sample banks to best account for such variations and
improve model robustness.

Kammies and colleagues investigated the use of NIRS hyperspectral imaging within the spectral
region 900–2500 nm to detect and differentiate Bacillus cereus and two Staphylococcus strains (aureus and
epidermidis). Samples were streaked onto solid Luria Broth (LB) and spectra were collected directly
from the petri-dishes. Data were analysed with PLS-DA and a predictive accuracy of 90.98% (95%CI;
82–99.96%) was achieved [22]. Lastly, another group utilised Artificial Neural Network model and
NIR within the range of 750 to 1350 nm to explore the differentiation of two food-borne E. coli strains,
ATCC 25,922 (n = 5) and K12 (n = 5) grown in liquid media—a regression coefficient (R2) of 0.98 was
achieved [23].

Here, we applied PLS-DA to differentiate the two species and to detect resistance and achieved
with high predictive accuracies. It is indeed possible that other machine learning techniques would
generate an improved result; however, the sample size used in our study was best suited for PLS-DA
analysis. We recommend that future work with a relatively larger sample size should explore the
possibility to employ other machine learning techniques for data analysis.

Finally, we demonstrated for the first time that NIRS can rapidly differentiate, with reasonable
accuracy, between resistant and susceptible K. pneumoniae strains harbouring a range of common
AMR-associated mutations. Further studies are required to assess NIRS feasibility for the identification
and differentiation between and within bacterial species. Future work would include evaluating
additional machine learning algorithms, increased sample size and variably, limit of detection studies,
culture media comparisons to determine the effects of noise background, and finally, evaluate and
develop a protocol for screening directly from clinical samples (i.e., non-culture). Importantly,
a side-by-side evaluation of NIRS with Whole Genome Sequencing and phenotypical antimicrobial
susceptibility data would be most advantageous for a meaningful comparable data set.

5. Conclusions

This proof of concept study demonstrates the potential of NIRS in microbial identification and AMR
characterisation. To our knowledge, this is the largest evaluation of NIRS feasibility in differentiating
K. pneumoniae from E. coli, and K. pneumoniae carbapenem resistant from susceptible strains. Further
studies to improve model robustness and in turn improve accuracy are necessary.
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