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Abstract: An easy, inexpensive, and rapid method to identify microorganisms is in great demand
in various areas such as medical diagnostics or in the food industry. In our study, we show the
development of several predictive models based on Raman spectroscopy combined with support
vector machines (SVM) for 21 species of microorganisms. The microorganisms, grown under stan-
dardized conditions, were placed on a silver mirror slide to record the data for model development.
Additional data was obtained from microorganisms on a polished stainless-steel slide in order to
validate the models in general and to assess possible negative influences of the material change
on the predictions. The theoretical prediction accuracies for the most accurate models, based on
a five-fold cross-validation, are 98.4%. For practical validation, new spectra (from stainless-steel
surfaces) have been used, which were not included in the calibration data set. The overall prediction
accuracy in practice was about 80% and the inaccurate predictions were only due to a few species.
The development of a database provides the basis for further investigations such as the application
and extension to single-cell analytics and for the characterization of biofilms.

Keywords: Raman; microorganisms; silver; stainless steel; support vector machine (SVM)

1. Introduction

Besides common microbiological identification methods using a combination of cul-
tivation on different nutrition media and additional tests such as Gram staining, there
are more powerful tools such as DNA-based methods or matrix-assisted laser desorption
ionization-time of flight mass spectroscopy (MALDI-TOF MS). Novel, culture-free meth-
ods such as single-cell sequencing [1,2] still have the disadvantage of requiring specific
labels. Optical spectroscopy in combination with chemometric methods has allowed the
identification of microorganisms as well, and several publications have already shown that
reliable identification of bacteria is feasible using Raman spectroscopy [3–5]. A quick and
easy identification of microorganisms is desirable for a variety of reasons. For example,
in medical diagnostics, hours could decide about the health status of a patient, and in
food, processing time is crucial to ensure product safety and a long shelf life. In 2002,
Maquelin et al. investigated the potential use of vibrational spectroscopies in medical mi-
crobiology emphasizing the great potential for clinical diagnostic microbiology assuming a
large database of well-defined strains [6]. Ho et al. recently showed that they could distin-
guish between methicillin-resistant and -susceptible isolates of Staphylococcus aureus with
89% accuracy via Raman spectroscopy and deep learning [7]. The results were validated
on clinical isolates from 50 patients. By using 10 bacterial spectra from each patient isolate,
they achieved treatment identification accuracies of over 99% [7]. Yang and Irudayaraj
have shown that FT-Raman spectroscopy can be an excellent tool for rapid screening food
surfaces for potential contamination with microorganisms and their classification [8]. More
food-related research has been conducted, inter alia, to detect the bacterial genus Brucella.
The results indicate that micro-Raman spectroscopy in combination with support vector
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machines (SVM) could be a promising alternative for the identification of Brucella spp. both
on agar plates and directly in milk. Identification at the single-cell level can be achieved
within two hours without the need for pre-cultivation [9]. Raman spectroscopy allows for
identifying a small amount of biological material and even single cells [10,11], which might
allow for skipping time-consuming pre-enrichment and cultivation.

A limitation of Raman spectroscopy in the analysis of microbiological samples, besides
fluorescence as competing light, is the relatively weak Raman scattered signal. However,
the intensity of the Raman signal can be increased by the substrate used. Mikoliunaite et al.
have investigated whether and how the signal enhancement changes depending on the
substrate used [12]. Since confocal Raman microscopy aims for investigating surfaces, the
height of the sample layer on the substrate material obviously plays a role as well. Very
thin sample layers or single cells can allow excellent signals due to reflections and surface
enhancement Raman effects, whereas for thicker sample layers the effect of the surface
material becomes increasingly less important. In our study, we show the development of
several predictive models for 21 microbial species. In a previous publication on Raman
microscopic differentiation of conidia, we have already shown that SVMs can achieve very
accurate predictions, even among closely related species [13]. For this reason, we have
also focused on SVMs in this work. The spectra for model development were obtained
from microorganisms placed on a protected silver mirror slide. Additional data were
recorded on a different substrate, i.e., polished stainless steel, which is (i) cheaper and
(ii) less sensitive to chemical and mechanical stress. Predictions were made for the Raman
spectra obtained from the stainless-steel slides in order to validate the models in general
and to assess the possible negative influences of the different materials on the predictions.
The development of a database will be the basis for further investigations such as the
application and extension to single cells and in the characterization of microbial biofilms.

