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Abstract: Previous studies have suggested a role of the endocannabinoid system in metabolic
diseases, such as diabetes. We investigated the effect of diabetes on cannabinoid receptor type 1
(CB1) expression and cannabinoid-induced vasorelaxation in rat aorta rings. Aortas from healthy rats
and from rats with experimentally induced diabetes were used to compare the vasorelaxant effect of
the cannabinoid agonist arachidonylcyclopropylamide (ACPA) and CB1 expression and localization.
After 4–8 weeks of diabetes induction, CB1 receptor expression and CB1 phosphorylation were higher
in aortic rings, in association with greater vasorelaxation induced by the CB1 agonist ACPA compared
to healthy rats. The vasorelaxant effect observed in healthy rats is similar throughout the study.
Further studies are needed to elucidate the implications of CB1 receptor overexpression in diabetes
and its influence on the progression of the cardiovascular complications of this metabolic disease.
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1. Introduction

Type 2 diabetes mellitus is one of the most prevalent metabolic disorders worldwide.
The endocannabinoid system participates in the control of energy homeostasis [1]. Previous findings
indicate that the endocannabinoid system plays a critical role in gene expression of cannabinoid
receptor type 1 (CB1; also known as CNR1) in the β pancreatic islets and other tissues [2], suggesting a
role of the endocannabinoid system in some metabolic diseases, such as type 2 diabetes mellitus.
Thus, substances that activate or antagonize CB1 could also affect diabetes endpoints. In addition,
elevated glucose increases CB1 expression in the kidney, pancreas, subcutaneous adipose tissue and
nervous system [2–5]. Regarding cardiovascular effects, the CB1 and cannabinoid receptor type 2
(CB2) agonist WIN 55,212-2 elicits vasorelaxation in rat aorta [6]. However, the effect of the activation
of these receptors on type 2 diabetes mellitus has not been elucidated. As we reported recently [7],
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pre-incubation of rat aortic rings with the CB1 agonist arachidonylcyclopropylamide (ACPA) results
in vasorelaxation. This vasorelaxant effect is completely blocked by the CB1 antagonist AM281,
suggesting a role of CB1 activation in the regulation of vascular tone.

Taken together, these findings suggest a dual role of CB1 in both glucose regulation and
vaso-responsiveness, depending on the activation or inhibition of the receptor. The aim of the
present study was to evaluate whether diabetes alters the vasorelaxant effects of the CB1 agonist ACPA
in aortic rings and CB1 receptor expression or phosphorylation in the aorta.

2. Results

2.1. Body Weight and Serum Glucose

Bodyweight and fasting glucose were measured before and at 2, 4, and 8 weeks after the initiation
of experimental diabetes (Table 1). After 4 and 8 weeks, the weight of the diabetic rats was decreased
compared to their initial weight; diabetic rats had elevated fasting glucose levels compared to their
initial levels and with respect to control rats (Table 1).

Table 1. Bodyweight and serum glucose levels in rats.

2 Weeks 4 Weeks 8 Weeks

Initial Final Initial Final Initial Final

Body Weight (g)
Healthy 279 ± 3.84 322 ± 8.23 * 319 ± 14.4 338 ± 4.85 321 ± 6.69 342 ± 8.71 *
Diabetes 235 ± 9.3 263 ± 10.8 * 280 ± 8.16 243 ± 9.9 308 ± 13.33 275 ± 14.65

Fasting Glucose (mg/dL)
Healthy 81 ± 1.78 85 ± 2.56 76.80 ± 2.2 78 ± 2.21 83 ± 4.49 77 ± 1.5
Diabetes 319 ± 19.28 405 ± 19.83 * 288 ± 18.46 478 ± 34.7 * 310 ± 13.13 441 ± 13.71 *

Data are presented as mean ± standard error. * p < 0.05 Student’s t-test for paired samples.

