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Combined whole‑lesion 
radiomic and iodine analysis 
for differentiation of pulmonary 
tumors
Lea Azour1,2*, Jane P. Ko1,2, Thomas O’Donnell3, Nihal Patel1,2, Priya Bhattacharji1 & 
William H. Moore1,2

Quantitative radiomic and iodine imaging features have been explored for diagnosis and 
characterization of tumors. In this work, we invistigate combined whole‑lesion radiomic and iodine 
analysis for the differentiation of pulmonary tumors on contrast‑enhanced dual‑energy CT (DECT) 
chest images. 100 biopsy‑proven solid lung lesions on contrast‑enhanced DECT chest exams within 
3 months of histopathologic sampling were identified. Lesions were volumetrically segmented 
using open‑source software. Lesion segmentations and iodine density volumes were loaded into 
a radiomics prototype for quantitative analysis. Univariate analysis was performed to determine 
differences in volumetric iodine concentration (mean, median, maximum, minimum, 10th percentile, 
90th percentile) and first and higher order radiomic features (n = 1212) between pulmonary tumors. 
Analyses were performed using a 2‑sample t test, and filtered for false discoveries using Benjamini–
Hochberg method. 100 individuals (mean age 65 ± 13 years; 59 women) with 64 primary and 36 
metastatic lung lesions were included. Only one iodine concentration parameter, absolute minimum 
iodine, significantly differed between primary and metastatic pulmonary tumors (FDR‑adjusted 
p = 0.015, AUC 0.69). 310 (FDR‑adjusted p = 0.0008 to p = 0.0491) radiomic features differed between 
primary and metastatic lung tumors. Of these, 21 features achieved AUC ≥ 0.75. In subset analyses 
of lesions imaged by non‑CTPA protocol (n = 72), 191 features significantly differed between primary 
and metastatic tumors, 19 of which achieved AUC ≥ 0.75. In subset analysis of tumors without history 
of prior treatment (n = 59), 40 features significantly differed between primary and metastatic tumors, 
11 of which achieved AUC ≥ 0.75. Volumetric radiomic analysis provides differentiating capability 
beyond iodine quantification. While a high number of radiomic features differentiated primary versus 
metastatic pulmonary tumors, fewer features demonstrated good individual discriminatory utility.

Lung cancer is the leading cause of cancer-related death in the United  States1 and  worldwide2, with additional 
morbidity and mortality related to pulmonary metastases. CT is the most widely used imaging modality for 
pulmonary lesion evaluation, with serial CT or PET imaging often used to discern benign from neoplastic eti-
ologies, and treatment response. Yet, quantitative measures, whether based on contrast enhancement or texture 
imaging features, have not been established to distinguish benignity from malignancy, type of neoplasm, and 
predict subsequent treatment response.

Contrast-enhanced dual-energy computed tomography (DECT) analysis allows iodine density to be calculated 
from volumes of  interest3. Iodine concentration has been used to differentiate benign from malignant lesions and 
lymph nodes, including pulmonary  lesions4–7. Iodine quantification has also been used in lung cancer for classifi-
cation of tumor  histopathology6,  grade8–10, and treatment  response11–13, however is affected by protocol. Because 
iodine values may be affected by region of interest (ROI) location and  size14, whole-tumor three-dimensional 
(3D) volumetric iodine  characterization9,13 is increasingly utilized.

Radiomics, the extraction of large-scale quantitative data from images, provides an additional method for 
lesion analysis. Radiomic evaluation on contrast-enhanced, including dual energy, and non-contrast enhanced 
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studies has been used to classify tumor histopathology in non-small cell lung cancer (NSCLC)15,16, and predict 
tumor behavior and outcomes for lung  cancers10,16–22.

To our knowledge, this is the first assessment of volumetric solid tumor characterization using DECT radi-
omics, which allows for the simultaneous evaluation of iodine concentration and radiomic parameters in the 
same cohort. Our purpose was to evaluate the performance of volumetric iodine and radiomic parameters in 
differentiating pulmonary tumors, including primary versus metastatic lesions.