2. Materials and Methods
2.1. Growth Conditions and Sample Preparation

Glycerol stocks of bacterial and yeast strains were stored at −80 ◦C. Aliquots were
thawed, distributed on universal tryptic soy agar (TSA) plates (Merck, Darmstadt, Ger-
many) or malt extract agar (MEA) (Merck, Darmstadt, Germany) using sterile inoculating
loops and incubated at 30 ◦C for 24 h. A subculture of these cultures was obtained by
transfer to other TSA plates and incubated for 24 h. These cultures were used for the
investigation. The 21 different microorganisms used and the exact growth parameters,
including variations, are listed in Table 1.

One milliliter of 0.9% sterile NaCl solution was pipetted in 1.5 mL reaction tubes. Cell
material was collected with a sterile inoculation loop and transferred into the NaCl solution.
After thorough mixing with a vortex mixer, the suspension was centrifuged (Heraeus Fresco
17, Thermo Scientific, Dreieich, Germany) for 3 min at 5000× g rpm. The supernatant was
discarded and the cell pellet with some residual moisture was homogenized with a sterile
pipette tip and then 1 µL was transferred to the SiO2 protected silver mirror slide (PFR14-
P02, Thorlabs, Bergkirchen, Germany) or the highly polished stainless-steel slide (Renishaw,
Pliezhausen, Germany), followed by drying for 15 min at 20 ◦C.
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Table 1. List of species included in the database with their DSM-No. and additional information on the number of spectra, number of independently grown cultures,
used exposure time, accumulations per spectrum, and growth conditions; all spectra have been recorded with an excitation wavelength of 633 nm at about 3.5 mW
laser power on sample.

Microorganism Abbreviation DSM-No. Spectra Independent Cultures
Exposure Time

(Seconds);
Accumulations

Nutrition Media Cultivation Time

Acinetobacter radioresistens Ara 6976 725 1

1.5; 20
TSA

24 h

Brevundimonas diminuta Bdi 7234 897 3

Bacillus licheniformis Bli 13 1240 2

Bacillus subtilis Bsu 10 790 1

Candida albicans Cal 1386 400 1
MEA

Candida boidinii Cbo 70,034 686 1

Chryseobacterium indolgenes Cin 16,777 684 1 1.5; 15

TSA

Enterococcus faecium Efa 2146 680 2

1.5; 20Enterococcus hirae Ehi 3320 1423 2

Escherichia coli Eco 423 1190 3

Kocuria rosea Kro own isolate 639 1 1.5; 15

Lactobacillus reuteri Lre 20015 420 1 1.5; 20 48 h

Micrococcus luteus Mlu 1790 1842 6 1.5; 15

24 h

Ochrobactrum anthropi Oan 6882 1045 2

1.5; 20
Pseudomonas aeruginosa Pae 939 385 1

Pseudomonas fluorescens Pfl 50,090 654 1

Pseudomonas oleovorans
subsp lubricantis Pol 21,016 632 1

Staphylococcus aureus Sau 799 1094 3 1.5; 15

Staphylococcus epidermidis Sep 1798 1111 2 1.5; 20

Stenotrophomonas maltophilia Stm 50,170 460 1 1.5; 20

Xanthophyllomyces dendrorhous Xde 5626 658 1 1.5; 15 MEA
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2.2. Spectral Recording

To collect Raman spectra, a confocal Raman microscope (inVia, Renishaw, Gloucester-
shire, UK) was used with an excitation wavelength of 633 nm (helium-neon (HeNe)) and a
100× magnification lens. The detected spectral region was between 606 cm−1 to 1736 cm−1

with an average resolution of about 1.1 cm−1. The spectra were recorded with the 100×
lens in a spiral shape from the inside to the outside with a distance of about 2 to 4 µm
between the measuring spots. This was carried out to bleach out possible fluorescence inter-
ferences. Such spirals were recorded at several locations on the surface of the samples, each
comprising 50 to 300 spectra. All spectra have been recorded with an excitation wavelength
of 633 nm at about 3.5 mW laser power on the sample and a laser diameter of about 8 µm.
The database includes a total of 17651 Raman spectra from 21 species, i.e., an average of
about 840 spectra per species. Information about all species in the database, DSM numbers,
and additional information about used exposure time, accumulations per spectrum, and
growth conditions can be found in Table 1. Please note that the selection of microorganisms
in our work intentionally did not focus on pathogenicity or, for example, Gram behavior.
The initial aim was to collect data as broadly as possible with microorganisms of which
both high Raman spectroscopic similarities and large differences were suspected. For all
species that visibly contained color pigments, only 15 accumulations were used, and the
spectra were not recorded in a spiral pattern but side by side with a spacing of 4 µm. On
the one hand, this procedure should lead to the carotenoids not photodegrading, but on the
other hand, the measuring points should still be close enough to each other for a bleaching
effect to occur. With this method, the acquisition time for a spectrum is about 30 s (most
microorganisms) or 22.5 s (pigmented microorganisms).