2.2. Effects of Cannabinoids on Vasorelaxation of Aortic Rings from Diabetic and Healthy Rats

We previously reported that ACPA causes vasorelaxation of aortic rings from healthy rats through
activation of CB1, an effect that is blocked when the rings are pre-incubated with the CB1 antagonist
AM281 [7]. To explore the effects of CB1 activation on the vascular tone of aortic rings during
the progression of diabetes in rats (2, 4, and 8 weeks), we used ACPA, a selective agonist for CB1.
ACPA induced vasorelaxation, reaching a maximum of 20.64 ± 5.2% (n = 4 rats) and 16.94 ± 3.84%
(n = 4 rats) at two weeks; 17.74 ± 3.83% (n = 5 rats) and 20.98 ± 4.56% (n = 5 rats) at four weeks;
and 20.17 ± 3.04% (n = 7 rats, p < 0.01) and 37.87 ± 5.63% at eight weeks (n = 7 rats, p < 0.001 relative to
the control condition; Figure 1A) for healthy and diabetics rats, respectively. We reported previously
and corroborated here that the maximum vasorelaxation induced by the same concentration of ACPA
in aortic rings from healthy rats was about 20% throughout the study. Thus, the vasorelaxant effect of
the cannabinoid ACPA on aortic rings from diabetic rats in the present study was more pronounced
than the slower vasorelaxation effect of ACPA on aortic rings from healthy rats in the previous study.
Furthermore, the vasorelaxant effect of ACPA on aortic rings from diabetic rats after eight weeks
of diabetes induction was almost completely reversed when the rings were incubated with the CB1

antagonist AM281 30 min previous to the addition of ACPA (3.86 ± 1.78%; n = 5 rats). Figure 1B
shows contractures by phenylephrine and the effect of ACPA on healthy (upper trace) and diabetic
rats (lower trace). ACPA induced a more pronounced relaxation in aortic rings from diabetic rats than
those from healthy rats. A smaller contracture induced by 1 µM Phe was observed in aortic rings from
diabetic rats as above described.



Molecules 2020, 25, 4948 3 of 10
Molecules 2020, 25, x FOR PEER REVIEW  3  of  10 

 

 

Figure 1. Vasorelaxant effect of arachidonylcyclopropylamide  (ACPA) on healthy and diabetic rat 

aortic  rings.  (A).  Summary  of  the  vasorelaxant  effect  induced  by ACPA  at  different  times  after 

diabetes induction. Dark bars correspond to healthy rats, and gray bars correspond to diabetic rats 

after  2,  4  or  8 weeks  after  Streptozotocin  administration. The  effect  of ACPA when  cannabinoid 

receptor type 1 (CB1) receptors were blocked with AM281 is shown in the last gray bar. * Significant 

(p  <  0.05)  change  in  tension  compared  to  Phe  precontraction.  (B)  Isometric  tension  recording  of 

phenylephrine (Phe)‐induced contraction of aortic rings. The top lines indicate exposure to ACPA. 

Upper trace: vasorelaxant effect of ACPA on a healthy ring. Lower trace: effect of ACPA on a diabetic 

ring. The relaxation of tension was measured at 60 min of ACPA treatment. The vasorelaxant effect 

was more pronounced in aortic rings from diabetic rats than those from healthy rats (n = 5 rats). 
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Figure 1. Vasorelaxant effect of arachidonylcyclopropylamide (ACPA) on healthy and diabetic rat
aortic rings. (A). Summary of the vasorelaxant effect induced by ACPA at different times after diabetes
induction. Dark bars correspond to healthy rats, and gray bars correspond to diabetic rats after
2, 4 or 8 weeks after Streptozotocin administration. The effect of ACPA when cannabinoid receptor
type 1 (CB1) receptors were blocked with AM281 is shown in the last gray bar. * Significant (p < 0.05)
change in tension compared to Phe precontraction. (B) Isometric tension recording of phenylephrine
(Phe)-induced contraction of aortic rings. The top lines indicate exposure to ACPA. Upper trace:
vasorelaxant effect of ACPA on a healthy ring. Lower trace: effect of ACPA on a diabetic ring.
The relaxation of tension was measured at 60 min of ACPA treatment. The vasorelaxant effect was
more pronounced in aortic rings from diabetic rats than those from healthy rats (n = 5 rats).

