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Abstract: The indoor localization of people is the key to realizing “smart city” applications, such as
smart homes, elderly care, and an energy-saving grid. The localization method based on electrostatic
information is a passive label-free localization technique with a better balance of localization accuracy,
system power consumption, privacy protection, and environmental friendliness. However, the
physical information of each actual application scenario is different, resulting in the transfer function
from the human electrostatic potential to the sensor signal not being unique, thus limiting the
generality of this method. Therefore, this study proposed an indoor localization method based
on on-site measured electrostatic signals and symbolic regression machine learning algorithms. A
remote, non-contact human electrostatic potential sensor was designed and implemented, and a
prototype test system was built. Indoor localization of moving people was achieved in a 5 m × 5 m
space with an 80% positioning accuracy and a median error absolute value range of 0.4–0.6 m. This
method achieved on-site calibration without requiring physical information about the actual scene.
It has the advantages of low computational complexity and only a small amount of training data
is required.

Keywords: indoor localization; non-contact electrostatic measurements; symbolic regression; sensor
compensation

1. Introduction

The indoor localization of individuals is crucial for “smart city” applications, such
as smart homes [1], elderly care monitoring [2], building emergency management [3],
occupancy tracking in office spaces [4], smart building controls [5], and energy-saving
grids [6]. It is of great value for improving residents’ quality of life [1]. Indoor localization
methods can be classified as either “tag-based” or “tag-free” depending on whether the
user needs to carry specific hardware devices or not [2]. Tag-based methods have generally
utilised signals from WIFI [7–9], BLE [10], RFID [11], UWB [12], and LIFI [13]. This
technique category was thoroughly examined but has revealed certain limitations in several
areas: First, personnel must carry tag devices. Whether it is embedded within a smartphone,
watch, bracelet, or an additional specialized device, this will reduce the convenience for
the user. Second, each user needs to carry a separate tag. As the number of users increases,
the hardware cost and algorithm complexity of the system will increase. Third, tag devices
usually require battery power, except for RFID cards. During the charging period of the
tag device, the system will not be able to achieve its positioning function. Fourth, various
tag devices utilize electromagnetic wave signals as the information carriers. Frequent
information interaction is bound to make the electromagnetic environment around the
device more severe. Under long-term use conditions, this poses the risk of electromagnetic
biological effects, endangering the user’s health.
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The preferred indoor localization method is “tag-free” such that users in their home
or office environments do not need to carry any specific hardware [2]. Existing tag-free
methods rely on a body’s gas [14], sound [15], vibration [16], heat radiation [17], reflection or
refraction of light [18], or radio-frequency (RF) signals [19]. However, each of these methods
has certain limitations. For example, gas detectors, temperature/humidity sensors, and
infrared sensors do not have a high spatial localization accuracy. Camera and microphone
arrays present a risk of privacy leakage. Pressure-sensitive or capacitive positioning systems
deploy sensors under the floor and are difficult to install or refurbish [20]. Foot-vibration
sensors are susceptible to interference from environmental noise. RF location systems
based on ultra-wideband radar [21], radio tomography [22], WiFi Doppler [23], and FMCW-
modulated radar [24] have high power and cost requirements, and the electromagnetic
biological effects caused by actively emitted electromagnetic waves pose a threat to human
health. Therefore, studying tag-free indoor localization methods with high accuracy, low
power consumption, low cost, good privacy protection, and passivity is of great value.

A comparison between different methods in terms of localization accuracy, power
consumption, hardware cost, algorithm complexity, user convenience, privacy protection,
and environmental friendliness is shown in Table 1. The localization accuracy is the differ-
ence between the actual location and the system output result. The power consumption,
hardware cost, and algorithm complexity are calculated in terms of the system as a whole,
including the tags and base stations. User convenience concerns whether the user’s device
needs routine maintenance, such as charging and calibration. Privacy protection concerns
whether there is a risk of a user privacy leakage, such as personal information, images,
or voice. Environmental friendliness concerns whether the system will affect the user’s
original living environment, such as the additional emission of electromagnetic waves or
ultrasonic waves. The “High” or “Low” rating of each indicator is marked relative to the
average of the other technologies. The “

√
” mark means that this is the user’s desired goal.

The last row concerns the indoor localization method based on non-contact electrostatic
potential measurements that was proposed in this study. It achieved a good balance be-
tween these factors. It met the needs of users to the greatest extent possible. Therefore, this
approach has more significant application potential.