Materials and methods
This retrospective study was approved by the NYU institutional review board (i15-01478) and is compliant with 
the Health Insurance Portability and Accountability Act (HIPAA), and all methods were performed in accord-
ance with relevant guidelines and regulations. The requirement for informed consent was waived as approved 
by NYU institutional review board.

A search was conducted using the radiology workflow system (Primordial, Nuance Communications Inc., 
Burlington, MA) for all exams acquired on our institution’s two DECT scanners (radiology search term was 
performing CT scanner resource) from 1/1/2015-4/30/2018. An automated follow-up search parameter required 
all queried radiology cases to have histopathology in the electronic medical record (Epic Systems, Verona, WI) 
within 90 days either before or after DECT imaging. The hospital name (appearing in all institutional pathology 
reports) was used as the pathology search term. Search results included patient gender, age, date of CT imaging, 
type of CT protocol, date of histopathology acquisition, body region imaged, histopathologic specimen, and 
radiology and histopathology reports.

All cases were reviewed by a board-certified cardiothoracic radiologist to identify those with diagnostic lung 
histopathology among resulted contrast-enhanced dual-energy acquired chest CTs (Fig. 1). Exclusion criteria 
were lesion size < 8 mm (no size maximum); lesions indistinguishable from adjacent atelectasis/consolidation; 
lesions of mediastinal/hilar origin indistinguishable from adjacent central hilar vasculature; and subsolid, cystic 
or cavitary lesions. Lesion location was recorded. If two enhanced DECTs were resulted within the search window, 

All exams performed on DECT scanners between January 
2015 and April 2018 with histopathology +/- 90 Days

(n=12,372)

811 DECT cases with histopathology of lung origin

440 cases excluded: 
• Non-contrast enhanced acquisi
on (n=356)
• Non-dual energy protocol acquisi
on (n=84)

11,561 cases excluded due to non-lung histopathology

371 contrast-enhanced chest DECT cases with 
histopathology of lung origin

106 lesions for volumetric segmenta�on

265 cases excluded:
• Lesion resection prior to DECT imaging (n=35) 
• Duplicate case due to either concurrent FNA/core biopsy or 

multiple CTs within timeframe (n=39) 
• No discrete parenchymal lesion (consolidation, interstitial lung 

disease, or endobronchial) (n=67) 
• Lesion indistinguishable from adjacent 

atelectasis/consolidation (n=40), of mediastinal/hilar origin 
(n=27), or not segmentable due to extensive pleural-based 
involvement (n=1) 

• Histopathology not corresponding to lesion, or indeterminate 
which lesion sampled (n=20) 

• Equivocal or non-diagnostic histopathology (n=22) 
• Subsolid/cystic/bleb (n=8); < 8 mm (n=4); sutures within 

(n=2) 

1 case excluded:
• Lesion incompletely bounded by dual energy circle (n=1)

105 lesions for radiomic analysis

Figure 1.  Flowchart of lesion selection and exclusion criteria. DECT dual energy computed tomography.
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the DECT temporally closest to date of histopathologic sampling was chosen. In patients with multiple lesions, 
only the one with definitive histopathologic sampling was chosen. Histopathology from included lesions was 
obtained by either core biopsy or surgical resection.

A total of 106 lesions met inclusion criteria for volumetric segmentation (Fig. 1). Collected clinical informa-
tion included patient gender, age, date of tissue sampling, date of DECT imaging, lesion location, and lesion his-
topathology. The medical record was also reviewed for each patient to determine if any treatment for malignancy 
had been administered prior to image acquisition, including chemotherapy, immunotherapy, or radiotherapy. 
Response to therapy was not assessed. Image data were anonymized prior to analysis.