2.3. CB1 Receptor Expression, Phosphorylation Status and Localization in Diabetic Rat Aorta

To further explore the role of CB1 receptors in diabetes, we explored whether the increased
vasorelaxant effect seen in diabetes is related to a modulation of CB1 expression in aortic rings from
diabetic rats and/or a change in the phosphorylation status of the receptor. These issues were addressed
in immunohistochemistry experiments with an anti-CB1 antibody that labels total CB1 receptors
or by labeling only phosphorylated CB1 receptors. The experiments were performed in parallel in
aortic rings from healthy and diabetic rats using the same amounts of antibodies and incubation
times. Confocal images were acquired using the same parameters. The mean immunofluorescence
intensities of total CB1 and phosphorylated CB1 were analyzed at distinct times (2, 4, and 8 weeks)
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of diabetes progression vs. controls (i.e., healthy rats) as shown in Figure 2. Total CB1 receptors had
a mean intensity of 100 ± 8.03% and 49.85 ± 24.72% (p = 0.04; n = 4 rats) after 2 weeks; 100 ± 4.37%
and 115.68 ± 11.84% (p = 0.31; n = 4 rats) after 4 weeks; and 100 ± 6.29% and 145.83 ± 10.14% (p < 0.02;
n = 4 rats) at 8 weeks for healthy and diabetic rats, respectively. Thus, total CB1 receptor expression
is increased in the rat aorta after eight weeks of diabetes induction (Figure 2A). Phosphorylated CB1

receptors had a mean intensity of 100 ± 5.12% and 60.29 ± 2.04% (p < 0.0001; n = 4 rats) at 2 weeks; 100
± 7.07% and 157.23 ± 9.89% (p = 0.006; n = 4 rats) at 4 weeks; and 100 ± 11.06% and 176.59 ± 11.20% (p =

0.01; n = 4 rats) at 8 weeks for healthy and diabetic rats, respectively (Figure 2B). A significant increase
in the mean intensity of phosphorylated CB1 was observed after four weeks of diabetes progression (2
vs. 4 weeks, p < 0.001; n = 4 rats). The immunofluorescence did not differ significantly between 4 and
8 weeks.
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Figure 2. Mean intensity of total CB1 receptors (A) and phosphorylated CB1 receptors (B) in healthy 

and diabetic  rat  aortas. n  = 10  image  stacks  for  each.  * Significant  (p  < 0.05)  change  in CB1 mean 

intensity in diabetic vs. healthy aortic rings at different time points. ** Significant difference (p < 0.05) 

in CB1 mean intensity between 2 and 4 weeks. *** Significant difference (p < 0.05) in CB1 mean intensity 

between 4 and 8 weeks. 

Figure 2. Mean intensity of total CB1 receptors (A) and phosphorylated CB1 receptors (B) in healthy
and diabetic rat aortas. n = 10 image stacks for each. * Significant (p < 0.05) change in CB1 mean
intensity in diabetic vs. healthy aortic rings at different time points. ** Significant difference (p < 0.05)
in CB1 mean intensity between 2 and 4 weeks. *** Significant difference (p < 0.05) in CB1 mean intensity
between 4 and 8 weeks.

Figure 3 shows phosphorylated CB1 receptor labeling in aortas from healthy and diabetic rats
eight weeks after diabetes onset. CB1 is localized in smooth muscle (Figure 3B,C,F,G). The intensity of
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the signal was higher in diabetic rings than in healthy rings (compare Figure 3A,E). Similar results
were obtained when total CB1 receptors were labeled.
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receptor (green) and (F) smooth muscle α-actin (red). (G) An overlay of (E) and (F). (H) Bright-field
microscopy image of the aortic ring.