2.3. Data Preprocessing

For data preprocessing and model development, MATLAB R2021b and the MATLAB
Classification Learner R2021b were used (MathWorks, Natick, MA, USA). After the spectra
were interpolated, baseline correction and smoothing via low pass filter (LPF) took place.
The appropriate LPF code for this can be requested from the authors. All spectra were
normalized (z-score) and principal component analysis (PCA) was performed.

The models are based on SVM with a cubic kernel function using different numbers of
the first principal components (PCs). The parameters of the SVM were not tuned, but the
default settings were used (box constraint level = 1, kernel scale mode: auto, multiclass
method one-vs-one, standardize data enabled, hyperparameter options disabled).

3. Results and Discussion
3.1. Comparison of Different Substrates on the Effects of Raman Spectra of Bacteria

Spectra were recorded from the aforementioned silver slide, stainless-steel slide, and
from a microscopic glass slide (Gerhard Menzel GmbH, Braunschweig, Germany) with
1.5 s exposure time at about 3.5 mW laser power and 15 accumulations per spectrum. The
results of Figure 1a show that all materials do not cause distinct Raman bands, but the glass
has a higher total intensity. The spectra of Figure 1a were neither treated nor normalized.

Eighty-five Raman spectra were recorded from the outer edge of each of three B. dimin-
uta (Bdi) samples (on silver, stainless steel, and glass) using the method described. Care
was taken to ensure that the locations where the spectra were recorded were at the same
position as the dried bacterial droplet in each case. It is clear from Figure 1b that glass
results in the least pronounced signals. The difference between stainless steel and silver is
hardly noticeable on average, but the data scatter somewhat more with the protected silver
mirror slide (noticeable from the gray spectra in the background) in Figure 1b. For the glass
slide, the typical bacterial signatures are only faintly visible without data pretreatment.
The spectra of Figure 1b were normalized and presented with an offset; in fact, the total
intensity hardly differs here (data not shown).
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Figure 1. Untreated Raman spectra collected from protected silver mirror slide, stainless-steel slide,
and glass slide (a) and 85 normalized Raman spectra of B. diminuta on each named substrate with
arbitrary offset for better visualization (b).

3.2. Pretreated Raman Spectra of Microorganisms on Silver Mirror Slide

Figure 2 shows all pretreated Raman spectra (grey) and the respective mean spectrum
highlighted in color. The literature on the assignment of signals to the respective biochem-
ical constituents can be obtained, for example, from [11,14]. Two slightly varying bands
are clearly visible in all microorganisms containing carotenoids (Cin, Kro, Mlu, Sau, Xde)
and their maxima range from 1132 to 1157 cm−1 and 1513 to 1528 cm−1, depending on
the species.

Splitting data into its most variance via PCA does not always mean obtaining the best
information for classification [15]. It is quite possible that PCs describing less variance
are better for classification as PCs describing more variance. However, looking at the first
PCs can often reveal initial patterns [16]. When considering only the first two PCs, results
suggest that carotenoid-containing microorganisms explain a large amount of variance
in the data and can be visibly differentiated (Figure 3). Carotenoids thus seem to be
a good distinguishing criterion due to their high diversity. This is also confirmed by
Kumar et al. in their publication of 2015 [17]. Kumar et al. also reported about the process
of photodegradation of carotenoids in various bacteria by UVA radiation via resonance
Raman spectroscopy [17]. Visible light, like the employed 633 nm laser, can also lead to
photodegradation of carotenoids, which can be seen, for example, in the gray background
spectra of Sau at about 1158 and 1523 cm−1 in Figure 2. The carotenoids of S. aureus (Sau)
and K. rosea (Kro) degraded more quickly than those contained in X. dendrorhous (Xde) or
M. luteus (Mlu) (data not shown). The more scattered the data of pigmented microorganisms
in Figure 3, the larger the effect of possible photodegradation seems to be, although these
possible correlations need to be investigated in more detail as other influencing factors
such as fluorescence degradation cannot be completely excluded.