As is known, electrostatic phenomena caused by the human body are common, for
instance, walking on the ground, rising from a chair, rubbing one’s arm against the table,
putting on and removing clothing, and other active processes. Rapid contact and separation
of the human body from an object will result in the accumulation of static charge on the
body, manifested as a fluctuating static potential. Therefore, extensive research has been
conducted on personnel sensing and identification technology based on non-contact electro-
static measurements. References [25,26] proposed a high-sensitivity electrostatic induction
sensor that enables the recognition of human movements and individual characteristics.
References [27,28] used spherical electrode arrays to measure the induced signal from
the electrostatic potential of the hand and realized real-time gesture recognition. Prance
invented an electrostatic potential sensor (EPS) with high input resistance (~1018 Ω), low
input capacitance (~10–17 F), and low noise characteristics in the bandwidth [29]. The com-
mercial version of EPS is known as EPIC (Plessey Semiconductors, PS25255). Reference [30]
used EPIC to implement a wearable sensor with orientation and positioning functions.
Similarly, a sparse low-power sensor network was implemented based on EPIC. It realized
breathing monitoring within 1.5 m by measuring the electrostatic potential of the human
body and achieving a 0.1 m location error in a 3 m× 4 m range using four sensors [1]. In [2],
an indoor location and human identification system called “platypus” was implemented
based on EPIC. A mathematical model for the remote non-contact measurement of human
electrostatic potential was proposed based on physical analysis with six sensors arranged
within 2 m × 2.5 m. The test results’ normalized root-mean-square error (NRMSE) range
was 0.07–0.16 and the location error was 0.16 m. The performance of the above system was
mainly affected by the EPIC chip, and the measurement distance and frequency response
characteristics of individual sensors could not be flexibly adjusted. The measurement
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range and accuracy of the system could only be improved by increasing the number and
density of sensors. Furthermore, EPIC was discontinued and no replacement models
are currently available. To overcome these limitations, this study proposed a new circuit
topology for electrostatic potential sensors that can be implemented using commercially
available amplifiers. The measurement range and sensitivity of the sensor can be flexibly
adjusted. Moreover, it is possible to select amplifiers with different performance parameters
according to different needs, thus meeting the requirements of the practical application
scenario for sensor performance, power consumption, price, and production cycle.

Table 1. Comparison of the indoor localization methods.

Category Method Localization
Accuracy

Power
Consumption

Hardware
Cost

Algorithm
Complexity

User
Convenience

Privacy
Protection

Environmental
Friendliness

Tag-based

WIFI [7–9] High
√

High High High Low High
√

Low
BLE [10] Low Low

√
Low
√

High Low High
√

Low
RFID [11] Low Low

√
Low
√

Low
√

Low High
√

Low
UWB [12] High

√
High High High Low High

√
Low

LIFI [13] High
√

High High High Low Low High
√

Tag-free

Gas [14] Low Low
√

Low
√

Low
√

High
√

High
√

High
√

Sound [15] Low Low
√

Low
√

Low
√

High
√

Low High
√

Vibration [16] Low Low
√

Low
√

Low
√

High
√

High
√

High
√

Heat radiation [17] Low Low
√

Low
√

Low
√

High
√

High
√

High
√

Light reflection [18] High
√

High High High High
√

Low High
√

RF signal reflection [19] High
√

High High High High
√

High
√

High
√

Tag-free Electrostatic
(this work) High

√
Low
√

Low
√

Low
√

High
√

High
√

High
√

√
represents the desired goal.

Under the condition that the physical information of the actual scene (room structure,
grounding body distribution, sensor location, etc.) is unknown, the transfer function from
the human electrostatic potential to the sensor signal is not unique and the generality of
the indoor localization method based on mathematical modeling methods is not good. To
address the above problems, a remote, non-contact human electrostatic potential sensor
was designed and implemented. An indoor localization method was proposed based
on on-site test data and machine learning. This method does not require the usage of
the scene’s physical information. After the system is deployed, the human electrostatic
potential and motion trajectory are collected simultaneously using electrostatic sensors
and an additional high-precision location system. Then, the symbolic regression model is
trained using the tested data to obtain the transfer function from the electrostatic sensor
signal to the location coordinates. It takes advantage of the low computational complexity
of symbolic regression algorithms and the small amount of training data required. After
the training, the high-precision localization system is no longer needed.

The main innovations of this study were:

(1) An indoor localization method based on remote, non-contact human electrostatic
potential measurement was proposed; this method does not require any information
about the actual application scene but instead uses the on-site tested data to train the
symbolic regression model, and it features a high degree of localization accuracy and
good method versatility.

(2) A high-sensitivity, high-precision, and low-noise electrostatic potential sensor was
designed. For the first time, this sensor was used for the indoor location of moving
people. The prototype was realized based on a commercial amplifier, which was capa-
ble of flexibly adjusting the sensor’s test distance, frequency response characteristics,
power consumption, and production cycle according to the actual requirements.

(3) A prototype system was built using four sensors and the symbolic regression algo-
rithm, where the results showed that the optimal model was able to achieve an 80%
accuracy of the motion trajectory in a 5 m × 5 m test area, with a median error range
of 0.4–0.6 m in terms of the absolute value.
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The rest of this paper is organized as follows. Section 2 describes the principle of
non-contact human electrostatic potential measurement. Section 3 describes the indoor
personnel localization method and experimental design, electrostatic potential sensor, and
symbolic regression machine learning method. Section 4 presents the experimental results
of the indoor localization and discusses the factors that affected the results in detail. Finally,
Section 5 concludes this paper and suggests directions for further work.