3. Discussion

The role of the endocannabinoid system has recently emerged as being important in the
pathogenesis of type 2 diabetes mellitus, which is a well-known risk factor for cardiovascular
disease and heart failure, though the mechanisms involved are not well-understood [8–11].

Diabetes has been shown to decrease the maximum relaxation and sensitivity to Acetylcholine, with
hyperglycemia being the major causal factor in the development of this endothelial dysfunction [12].
Delta-9-tetrahydrocannabinol treatment and some endocannabinoids improve endothelium-dependent
relaxation of the aorta in the Zucker rat model of type 2 diabetes, as well as the STZ/nicotinamide-induced
diabetic rat model [12–15]. However, vascular endothelium-independent mechanisms have not been
studied. Here, we showed that ACPA has an increased vasorelaxant effect on the aorta by direct
modulation of CB1 receptors on the artery smooth muscle cells [7].

The aim of the present study was to evaluate the possible changes in the expression of CB1 receptors
on thoracic aorta from streptozotocin-induced diabetic rats and its functional role by investigating the
in vitro effects of the administration of a cannabinoid CB1 receptor agonist on aortic rings. Recently,
evidence has accumulated regarding the vasorelaxant effects of cannabinoids in isolated blood
vessel preparations [8,9]. Several studies have reported hypotensive effects of the endocannabinoid
anandamide [13,14], and an enhancement of these effects has been shown in hypertensive rats [16–19],
as well as increased circulating levels of this endocannabinoid in diabetic patients [20], suggesting that
anandamide could have beneficial vascular effects. In 2012, Hopps et al. [21] reported enhanced
vasorelaxant effects of oleamide in hypertension and that this increase could be explained by an
adaptation to increased blood pressure. However, there have been no reports of the effects of
cannabinoids in diabetes. The effects of anandamide reported in these studies were mediated by the
activation of both CB1 and TRPV1 receptors. Thus, we used a potent and selective CB1 receptor agonist
to evaluate the effect of the activation of these receptors on the vascular tone of aortas from diabetic
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rats. We recently reported that the CB1 receptor agonist ACPA induces vasorelaxation of aortic rings
from healthy rats, and this effect was mediated by the activation of CB1 receptors, BKCa

2+ channels,
and the inhibition of voltage-gated Ca2+ channels located at the membrane of smooth muscle cells
in these arteries [7]. Our results indicate that ACPA has a more pronounced (~2 times) vasorelaxant
effect on aortic rings from diabetic rats at eight weeks than the effect observed in healthy rats, which is
consistent with the enhanced effects reported in hypertension. Furthermore, this vasorelaxant effect was
completely blocked when a CB1 antagonist was used prior to the addition of ACPA, indicating that the
vasorelaxant effect relies on the activation of CB1 receptors suggesting a mechanism similar to that
reported for healthy rats [7].

The modulation of CB1 receptors has already been reported in some diseases.
During hyperglycemia, the expression of CB1 receptors in the frontal cortex of mice is reduced [22],
but they are overexpressed in the kidney, pancreas and nervous system [2,4,5]. In addition, CB1

receptors are overexpressed in the vasculature of hypertensive rats, which is related to the increased
vasorelaxant effect caused by cannabinoids [13,19]. Therefore, in order to evaluate the possible
changes in CB1 expression in the aortas of diabetic rats, we analyzed total CB1 receptor expression
and phosphorylated CB1 receptors by confocal microscopy. Our results show that CB1 receptors are
expressed at higher levels on aortic rings from diabetic rats compared to those from healthy rats.
Thus, the enhanced vasorelaxant effect induced by ACPA in diabetic rats could be explained by the
overexpression of CB1 receptors on aortic smooth muscle cells. These findings agree with previous
studies in other tissues [2]. The vasorelaxant effect increases after eight weeks of diabetes induction,
which is consistent with CB1 receptor overexpression after eight weeks. This overexpression could be
relevant in other intracellular signaling pathways, as CB1 activation has also been reported to contribute
to vascular inflammation [23,24], induce cell death in human coronary artery endothelial cells [25] and
promote atherosclerosis [26]. On the other hand, CB1 receptor phosphorylation at serine 316 has been
reported to reduce the receptor effects [5,27]. This increase in phosphorylated CB1 receptors could
represent a compensatory mechanism for the increase in total CB1 receptor expression. Although
phosphorylated CB1 receptors increase from week 4 to 8, a significant increase in the vasorelaxant
effect of ACPA on aortic rings from diabetic rats was observed at eight weeks, indicating that this
compensatory response did not affect the activation of CB1 receptors in our study.