CT imaging protocol. DECT protocol imaging was performed on a third-generation dual-source multi-
detector CT (Somatom Force, Siemens Healthineers, Forchheim, Germany), with 192 × 0.6  mm collimation, 
tube voltages of 80 kVp (A tube) and tin filtered 150 kVp (B tube), quality reference milliampere seconds (mAs) 
of 130 mAs and 100 mAs, respectively, and tube current modulation (CareDose4D). The DECT data sets were 
reconstructed at 1 mm slice thickness at 0.8 mm increment, utilizing iterative reconstruction (ADMIRE, strength 
2), with Qr40 kernel for material decomposition and dual-energy data analysis.

Contrast-enhanced chest CT (n = 74) and pulmonary CTA exams were included (n = 31). Intravenous contrast 
was administered using weight-based dosing of 1.5 mL/kg, for a maximum of 100 cc of 300 mg/mL of nonionic 
iodinated intravenous contrast, injected at a rate of 2–3 cc/s via a 20 or 22-gauge intravenous line, with a 20 s 
delay. For pulmonary CTA studies, 50–60 mL of nonionic iodinated intravenous contrast was administered with 
injection rate of 3–5 cc/s via a 20-gauge or less intravenous line, with 5–7 s delay and bolus tracking Hounsfield 
unit (HU) of 130 at the pulmonary trunk.

Volumetric lesion segmentation. The 106 pulmonary lesions satisfying inclusion criteria were manually 
volumetrically segmented on the low-kVp dataset by a cardiothoracic radiologist with one year of post-fellow-
ship experience using an open-source software application, ITK-SNAP23 (Fig. 2). Segmentation retrieval failed 
in one case, wherein the lesion was only partially included in the dual energy circle, and this case was therefore 
excluded from radiomic analysis. Therefore, 105 lesions from 105 individuals (60 women, 45 men) with mean 
age 65 years (standard deviation 13 years, range 21–92 years) were segmented. These included primary lung 
cancers (n = 64) and metastatic lung tumors (n = 36) (Table 1). Benign lesions (n = 5) were excluded from iodine 
radiomic analysis.

The low and high kVp image data sets with the volumetrically segmented lesions were exported to a commer-
cially available software program for DECT data (Syngo Via VB30B Dual Energy workflow, Siemens Healthineers, 
Forchheim, Germany). This technology allows dual energy iodine analysis, creating an “absolute” iodine density 
volume, comprised of voxels. This computation is applied to all voxels within the lesion volume, and thus the 
resultant volume has the same spatial resolution as the original low and high kVp volume pair. Processing was 
performed using Matlab™.

Quantitative DECT volumetric iodine concentration and radiomic iodine texture analy‑
sis. Lesion segmentations were loaded into the investigational prototype software program for quantitative 
analysis (Syngo Via Frontier Radiomics, Siemens Healthineers, Forchheim, Germany). Quantitative radiomic 
features (n = 1212), as defined by the radiomics platform (Appendix Table 1), were extracted for each lesion. 
These included morphology-based shape features, first-order based iodine and histogram features, and higher 
order texture features based on gray level matrices.

Higher order texture matrices included gray-level co-occurrence (GLCM), gray-level size zone (GLSZM), 
gray-level run length (GLRLM), neighboring gray-tone difference (NGTDM) and gray-level dependence 
(GLDM) matrices. First and higher order texture features were also calculated from images preprocessed through 
filters available through the platform, using wavelet (decomposition levels: LLL, LLH, LHL, LHH, HLL, HLH, 
HHL, HHH), log, exponent, square, and square root functions. Each of these filters is utilized to enhance specific 
aspects of the underlying image for radiomic analysis. Each filter and radiomic feature pair are handled as a single 
feature. Shape features are intensity independent and therefore  unfiltered24.

Statistical analysis. Univariate analysis was performed using a 2-sample t test, filtered for false discoveries 
using the Benjamini–Hochberg method, to determine radiomic features significantly differing between primary 
versus metastatic tumors, untreated primary versus untreated metastatic tumors, lung adenocarcinoma versus 
squamous cell carcinomas, and untreated from treated tumors. Because exams were acquired by both CTPA and 
non-CTPA protocols, subset analysis of only those lesions imaged by non-CTPA protocol was also performed, 
for all lesions and the untreated subset. A false discovery rate (FDR) adjusted p < 0.05 significance level was used 
for all analyses, and features were ranked according to FDR-adjusted p < 0.05. Effect size threshold was 0.1, and 
decorrelation method mRMR (minimal redundancy maximal relevance). Mutual information value obtained 
to assess for mutual dependence of variables. Statistical analyses were performed within the Syngo Via Frontier 
Radiomics platform.