The dendrogram in Figure 4 illustrates the heterogeneity or similarity of the mean
spectra. The hierarchical cluster analysis (HCA) was calculated in MATLAB R2021b with
average linkage clustering and the Euclidean distance. As the first two PCs of the PCA
(Figure 3) suggest, the carotenoid-containing microorganisms form a separate cluster in the
HCA but are relatively distinct among themselves. In their 2012 publication, Stöckel et al.
showed an apparent correspondence between relationships established by Raman spec-
troscopy and phylogenetic or taxonomic relationships of Bacillus species [18]. Predictions
of genetic relatedness are also possible via Raman spectroscopy and machine learning [19].
However, the phylogenetic relationship of some species may not always match Raman
spectroscopic similarity. For example, the two fungal species C. boidinii (Cbo) and C. albicans
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(Cal) should have more similarity to each other than C. boidinii (Cbo) to the procaryote E.
hirae (Ehi). Figure 4, however, shows the exact opposite. Moreover, substances that are
particularly Raman active but contribute little to the phylogenetic relatedness of particular
organisms could lead to phylogenetic misinterpretation in unsupervised learning proce-
dures such as HCA; for example, there are also S. aureus strains without pigments [20],
which means that they do not show any of the corresponding typical Raman signatures.

3.3. Model Development

SVM models were calculated with the first 10 to 20 PCs. Table 2 shows the overall
estimated prediction accuracies, which were determined via a five-fold cross-validation.
Using the first 10 principal components, the overall prediction accuracy is 94.3%. Here, Ara
was most frequently misinterpreted as Eco and vice versa. Similarly, using only 10 PCs,
Oan is predicted correctly only in 82.7% (data not shown). The estimated accuracies are
highest for microorganisms containing carotenoid pigments, but two of the yeasts included
in this study (Cal and Cbo) can also be very well differentiated (Figure 5).

Figure 2. Raman spectra collected from microorganisms on the silver mirror slide after baseline
correction, smoothing, and normalization with arithmetic means highlighted in color.
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Figure 3. First two PCs of a PCA with explained variance in percent calculated with all spectra
collected from microorganisms on the silver mirror slide (n = 17,651) and species abbreviation below
particularly strongly separated clusters.

Figure 4. Hierarchical cluster analysis of the mean spectra recorded from microorganisms on the
silver mirror slide (average linkage clustering, Euclidean distance).
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Table 2. Number of used PCs for SVM models and estimated prediction accuracy by five-fold
cross-validation.

Number of used PCs for SVM 10 11 12 13 14 15 16 17 18 19 20

Estimated prediction accuracy in % 94.3 94.6 95 95.6 96.1 97.2 97.4 97.8 98 98.2 98.4

Figure 5. Confusion matrix of a five-fold cross-validated SVM model using the first 20 PCs showing
the percentage of right and false-positive predictions of each species.

Figure 5 shows a confusion matrix of the cross-validated SVM model with 20 PCs,
showing the percentage of correct and false-positive predictions of each species. Within
these data, for all species except Stm prediction accuracy is higher than 95%. The high Ra-
man spectroscopical similarity of Ara and Eco, which was suggested by the HCA as shown
in Figure 4, is reflected in correspondingly incorrect predictions of these species. Consid-
ering all estimated accuracies, one can assume a very accurate prediction performance
(98.4%) without particularly large deviations within individual included species.

3.4. Predictions for Independent Raman-Spectra of Microorganisms on Stainless Steel Slides

The cross-validation (Figure 5) is not suitable for estimating the predictive quality of
new unknown data, e.g., in terms of unknown species of different surfaces; for this reason,
a partial validation (14 out of 21 species) of the models was performed with new data.
The new data were recorded from samples placed on a stainless-steel slide, but samples
and data were otherwise treated completely the same as in the predictive models. Table 3
shows the prediction accuracies of all SVM models for the new data. It can be clearly seen
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that the overall prediction accuracy decreases compared to the cross-validated data from
Table 2. Interestingly, the accuracy of the model with the first 10 PCs (72.8%) gives almost
as accurate predictions as the model with 18 PCs (72.9%). Using the first 20 PCs, there is a
significant rise from over 6% to a total of 80.1% accuracy.

Table 3. Number of used PCs for SVM models and validated prediction accuracy for new data
collected from samples on stainless-steel slide.