2. Principle

The physical mechanism of the electrostatic signal generated by a moving human
body was discussed in detail in Feynman’s lecture on physics [31]. As shown in Figure 1,
outside, there is an atmospheric electric field of about 100 V/m between the ionosphere
and the earth.
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Figure 1. Principle of the electrostatic signal generated by moving the human body.

The body will be polarized and charged when the human body is electrostatically
insulated from the earth. Furthermore, when the human body is grounded, it distorts the
vertical gradient of the atmospheric electric field in its vicinity, generating a measurable
electrostatic signal. Indoors, the human body’s static electricity mainly comes from the
rapid contact separation between body parts and objects, such as the friction between the
sole of a shoe and the ground, the friction between an arm and a desktop, and the friction
between clothes. The following is an example of human walking, as shown in Figure 2, to
theoretically analyze the feasibility of this method.
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As shown in Figure 2, the human body is an electrostatic conductor. There are two
high-resistance layers between the body and the ground: the sole (usually rubber, EVA
composite material, etc.) and the floor (wooden floor, tile, etc.). Therefore, the overall
equivalent capacitance of the human body to the earth CB is

CB = Cr +
1

1
Cs

+ 1
C f

+ 1
Cx(t)

(1)
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where Cr is the coupling capacitance of a human body to the grounded objects in the
surrounding environment (walls, streetlights, antistatic tables, metal carts, etc.), Cs is the
equivalent capacitance of shoe soles (including socks), and Cf is the equivalent capacitance
of the floor. During movement, the change in Cs and Cf is tiny and can be considered
constant. Cx(t) is the equivalent capacitance between the lower surface of the sole and
the upper surface of the floor, which is a periodic function that is related to individual
characteristics, such as step length, step frequency, posture, and motion category, where its
expression is given in [32]. The electrostatic potential UB of a moving human body can be
expressed as

UB =
QB
CB

(2)

QB is the body’s charge and reference [33] expresses it. Thus, the induced charge Qs
on the sensor measurement electrode at distance d can be expressed as

Qs = Cd(t)(UB −Vs) (3)

Cd(t) =
εaSe

d
=

εaSe

D− fslBt
(4)

Cd(t) is the equivalent capacitance between the human body and the induction elec-
trode, which is determined by the equivalent area Se between the human body and the
electrode, the step frequency fs, and the step length lB. Vs is the voltage on the induction
electrode, which is much less than UB. Therefore, the sensor-induced current is

I =
dQs

dt
=

d(Cd(UB −VS))

dt
≈ d(CdUB)

dt
=

d
(

Cd
QB
CB

)
dt

=
QB
CB
·dCd

dt
+

Cd
CB
·dQB

dt
− Cd

QB

C2
B
·dCB

dt
(5)

The first term of (5) represents the induced current caused by the variation in the
equivalent coupling capacitance Cd, which is mainly influenced by the relative distance
between the sensor and the human body. The second term represents the induced current
caused by the change in QB. According to [22], it is an exponential function that usually
saturates after a few seconds to ten seconds of movement. Therefore, it contributes more to
the induced current at the beginning and the end of the movement, while its contribution
to the induced current during the motion is zero. The third term represents the change in
the sensor-induced current caused by the change in CB, mainly the change in the equivalent
capacitance of the human body to the ground and the change in the equivalent capacitance
of the human body to the grounding body of the surrounding environment. Through
the above theoretical analysis, it can be found that the electrostatic signal of a moving
human body has strong specificity. It is not only influenced by the individual characteristic
parameters of the moving human body but also by the distribution of the grounded body in
the practical application environment. Indoor localization methods based on electrostatic
signals need to overcome the impact of these factors on the accuracy of the results.

3. Method
3.1. Experimental Design

On the first floor of our laboratory, which has a width of 10 m and a length of 12 m, a
square site with a tiled floor of 5 m× 5 m was selected. There was no grounding body at the
test site, and the distance around the test site was not less than 1.5 m from the wall or off-site
grounding body. The same electrostatic sensors were arranged at each of the four endpoints
of the square test site to test the electrostatic potential of a moving human body in the test
site. A coaxial cable connected the electrostatic sensor to a multi-channel digital storage
oscilloscope (PicoScope 4824 from Pico, Hong Kong, China). The oscilloscope acquired the
sensor output signal and transmitted it to a computer through a USB to complete the data
recording. The experimental scene layout is shown in Figure 3.
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The high-accuracy localization system adopted an ultra-wideband (UWB) electromag-
netic pulse indoor localization system. It used the two-way time-of-flight method to obtain
the distance from the human hand-held tag sensor to the base station sensor, combined the
distance from the three base stations to the tag sensor, and used the trilateral measurement
method to calculate the coordinates of the moving human body. One endpoint of the square
test site (bottom-left endpoint in Figure 3) was defined as the coordinate origin, and the two
adjacent endpoints were the X-axis endpoint and Y-axis endpoint. The base station sensors
of the ultra-wideband positioning system (YCHIOT’s UWB Mini 3s Plus) were arranged on
three endpoints (one sensor per endpoint) and placed on top of a 1.5 m high tripod; these
endpoints were named UWB_Anchor_O, UWB_Anchor_X, and UWB_Anchor_Y. When
the human moved with the ultra-wideband positioning tag sensor (UWB_Tag) in hand, the
positioning system output the positioning result through UWB_Anchor_O with a refresh
rate of 100 Hz. The data recording was completed by transferring the positioning data to a
computer using a USB data cable. The spatial positioning accuracy of the ultra-wideband
positioning system was 10 cm.