Results
The analyzed cohort included 100 individuals, with 64 with primary lung cancers and 36 with metastatic lung 
tumors, Table 1. At time of imaging, 41 individuals had a history of prior systemic therapy (termed “treated 
lesions”), with one treated lesion having also undergone radiotherapy. There were 59 tumors that were treatment 
naïve (termed “untreated lesions”). Mean lesion volume for all lesions was 65.7 ± 138 mL. There was no significant 
difference in lesion volume between compared subgroups.
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Univariate analysis of radiomic features distinguishing primary versus metastatic pulmo‑
nary tumors. Of 1212 radiomic features, 310 (FDR-adjusted p = 0.0008 to p = 0.0491) significantly differed 
between primary and metastatic lung tumors on univariate analysis (Table 2, Appendix Table 1).

Only one original first order iodine concentration parameter, absolute minimum iodine, significantly differed 
between primary and metastatic pulmonary tumors (FDR-adjusted p = 0.015; AUC 0.69). Absolute volumetric 
iodine minimum was higher in metastatic (− 2.4 mg/mL) than primary lung tumors (− 3.5 mg/mL). Log and 
squareroot functions of absolute first order minimum iodine were also significant discriminating features for 
primary versus metastatic lung tumors, with AUC ≥ 0.75.

In terms of shape-based features, 12 of 16 features significantly differed between primary and metastatic 
tumors, including compactness1 and compactness 2, major and minor axes, maximum 2D diameter (column, 
row and slice), spherical disproportion, sphericity, and surface volume ratio (Appendix Table 1). However, these 
features individually did not demonstrate AUC ≥ 0.75, and lesion volume did not significantly differ between 
primary and metastatic lesions.

Of the 18 first order features assessed by 12 filters (216 total parameters), 41 radiomic features significantly 
differed between primary and metastatic tumors. Exponential filters, computing exponential values of the original 
image rescaled on the range of the original  image25, for first order features of 90th percentile, interquartile range, 
mean, mean absolute deviation, median, robust mean absolute deviation and root mean squared were signifi-
cantly different between primary and metastatic tumors. Logarithm and square-root filtered first order entropy 
and uniformity significantly differed between primary and metastatic tumors. Square-root filtered absolute 
entropy and uniformity demonstrated AUC 0.75 (Table 3) in differentiating primary versus metastatic tumors.

Figure 2.  Volumetric lesion segmentation. (A) Axial image demonstrating lesion segmentation mask on 
low-kV dataset using ITK-SNAP (http:// www. itksn ap. org/ pmwiki/ pmwiki. php). (B) Lesion result volume 
reflecting iodine density (mg/mL) using R2018B Matlab 9.5.

http://www.itksnap.org/pmwiki/pmwiki.php
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Of the 310 features that significantly differed between primary and metastatic lung tumors, 246 were higher 
order texture features. For example, several NGTDM contrast features, including original and 10 filtered (HHH, 
HHL, HLH, HLL, LHH, LHL, LLH, LLL, log, squareroot), significantly differed between primary and meta-
static lung tumors (AUC > 0.61). NGTDM coarseness significantly differed between primary and metastatic 
lung tumors using 10 (log, square root, HHH, HHL, HLH, HLL, LHH, LHL, LLH, LLL) of 12 possible filters 
(AUC > 0.7). GLRLM run entropy significantly differed between primary and metastatic lung tumors using 9 
(exponential, logarithm, square, square root, HHH, HHL, LHH, LHL, LLL) of 12 possible filters.