Our results also show that aortic rings from diabetic rats have decreased reactivity to phenylephrine,
which was determined previously in other studies [28] and may be related to a decrease in the expression
of α-adrenergic receptors associated with high glucosuria [29].

In our earlier study, we showed that ACPA activation of CB1 in smooth muscle results in
vasorelaxation of aortic rings in healthy rats [7], and in the current study, we link diabetes to
greater vasorelaxation of aortic rings. Thus, the current findings add to a suggestive picture of the
interaction between diabetes, CB1 and cardiovascular responses, suggesting that upregulation of the
endocannabinoid system may positively alter vascular function. Previous studies have suggested
that activation of CB1 is involved in the development of cardiovascular complications of diabetes [10].
Our results suggest that diabetes per se may increase total CB1 receptor expression and phosphorylated
CB1 receptors in aortic rings and indicate a potential target for vascular complications in experimental
diabetes [12,30], as it has been proposed for other disorders associated with type 2 diabetes mellitus [31].
Recent studies have shown the potential therapeutic role of the endocannabinoid system in diabetes
complications, including the treatment of diabetic nephropathy [32].

Further studies are needed to elucidate other possible implications of CB1 receptor overexpression
in the aorta in diabetes and its influence on the progression of the cardiovascular complications of this
metabolic disease.
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4. Materials and Methods

4.1. Animals

Male Wistar rats (approximately 2 months old, weight 230–350 g) were randomly divided into
groups, one of healthy rats and one to undergo experimentally induced diabetes. All animals were
maintained under the same conditions at the laboratory animal facility of the Centro Universitario de
Investigaciones Biomédicas at Universidad de Colima, México. The rats were housed under standard
light/dark conditions (12 h light/12 h dark) at 22 ± 2 ◦C. They were fed ad libitum with water and
rodent food (Envigo Labs Corporation, Indianapolis, IN, USA). We conducted all experiments and
animal management protocols in accordance with the ethical standards of the Mexican Official Norm
technical specifications for the production, care and use of laboratory animals (NOM-062-ZOO-1999)
and recommendations listed in the Guide for the Care and Use of Laboratory Animals from the United
States National Institutes of Health.

4.2. Experimental Induction of Diabetes

We induced diabetes in rats by a single intraperitoneal injection of 45 mg of STZ (Sigma-Aldrich,
St. Louis, MO, USA) per kilogram of body weight [33]. STZ damages the pancreatic β cells,
affecting serum glucose. Fasting blood glucose ≥200 mg/dL was used to confirm a diabetic state [33].

4.3. Cannabinoid Administration

ACPA (Tocris, Bristol, UK) was dissolved in Tocrisolve and used at 30 µM as described in a
previous in vitro study [7].

4.4. Glucose Measurements

We measured glucose parameters after 12 h of overnight fasting, as described previously [34].

4.5. Removal and Preparation of Aortas

Diabetic and healthy male Wistar rats were anesthetized and euthanized by intraperitoneal
administration of pentobarbital. The aorta was removed via an incision in the thoracic cavity and
placed on a Petri dish with Krebs–Henseleit solution (118 mM NaCl, 5 mM KCl, 1.2 mM MgSO4,
1.2 mM KH2PO4, 25 mM NaHCO3, 2 mM CaCl2, 2 g of D-glucose; pH 7.4). Aortas were fixed with
4% paraformaldehyde for 24 h for immunohistochemical experiments or cut into 3 µm rings for
tension recordings.