Number of used PCs for SVM 10 11 12 13 14 15 16 17 18 19 20

Validated prediction accuracy in % 72.8 64.6 62.3 70.7 70 72.8 73.9 72.2 72.9 73.8 80.1

Figure 6 shows a confusion matrix describing the true and false predictions in percent
for new data recorded on the stainless-steel slide by using the SVM model with 20 PCs
from above. The number of validation spectra per species is 585 ± 40. All carotenoid-
containing microorganisms included here (i.e., Cin, Mlu, Sau) were 100% correctly predicted.
Moreover, the species Ara, Cbo, and Ehi were predicted completely correctly. Considering
the dendrogram in Figure 4, this seems reasonable for Ehi and Cbo, as these mean spectra
separate quite clearly, Ara and Eco, on the other hand, show high similarities, yet Ara
was predicted 100% correctly. Conversely, however, 23.6% of the Raman spectra of Eco
were also predicted to be Ara. Likewise, Oan was misinterpreted as Ara and thus was not
predicted very accurately with only 70%. With only 39.6%, Cal is predicted worst. There,
the false-positive predictions were within the same genus (Candida).

Figure 6. Confusion matrix showing the percentage of true and false predictions for Raman spectra
of each species recorded on stainless-steel slides by using the SVM model with the first 20 PCs of
data collected on silver mirror slide (585 ± 40 spectra per species).

Figure 7 illustrates on the left the fully treated Raman spectra in grey in the background
and the highlighted mean spectra of Cal (a), Eco (c), and Oan (e). The mean spectra (recorded
on silver mirror slide) are shown in black at the top and the spectra recorded from samples
on the stainless-steel slide are shown in red at the bottom. On the right-hand side of
Figure 7, the first two PCs of PCAs are shown (b, d, f) with the corresponding spectra from
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the left (a, c, e). The spectra of Cal from Figure 7a show a strong negative slope at the
beginning (about 600 to 650 cm−1). This typically occurs when the LPF is applied to spectra
with strong fluorescence background. An optimized baseline correction could minimize
such effects. Moreover, the peak at about 1003 cm−1 (phenylalanine) is only seen in the
spectra recorded on the silver slide and is not present in the other spectra (stainless steel
slide). The PCA on the right (Figure 7b) illustrates the large variance within the two data
sets from Cal. The reasons for the poorer signals of Cal on stainless steel are most likely not
due to the measurement subsurface. Since the calibration set includes only one individual
culture of Cal, such variations in fluorescence are not covered. Most likely the measurement
conditions were more favorable (thinner sample layer, slightly younger colony material
transferred with fewer fluorophores) when the data were acquired from the silver mirror
slide. An expanded data set with more variation may lead to improvement. The PCA of
the spectra of Eco (Figure 7d) shows that the spectra, which were recorded on stainless-steel
slides, accumulate at the outermost edge of the calibration spectra. The variation within
the validation data is very small. Spectral differences can be seen especially at 1550 cm−1.
There, some of the reference spectra (silver slide) show an additional signature. For Oan
(Figure 7e), a slight effect due to the LPF can also be observed as for Cal (Figure 7a). A
striking feature of the spectra of Oan is the strongly pronounced signature at 780 cm−1

from the spectra recorded on the silver slide. Signals in this region are mainly triggered by
DNA components (phosphate bond, cytosine, uracil, thymine) [11,14,21]. This band is only
very weakly pronounced in the Oan spectra on stainless steel (Figure 7e).

Figure 7. Baseline corrected and smoothed Raman spectra of Cal (a), Eco (c), and Oan (e) recorded
on silver mirror slide (black) and stainless-steel slide (red); PCA calculated with the Raman spectra
recorded on silver mirror slide (black) and stainless steel slide (red) of Cal (b), Eco (d), and Oan (f);
for better visualization of the spectra on the left an offset was calculated in (a,c,e) but the spectra for
calculating the PCAs on the right (b,d,f) were all treated the same.
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4. Conclusions

Both materials, silver mirror slide and polished stainless-steel slide, are proven to be
suitable for Raman microscopic analysis of microorganisms with our measurement setup
and the signal yield is generally much higher than with glass slides (Figure 1). The partially
stronger fluorescence disturbance of a few samples on the stainless-steel substrate is most
likely not due to the substrate but to the samples. The tests show that the developed SVM
model with 20 PCs performs very effectively in the cross-validation (98.7%). Predictions for
completely new and independent data, which were also collected on a different substrate,
are also very accurate for most species. For 3 out of 14 validated species, the prediction
quality is below 95% and the overall average is around 80%. By augmenting the data set
collected on the silver mirror slide with the validation data (collected on a stainless-steel
slide), increasing the size of the data set with more independent samples, and optimizing
data pretreatment, the models are expected to improve in accuracy. Advances in artificial
intelligence and access to related software also offer new opportunities we pursue.
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