3.2. Electrostatic Potential Sensor Design
3.2.1. The Principle of the Sensor Circuit

The sensing electrodes of the electrostatic potential sensor and the measured human
body were not in electrical or mechanical contact, and the distance between them was
more than 1 m. Therefore, the equivalent coupling capacitance between the sensing
electrodes and the measured human body was tiny. In addition, the measured human
electrostatic potential signal had a low frequency and was susceptible to interference from
50 Hz/60 Hz power frequency signals. The electrostatic potential sensors needed to have a
very small input capacitance and a very high input resistance to accurately detect the human
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electrostatic signal. Unlike the commercial electrostatic potential sensors EPIC used in the
literature [1,2], this study comprehensively used three typical positive feedback electronic
technologies of neutralization, a bootstrap, and an active guard, which were combined
with shielding, a 50 Hz notch filter, and program-controlled amplification technology to
design an electrostatic potential sensor. The principle is shown in Figure 4.
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Figure 4. Circuit schematic of the electrostatic potential sensor.

As shown in Figure 4, Ce is the equivalent capacitance coupling between the induction
electrode and the charged body under test, which is determined by the diameter of the
induction electrode and its distance to the authorized body. Cin, Cx, and Rin are the input
capacitance, stray capacitance, and input resistance of the amplifying circuit, respectively.
Ce forms a capacitive voltage divider network with Cin and Cx, while Ce and Rin form a
first-order high-pass filter, both of which degraded the circuit’s sensitivity to amplifying
the low-frequency electrostatic induction signal. The neutralizing circuit positively feeds
the output signal to the input end through the neutralizing capacitance Cn to reduce the
equivalent input capacitance Cin. The bootstrap and bias networks provide a controllable
DC leakage channel to prevent saturation of the amplifier and reduce the leakage current
at the positive input end of the amplifier in the low-frequency signal segment. The active
guard drives the shielding case of the induction electrode using a unity gain amplifier to
reduce the stray capacitance Cx, thus maximally reducing the current leakage and power
frequency interference. Compared with EPIC, the advantage of this sensor is that it can
flexibly adjust the size of the sensing electrode and the frequency response characteristics
of the circuit so that the test range and sensitivity can be flexibly adjusted. Moreover, it is
possible to select amplifiers with different performance parameters according to different
needs, thus meeting the requirements of a given practical application scenario regarding
the sensor performance, power consumption, price, and production cycle. The electrostatic
potential sensor was implemented using commercial discrete devices and a printed circuit
board process, as shown in Figure 5.
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The prototype sensor consists of a low-noise amplifier (ADA4530 from Analog device
(Shanghai, China)), a power frequency notch filter circuit, an STM32 microcontroller, and
an HC09 Bluetooth module packaged in a metal shielded box. By properly setting the
resistance and capacitance values of the bootstrap and neutralization circuits, the equivalent
input impedance of the sensor could reach a TΩ magnitude, with the input capacitance
reaching a pF magnitude. It has analog and digital output ports and is capable of continuous
measurement.

3.2.2. Performance Test of the Sensor

The noise spectral density of the sensor was tested in an unshielded environment
using an Agilent E4440A spectrum analyzer. When the input port was grounded using
a 1 pF capacitance, the output voltage noise spectral density shown in Figure 6a was
produced. The 1/f corner frequency of the flicker noise was about 30 Hz, and the Gaussian
white noise of the sensor when it was higher than this frequency point was 2.4 nV/

√
Hz,

which determined the minimum detectable signal amplitude of the sensor. Under the
same environment, the Digilent Analog-Discovery2 multi-function analyzer was used
to analyze the frequency response characteristic of the sensor under the 1 pF coupling
capacitance condition, with the curve shown in Figure 6b. Using the 50 Hz notch filter
circuit, the voltage gain was about −30 dB near 50 Hz, which effectively decreased the
power frequency interference. Furthermore, the voltage gain from 0.1 Hz to 1 kHz was
34 dB. It was capable of effectively amplifying the weak electrostatic induction signal.
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3.3. Symbolic Regression Algorithm

Symbolic regression uses evolutionary algorithms to search the mathematical expres-
sion space to minimize the error between the measured data and the expression prediction
data and automatically find the mathematical expression behind the measured data [34].
Unlike other linear or nonlinear regression methods, symbolic regression does not require a
predefined form of the target expression. It can search both the form and parameters of the
mathematical expression, significantly reducing the reliance on artificial prior knowledge
and expanding its applicability, providing a flexible and simple method for nonlinear
predictive modeling [35].