4.6. Aortic Ring Tension Recordings

Aortic rings were placed in a 10 mL tissue bath filled with Krebs–Henseleit solution, bubbled with
95% O2 and 5% CO2 and maintained at 37 ◦C in a circulating water bath. The rings were placed
between two stainless steel wires; one wire was fixed to a manipulator, and the other was connected
to an isometric force transducer (Radnoti Glass Technology Inc., Monrovia, CA, USA). The force
transducer was connected to a CyberAmp (Axon Instruments, Foster City, CA, USA) and the signal
acquired with a Digidata 1200 (Axon Instruments, Foster City, CA, USA) in the Axoscope subroutine
of pClamp (version 9; Axon Instruments, Foster City, CA, USA). Aortic rings were precontracted
with 1 µM phenylephrine and, when contraction was stable (this was set at 100%), we added 30 µM
ACPA to the bath. We performed analyses using the Clampfit subroutine. The experiments were
performed in duplicate, and the data averaged. Results are expressed as the mean ± standard error of
the measurements from at least 8 aorta rings from at least four different rats.
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4.7. Immunohistochemical Analysis of Aortic Rings

After fixation in paraformaldehyde, the aorta was embedded in paraffin and cut into 3-µm aortic
rings, which were placed on glass slides. The slides were washed three times with xylene for 10
min each (Sigma-Aldrich, St. Louis, MO, USA). We then rehydrated the rings by washing for 3
min with decreasing concentrations of ethanol (95%, 70%, 50% and 30%; three times each). Next,
the rings were incubated in 10% normal goat serum in phosphate-buffered saline (PBS)/0.2% Triton
X-100 for 30 min at room temperature to block background staining and permeabilize the cells. After
being blocked, the rings were incubated overnight at 4 ◦C with anticannabinoid receptor I antibody
(1:100; cat. no. ab23703, Abcam, Cambridge, MA, USA) or recombinant anticannabinoid receptor I
(phospho S316) antibody [EPR2223(N)] (1:100; cat. no. ab186428, Abcam, Cambridge, MA, USA) and
anti-alpha smooth muscle actin [1A4] antibody (1:50; cat. no. ab7817, Abcam, Cambridge, MA, USA).
The next day, we washed the slides in PBS with 0.2% Triton X-100 and 1% normal goat serum three times
for 5 min each. Secondary antibodies (1:100 FITC-conjugated anti-rabbit antibody (1:100; cat. no. ab6717,
Abcam, Cambridge, MA, USA) and 1:50 goat anti-mouse IgG (H+L) cross-adsorbed secondary antibody,
Alexa Fluor 568 (cat. no. A-11004, Thermo Fisher Scientific, Waltham, MA, USA) were added to the
aortic rings, which we then incubated for 1 h in the dark at room temperature. Finally, we washed the
slides three times in PBS and mounted coverslips using ProLong Gold Antifade reagent with DAPI
(Thermo Fisher Scientific, Waltham, MA, USA). The specificity of the antibodies was evaluated by
performing experiments in the absence of the first antibodies and by pre-absorbing the cannabinoid
receptor I antibody with its blocking peptide (cat. # ab50542, Abcam, Cambridge, MA, USA) 30 min
prior to addition to the samples.

We acquired confocal images using an LSM700 Zeiss confocal microscope using a 40× objective
with a numeric aperture of 1.3. The mean intensity of the immunofluorescence of 10 different images
from four different experiments was calculated using ImageJ software (National Institutes of Health,
Bethesda, MD, USA) [35].

4.8. Statistical Analysis

We performed descriptive statistical analyses using Stata software (version 11). Variables are
reported as mean and standard error. We used paired Student’s t-tests to assess differences in mean
values at the beginning and end of each intervention and Student’s t-tests for independent samples
to assess differences in the mean values recorded for rats with experimentally induced diabetes vs.
control rats. Analysis of variance (ANOVA) was used to assess differences between groups. Significance
was considered when p < 0.05.
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