Subset analysis of tumors imaged by non‑CTPA protocol. In the subset of tumors imaged by non-
CTPA protocol, 191 (FDR-adjusted p = 0.0127 to p = 0.0499) radiomic features differed between primary and 
metastatic lung tumors (Table 2).

Table 1.  Lesion characteristics.

Parameter Value

Number of lesions 100

Lesion pathology All lesions (n = 100), untreated subset (n = 59)

Primary lung tumors 64, 42

 Adenocarcinoma 48, 29

 Squamous cell 13,12

 Large cell neuroendocrine 1, 0

 Sarcomatoid carcinoma 1, 1

 Small cell 1, 0

Tumors metastatic to lung 36, 17

 Renal/urothelial 7, 5

 Colorectal 7, 2

 Gynecologic 6, 2

 Pancreatic 4, 0

 Breast 3, 1

 Melanoma 3, 3

 Germ cell 1, 0

 Hepatocellular 1, 1

 Laryngeal squamous 1, 1

 Lymphoma 1, 1

 Sarcoma 1, 0

 Squamous, cutaneous 1, 1

Interval between imaging and histopathologic sampling (days) 24 ± 24 (range − 89 to 83)

Lesions imaged before histopathologic sampling 65

Interval (days) 18 ± 19 (range 1–83)

Lesions imaged day of histopathologic sampling 2

Interval (days) 0

Lesions imaged after histopathologic sampling 33

Interval (days) 38 ± 26 (range 1–89)

Table 2.  Univariate analysis of radiomic features in distinguishing primary versus metastatic pulmonary 
tumors. a Specific features listed in Table 3.

Classification task

Number of features significant 
at FDR-adjusted P value < .05, of 
1212 total features

Corresponding range of FDR-
adjusted P values

Number of significant features 
with AUCROC ≥ 0.75a

Corresponding range of 
AUCROC

Primary versus metastatic tumors

All tumors

 All protocols (n = 100) 310 0.0008–0.0491 21 0.75–0.78

 Non-CTPA exams (n = 72) 191 0.0127–0.0499 19 0.75–0.77

Untreated tumors

 All exam protocols (n = 59) 40 0.02–0.0487 11 0.75–0.81

 Non-CTPA exams (n = 45) 0 – – –

Treated tumors, all exam protocols 
(n = 41) 0 – – –
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Table 3.  Significant radiomic features in distinguishing primary versus metastatic pulmonary tumors with 
individual AUCROC ≥ 0.75. MI mutual information value.

Primary versus metastatic lung tumors Absolute radiomic features AUC MI

All tumors, all protocols (n = 100)

squareroot_glszm_SmallAreaEmphasis 0.78 0.13

logarithm_glszm_SmallAreaHighGrayLevelEmphasis 0.77 0.10

logarithm_glszm_GrayLevelVariance 0.77 0.09

logarithm_firstorder_Minimum 0.76 0.12

logarithm_glszm_HighGrayLevelZoneEmphasis 0.76 0.08

logarithm_glrlm_GrayLevelVariance 0.75 0.10

square_glszm_ZonePercentage 0.75 0.17

squareroot_glszm_SmallAreaHighGrayLevelEmphasis 0.75 0.13

logarithm_glszm_ZoneEntropy 0.75 0.14

squareroot_firstorder_Uniformity 0.75 0.13

squareroot_firstorder_Minimum 0.75 0.10

squareroot_glrlm_GrayLevelNonUniformityNormalized 0.75 0.12

squareroot_glcm_SumEntropy 0.75 0.10

squareroot_glcm_MaximumProbability 0.75 0.15

squareroot_glcm_JointEnergy 0.75 0.12

logarithm_glrlm_ShortRunHighGrayLevelEmphasis 0.75 0.11

logarithm_glrlm_GrayLevelNonUniformityNormalized 0.75 0.13

logarithm_firstorder_Range 0.75 0.11

logarithm_glcm_ClusterTendency 0.75 0.09

squareroot_firstorder_Entropy 0.75 0.11

wavelet_LHH_glszm_ZoneEntropy 0.75 0.16

All tumors, non CTPA protocol (n = 72)