The advantages of the symbolic regression algorithm include: automatically creating
concise and accurate equations for predicting the behavior of physical systems that are
consistent with Occam’s razor; easy-to-deploy training to obtain symbolic models without
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the need for specialized hardware and software environments (such as neural networks
and vector machines); and the model form is highly interpretable and concise, making it
easier to revise than typical black box prediction models [36].

This study used the multi-gene symbolic regression method, combined with the popu-
lation search capability of multi-gene genetic programming (MGGP) and the parameter
estimation capability of linear least squares, to find the optimal linear combination of
mathematical expressions corresponding to all genetic individuals within a population and
to minimize the error between the predicted output response of the mathematical model
and the target output [25]. The principle of the method is shown in Figure 7.
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In Figure 7, there are G gene individuals in the population, where each gene is a sym-
bolic binary tree interpreted directly as a symbolic expression. Its leaf nodes are numerical
constants, input or state variables, and other parameter variables. The middle nodes are
mathematical operation symbols, including algebraic operators, such as addition, subtrac-
tion, multiplication, and division; trigonometric functions; exponential functions; Boolean
functions; and other basic functions. Moreover, the output of the mathematical expression
corresponding to each gene individual is ŷ1 . . . ŷG, where their linear combination gives the
output response prediction ŷ of the population mathematical model:

ŷ = b0 + b1 × ŷ1 + . . . + bG × ŷG (6)

where b0 is the bias parameter and b1, . . . , bG are the scaling parameters. Since all input
variables x, target output variables y, and response prediction ŷ are vectors of the same
length, the above equation can be rewritten in matrix form as

ŷ = G× B (7)

where G is the gene prediction response matrix and B is the linear combination parameter
vector, which are

G = [1 ŷ1 ŷ2 . . . ŷG] (8)

B = [b0 b1 . . . bG]
T (9)

The optimal value of B can be calculated from y and G using linear least squares
estimation under several prerequisite assumptions, such as the independence and normal
distributive property of the G column:

B =
(

GTG
)−1

GTy (10)

The expressions of primordial genetic individuals in a genetic population are formed
by randomly combining basic mathematical units. Further, new expressions are generated
using selection and cross-genetic operations. The fitness function was used to evaluate
the fitting ability of all child expressions to the experimental data, and the best ones
were retained. The above process was repeated until the expression satisfied the required
accuracy or reached the optimization time (in this study, the optimization time was set to
24 h for a Lenovo workstation P700 with two INTEL Xeon E5-2620 V3 @2.4GHz processors
and 52 GB RAM). The algorithm was terminated and the set of expressions most likely to
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represent the underlying mechanism of the data was returned. The fitness function was
used to measure the fit of ŷ to y, which was calculated using the root-mean-square error
(RMSE) in this study. The genetic operators included the following:

• Population initialization

For each individual of the primitive population, use the basic mathematical unit
functions constant, input variable, addition, subtraction, multiplication, division, sine,
cosine, exponential, and input variables to generate a symbolic binary tree with a depth
limit, where the default range is 10. In the primary generation, it is important to ensure that
there are no duplicate gene fragments between genetic individuals to enhance the diversity
of the population.

• Selection operator

In the population, each individual participates in a Pareto tournament with its fitness
and complexity as indicators to obtain its probability of being selected for genetic inheri-
tance. Then, according to the probability value of each individual, it selects the candidate
for the crossover operation.

• Crossover operator

Each parent randomly selects a gene, these genes are crossed in the subtree of a
symbolic binomial tree, and the progeny genes replace the original genes in the parent
model. Finally, a progeny is replicated in the new population.

4. Results and Discussion
4.1. Experimental Parameters

Three male participants were invited to participate in the experiment while wearing
athletic shoes (rubber combined with EVA soles). Participants walked slowly (defined
as walk) and ran rapidly (defined as run) ten times each at randomly selected starting
points within the test site for each trial. The presence or absence of both feet off the ground
simultaneously was used as the basis for differentiating walking from running. Sixty sets
of data were obtained, including the participant’s positioning trajectory data during the
experiment (time-series signals from three base station sensors) and human electrostatic
potential test data (time series from four electrostatic sensors). The nomenclature of the test
data was as follows: P1W represents ten sets of data recorded by the first subject who did a
“walk” action ten times, P2R represents ten sets of data recorded by the second subject who
did a “ran” action ten times, and so on. During the experiment, the air temperature at the
site was 21 degrees Celsius and the relative humidity was 45%.

4.2. Data Cleaning and Alignment

In the experiment, the output of the four electrostatic potential sensors was in the form
of an analog signal that was synchronously recorded by the oscilloscope at a sampling rate
of 50 KHz, as shown in Figure 8.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 18 
 

 

4.2. Data Cleaning and Alignment 
In the experiment, the output of the four electrostatic potential sensors was in the 

form of an analog signal that was synchronously recorded by the oscilloscope at a sam-
pling rate of 50 KHz, as shown in Figure 8. 