square_glszm_ZonePercentage 0.77 0.20

original_shape_Compactness2 0.77 0.16

original_shape_Compactness1 0.77 0.21

original_shape_Sphericity 0.77 0.21

original_shape_SphericalDisproportion 0.77 0.18

squareroot_glszm_SmallAreaEmphasis 0.77 0.15

wavelet_LLH_glszm_SmallAreaEmphasis 0.76 0.12

wavelet_LLH_gldm_DependenceVariance 0.76 0.20

exponential_glszm_ZonePercentage 0.75 0.22

squareroot_glcm_JointEnergy 0.75 0.15

squareroot_glrlm_LongRunLowGrayLevelEmphasis 0.75 0.13

squareroot_glszm_SmallAreaHighGrayLevelEmphasis 0.75 0.11

squareroot_glrlm_GrayLevelNonUniformityNormalized 0.75 0.14

squareroot_glcm_SumEntropy 0.75 0.12

squareroot_gldm_LargeDependenceLowGrayLevelEmphasis 0.75 0.14

squareroot_firstorder_Uniformity 0.75 0.15

logarithm_firstorder_Minimum 0.75 0.11

square_gldm_SmallDependenceEmphasis 0.75 0.14

squareroot_firstorder_Entropy 0.75 0.11

Untreated tumors, all protocols (n = 59)

squareroot_glszm_SmallAreaEmphasis 0.81 0.25

wavelet_LHH_glszm_ZoneEntropy 0.79 0.24

original_glszm_SmallAreaEmphasis 0.79 0.16

wavelet_LLH_glszm_SmallAreaEmphasis 0.79 0.20

squareroot_glrlm_GrayLevelNonUniformityNormalized 0.77 0.17

logarithm_glrlm_GrayLevelNonUniformityNormalized 0.76 0.12

original_shape_Compactness2 0.76 0.13

wavelet_LLH_glszm_ZonePercentage 0.76 0.16

squareroot_glszm_SizeZoneNonUniformityNormalized 0.75 0.15

wavelet_HHH_gldm_SmallDependenceLowGrayLevelEmphasis 0.75 0.11

logarithm_glrlm_ShortRunEmphasis 0.75 0.10
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Similar to analysis in all tumors imaged by any protocol, only one original first order iodine concentration 
parameter, absolute minimum iodine, significantly differed between primary and metastatic pulmonary tumors 
(FDR-adjusted p = 0.04; AUC 0.7). Log and squareroot functions of absolute first order minimum iodine were 
also significant discriminating features for primary versus metastatic lung tumors, with AUC 0.74–0.75.

In terms of shape-based features, 6 of 16 features significantly differed between primary and metastatic 
tumors, including compactness1, compactness 2, major axis, spherical disproportion, sphericity, and surface 
volume ratio. Individually, compactness1, compactness2, sphericity and spherical disproportion demonstrated 
AUC of 0.77. There was no significant difference in lesion volume between primary and metastatic lung tumors 
imaged by non-CTPA DECT protocol.

Of the 18 first order features assessed by 12 filters (216 total parameters), 33 of 216 features significantly dif-
fered between primary and metastatic tumors. Logarithm and square-root filtered entropy and uniformity were 
significantly different between primary and metastatic tumors, with square-root filtered first order entropy and 
uniformity demonstrating AUC of 0.75 (Table 3).

Subset analysis of untreated tumors, all CT protocols. Subset analysis of untreated primary versus 
untreated metastatic tumors imaged by any protocol (n = 59) demonstrated significant differences in 40 radiomic 
features (FDR-adjusted p = 0.02 to p = 0.0487) (Table 2). Minimum iodine was not significantly different in the 
subset of untreated primary versus untreated metastatic tumors.