  
(a) (b) 

Figure 8. The output signals of the four electrostatic potential sensors. (a) Original data. (b) After 
data cleaning. 

As seen in Figure 8a, the electrostatic signal during the human movement was a low-
frequency signal below 1 Hz, and there was a 50 Hz power frequency noise and DC offset 
in the test results; this was due to the influence of the low-frequency electromagnetic ra-
diation of the power supply line in the test field, the residual electrostatic potential of the 
human body, and the surrounding objects with static electricity. Therefore, data cleaning 
operations of filtering, down-sampling, and de-offset of the collected electrostatic poten-
tial data were required. The filtering operation used MATLAB’s low-pass digital filter 
function ‘lowpass ()’ to perform noise reduction on the recorded data, with the cutoff fre-
quency parameter set to 1 Hz, the steepness parameter set to 0.9999, and the stopband 
attenuation parameter set to 1000 dB. The ‘resample ()’ function in MATLAB was selected 
for the down-sampling operation, the target sampling rate parameter was set to 100 Hz, 
and the sampling method was linear resampling. Finally, the DC offset was subtracted 
from the resampled data. The DC offset selected the mean value of the first 100 sample 
points of each data time series, which was the mean value of the electrostatic potential of 
the body of the tested human being standing still for 1 s before exercising. The results of 
the data cleaning are shown in Figure 8b. 

The sampling rate of the UWB positioning system was 100 Hz and the test results are 
shown in Figure 9. 

 

Figure 8. The output signals of the four electrostatic potential sensors. (a) Original data. (b) After
data cleaning.



Sensors 2022, 22, 4698 11 of 18

As seen in Figure 8a, the electrostatic signal during the human movement was a
low-frequency signal below 1 Hz, and there was a 50 Hz power frequency noise and DC
offset in the test results; this was due to the influence of the low-frequency electromagnetic
radiation of the power supply line in the test field, the residual electrostatic potential of the
human body, and the surrounding objects with static electricity. Therefore, data cleaning
operations of filtering, down-sampling, and de-offset of the collected electrostatic potential
data were required. The filtering operation used MATLAB’s low-pass digital filter function
‘lowpass ()’ to perform noise reduction on the recorded data, with the cutoff frequency
parameter set to 1 Hz, the steepness parameter set to 0.9999, and the stopband attenuation
parameter set to 1000 dB. The ‘resample ()’ function in MATLAB was selected for the
down-sampling operation, the target sampling rate parameter was set to 100 Hz, and the
sampling method was linear resampling. Finally, the DC offset was subtracted from the
resampled data. The DC offset selected the mean value of the first 100 sample points of
each data time series, which was the mean value of the electrostatic potential of the body
of the tested human being standing still for 1 s before exercising. The results of the data
cleaning are shown in Figure 8b.

The sampling rate of the UWB positioning system was 100 Hz and the test results are
shown in Figure 9.
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Figure 9. The test results of the moving body trajectory coordinates. The left picture gives the
motion trajectory, the upper-right figure gives the X-coordinate, and the lower-right figure gives
the Y-coordinate.

Since the positioning error of this system was 0.1 m, the 0.1 m amplitude of the
high-frequency noise could also be seen from the experimental data. Therefore, the
‘smoothdata ()’ function in MATLAB was used to smooth the original data to eliminate the
noise in the positioning data, select the moving average method, and set the smoothing
factor parameter to 0.05.

Two independent systems collected the human electrostatic signal and the localization
signal. Neither system could temporally label the data sampling points; therefore, an
alignment operation was required for these two data types. Before the test, the subject was
allowed to stand still for two seconds, during which the two systems were activated. The
exact synchronization of the activation time could not be guaranteed, but the data they
recorded were kept constant. Subsequently, the subjects began to exercise and the recorded
data from both systems produced fluctuations. This study used the data fluctuation point
as the starting point flag for data alignment and performed alignment operations on the
signals collected by the two systems. MATLAB’s ‘diff ()’ function was used to find the
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first-order difference values of the electrostatic signal and the positioning signal. The
‘ischange ()’ function was then used to find the first abrupt change in the differential signal,
which was where the data alignment began. The minimum value of the starting point of
the five-way electrostatic signal was used as the starting point moment of the electrostatic
signal. The minimum value of the starting point of the three-way distance data was used as
the starting point moment of the positioning signal. Before the starting point moment, the
data samples were deleted from the respective original data. The data alignment operation
was performed and the results before and after alignment are shown in Figure 10.
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In Figure 10, the upper figure gives the detection result of the starting point in the
distance data, which was from the third positioning anchor sensor; the central figure gives
the starting point detection result of the test result of the third electrostatic potential sensor.
The third positioning base station sensor and the third electrostatic potential sensor were in
the same position; the lower figure gives the alignment result of the distance data and the
electrostatic potential data.

4.3. Indoor Location Results

In this experiment, the test data of the electrostatic potential sensor was used as the
input variable of the symbolic regression algorithm, and the coordinate trajectory data
measured by the ultra-wideband positioning sensor was used as the target. It was expected
that the coordinates of the moving human body would be inverted by monitoring the
electrostatic potential. The original data collected by the sensor showed that the electrostatic
signal contained more high-frequency components than the positioning signal. This was
because the speed of each foot rising and falling took place faster than the body translation
during the human movement. This signal difference obviously increased the difficulty
of the localization inversion symbolic regression algorithm. To introduce this a priori
knowledge into the modeling process, we pre-smoothed the electrostatically induced signal
to eliminate its high-frequency components and used MATLAB’s ‘smoothdata ()’ function,
choosing a moving average approach with the smoothing factor parameter set to 0.05.



Sensors 2022, 22, 4698 13 of 18

The fitness function of the symbolic regression algorithm was the root-mean-square
error. The normalized root-mean-square error (NRMSE) was chosen to verify the model’s
validity. Because the range of motion and the absolute value of the electrostatic potentials
varied significantly between different sets of data, the absolute root-mean-square error
could not accurately assess the model’s accuracy.

NRMSE =
1

ymax − ymin

√
∑N

t=1(ŷt − yt)
2

N
(11)

The “single-person single-set,” “single-person multi-set,” and “three-person multi-set”
test data were selected as the training samples. The rest of the data were used for the
validation samples. “Single-person single-set” means that only one set of test data of
one person was selected. “Single-person multi-set” means that three sets of test data of
one person were chosen. “Three-person multi-set” means that three sets of test data for
each of the three persons were preferred. The data were randomly used for training in
each experiment according to the above method. The initial values of the algorithm were
randomly evolved while the other parameters remained unchanged, and the symbolic
regression algorithm was run once to obtain a set of optimal models. The above process
was repeated ten times. The optimal symbolic regression model was

X = 0.677− 2.58
Es3−1.47 − 0.677sin

(
−3.07sin(Es2−1.47Es1)

Es3−1.47

)
−sin

(
−2.58

(Es3−1.47)

)2
sin(Es4)sin

(
Es1

sin(Es4)
+ 1.42

1.42−Es2
− Es1

) (Model I)

Y = 2.13 + Es1 + 0.288Es2 + 2.13Es4Es1
2 − sin(Es3)− 0.7Es4

+0.351cos(8.51sin(Es1)− Es3 − 0.755Es4 − 2.13Es2)
(Model II)

where Es1–Es4 represent the corresponding electrostatic potential sensor outputs and mod-
els I and II were derived from the “multi-person, multi-set” experiment; the inverse
localization results of the models on the P3W7 data sample are shown in Figure 11.

In Figure 11, the NRMSE of the model was 0.0626 for the X-coordinate inversion result
and 0.1195 for the Y-coordinate inversion result. The model’s errors for all of the data are
shown in Figure 12a, where the median NRMSE for all the data sets was lower than 0.20,
indicating that the model could achieve 80% accuracy in inverting the motion trajectory in
the 5 m × 5 m test area. While the absolute value of the inverse motion trajectory error is
shown in Figure 12b, the median range of the RMSE was 0.4–0.6 m and we believe that the
error mainly came from the testing process.

During the test, the moving human held the UWB positioning tag sensor (size
0.01 m × 0.02 m × 0.1 m) fixed on one side of the body with one hand, randomly selected
the starting point, and moved freely in the test site. In the process of moving, the orien-
tation of the human body at a particular position was bound to be somewhat different
or even opposite, which could make the human coordinate data obtained from the UWB
positioning system test pathological, that is, the same human position corresponded to
multiple different coordinate data. Assuming that the width of the human body was 0.6 m,
the tag sensor could shift to the other body orientation, and the resulting positioning error
could reach 0.6 m. The induction electrode of the electrostatic potential sensor belongs
to an “omnidirectional antenna,” which senses the electrostatic field of the human body,
which is mainly affected by the position of the human body and is hardly affected by the
body’s orientation. Therefore, the model’s accuracy obtained using the symbolic regression
algorithm was expected to improve further when the pathological localization data were
eliminated. In addition, this experiment used four sensors to realize the positioning inver-
sion in the space of 5 m × 5 m, which had a larger test range than previous literature and
was responsible for the increased error. In the future, the error of positioning inversion is
expected to reduce by further adjusting the size of the sensor induction electrodes.
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4.4. Practicality and Limitations

The following advantages of this method were demonstrated by the experimental
results. First, the localization accuracy of this method could reach 0.4–0.6 m. This was
comparable to the typical breadth of a human shoulder and completely satisfied the need
for human localization. Second, a circuit structure of the electrostatic potential sensor was
proposed in this study. The hardware cost mainly came from the commercial amplifier
chip in it. It is possible to select amplifiers with different performance parameters that
meet the application requirements for sensor performance, power consumption, price, and
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production cycle. When choosing a common commercial amplifier chip, the cost of this
sensor will be comparable to that of a BLE device. Third, the symbolic regression algorithm
required very little processing power compared with the current popular deep learning
methods. In the model-training phase, an ordinary desktop computer was required to
run for one day to obtain a satisfactory model. The resulting model was a collection of
mathematical formulas built on the fundamental unit functions of mathematics, including
constant, input variable, addition, subtraction, multiplication, division, sine, cosine, expo-
nential, and input variables. Additionally, the trained symbolic models could be deployed
without requiring specialized hardware or software environments (such as neural networks
and vector machines). Therefore, the computational complexity of the model is quite
low. A common embedded processor (such as STM32 F103) can implement the real-time
application of people’s movement tracking. Fourth, this method does not require the user
to carry any additional devices. The system does not require regular calibration and other
routine maintenance. Fifth, this method only collects the electrostatic field information of
the moving human body. It will not collect any additional information involving personal
privacy. Sixth, this method is passive and does not actively emit any signal. Therefore, this
method has the features of high positioning accuracy, low system power consumption, low
hardware cost, low algorithm complexity, high user convenience, good privacy protection,
and a friendly environment.

In practical applications, the system requires an initial calibration after it has been
set up. The initial calibration requires a small amount of time, less than one hour for data
collection and less than one day for model training. The entire process requires no qualified
staff. It will, however, involve forbidding activities in the area during data acquisition.
This is due to the symbolic regression algorithm requiring few training samples and
computational resources. The experimental results described in the study were acquired by
training models on a personal computer over one day by utilizing sixty motion trajectory
data. The outcomes of the experiment were satisfactory and reproducible over several trials.
After the initial calibration, a recalibration will not be required if the system arrangement is
not changed.

In addition, more problems need to be solved to enhance the usefulness of this method.
First, there is the issue of distinguishing between several occupants. When multiple
individuals are present in the same testing field, their electrostatic fields will be overlaid
and measured by the same sensor. The mixed electrostatic induction signal will significantly
decrease the localization accuracy. To address this problem, we need to add a signal
separation process before the symbolic regression algorithm. According to the results of
the theoretical analysis in Section 2, the electrostatic induction signal was related to the
individual motion characteristics parameters, including the step frequency and the step
length parameters. In the next step, we will use this information for the signal separation
algorithm. The second issue is the influence of clothing, shoes, and flooring materials. They
can drastically alter the amount of electrostatic charge and electrical potential of the human
body. This affects the signal amplitude of the sensor, and thus, mainly affects the testing
range and accuracy of this system. In the future, we will address this issue by increasing
the size of the sensing electrodes and the sensor density. Third, the electronic products in
the site will not generate interference as the electrostatic signal is directly related to the
human body movements. It is primarily a signal with a frequency below 50 Hz. Therefore,
the sensor’s interference signal is mostly the power frequency signal from the power line
rather than the high-frequency signal emitted by electronic products. The sensor has a
power frequency notch filter circuit built into its design. Consequently, the electromagnetic
radiation signal of electronic products will not impact the system’s performance.

The limitation of this method is that it relies on the electrostatic signal of a moving
individual. The generation of electrostatic signals from the human body is governed by
the leakage resistance of the human body to the ground. Factors such as the clothing and
footwear of a person, the air humidity of the environment, the floor material, and the floor
all affect a human body’s leakage resistance. In some special cases, a human body will
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barely generate electrostatic potential, thus making this method ineffective, for example, in
climatic conditions where the air humidity is particularly high, in an anti-static work area,
when the human body is connected to the anti-static wristband, or when a static ion fan
is deployed. In addition, the electrostatic field of the human body will be well-grounded
when using wall shielding such that this method can not be used through a wall.

5. Conclusions

Based on the symbolic regression machine learning method, this study proposed an
indoor localization method; designed a high-sensitivity, high-precision, and low-noise
electrostatic potential sensor; and built a prototype test system to identify the indoor
location of a moving human body. This method obtains the transfer function from the
electrostatic sensor signal to the location coordinates on site without requiring physical
information about the actual scene. The prototype test system is simple and practical;
adaptable and easy to integrate; and has a better balance of positioning accuracy, system
power consumption, privacy protection, and environmental friendliness.

Regarding future work, first, the realization of the simultaneous detection of multiple
individuals is the primary issue for the practical application of this method. Theoretical
analysis demonstrated that the electrostatic induction signal contains the motion char-
acteristic parameters of individuals. A multi-target detection method based on feature
recognition and multi-sensor data fusion techniques is feasible. Second, the human motion
parameters obtained from the electrostatic signal can be equally used for the prevention and
diagnosis of human motion-related diseases, which will be of great value in elderly care,
such as the diagnosis of Alzheimer’s disease based on an electrostatic signal [32]. Third,
further test scenarios are required to examine the stability of this system under various
environmental conditions, such as the site, floor material, floor, person, clothing, footwear,
temperature and humidity, and climate. Fourth, attempts can be made to integrate this sys-
tem with mature technologies, such as smart building control systems, 5G communication,
and AI IoT to form a more easily accessible and usable hardware system.
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