The 2 of 16 shape-based features that significantly differed between untreated primary and untreated meta-
static tumors were compactness2 and surface volume ratio, the former with AUC 0.76. The remaining iodine 
texture features significantly differing between the untreated primary and untreated metastatic subgroups were all 
higher order texture features. For example, higher order features that significantly differed between the untreated 
primary versus untreated metastatic lung tumors included 5 of 11 NGTDM contrast features, 10 of 13 NGTDM 
coarseness features, and 4 of 13 GLSZM small area emphasis features, with a lesser number discriminating well 
based on AUC (Table 3).

Additional classification tasks. Univariate analysis between untreated primary versus untreated meta-
static tumors imaged by non-CTPA protocol (n = 45) demonstrated no significant differences in radiomic fea-
tures. Univariate analysis demonstrated no significant differences in radiomic features between treated primary 
and treated metastatic lung tumors. There were no significant differences on univariate analysis between primary 
lung adenocarcinoma and squamous cell carcinomas, or treated versus untreated tumors.

Discussion
We found radiomic analysis added discriminatory ability beyond iodine concentration. Importantly, while a 
high number of radiomic features significantly differed between primary and metastatic pulmonary tumors on 
DECT, fewer features demonstrated excellent individual performance.

We make several observations regarding the performance of radiomic features extracted from volumetrically 
segmented tumors on thin-section contrast-enhanced DECT exams, including comment on three main concepts: 
iodine concentration, shape features, and higher order radiomic features.

Original first order iodine concentration parameters were generally not significant features in differentiating 
between tumor histopathologies in our cohort. The benefit of volumetric analysis including iodine is the report-
ing of multiple “ROIs” non-reliant on subjective radiologist placement; for example, maximum, minimum, 90th 
and 10th percentiles are automatically derived.

Only absolute minimum iodine was significantly different between primary and metastatic lung tumors in 
our cohort, including in the subset of tumors imaged by non-CTPA DECT protocol. Additionally, several first 
order iodine-based features (mean, median, 90th percentile, interquartile range, etc.) using filters (exponential, 
logarithm, square, and squareroot), were significantly different between primary and metastatic tumors. Filters 
may potentially amplify, and thereby discern, differences based on iodine concentration. The discriminatory 
performance of these filtered iodine features individually reached AUC > 0.7, with reported “acceptable” per-
formance of radiomic signatures in literature often including AUC at or above this threshold. The higher AUC 
threshold in our interpretation should not discount the relevance of iodine information in adding value to 
radiomic signatures, as features may demonstrate better performance in ensemble.

Differences in iodine by tumor type is supported by prior literature. The role of iodine quantification in pre-
dicting treatment responders has been previously demonstrated in NSCLC  patients11–13,26. Iodine concentrations 
have been found to be significantly higher in epidermal growth factor receptor (EGFR)-mutated  responders11,13, 
and to have a positive correlation with vascular endothelial growth factor  expression27 and hypoxia inducible 
factor  expression28 in NSCLC. Aoki et al. demonstrated primary and metastatic tumors with lower average iodine 
to have worse prognosis, and significantly lower rates of local  control26. On DECT, lower iodine has been found 
to be associated with higher grade lung  neoplasms9. Because iodine is associated with outcomes, and our cohort 
was not stratified by tumor grade or outcomes, iodine concentration parameters would not be expected to be 
top performers in a classification task with heterogeneity by tumor grade.

The majority of shape features were significant on univariate analysis in differentiating between primary 
and metastatic lesions (AUC 0.69–0.73). Notably, compactness2 (AUC 0.76) and surface to volume ratio (AUC 
0.69) remained significant on univariate analysis in the subset of untreated primary versus untreated metastatic 
tumors, and subset of primary versus metastatic lesions imaged by non-CTPA protocol.

These two shape features have also been identified by others as  reproducible17,30,31 and  discriminating17,31–33. 
Limkin et al. showed compactness2 does not vary significantly with changes in volume, slice thickness, or 
resampling, and may therefore be a more reproducible radiomic  feature30. Aerts et al., in addition to finding 
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compactness2 to be one of the most stable radiomic features, found it to be the best performing shape feature in 
developing a 4-feature radiomic signature to determine prognosis in lung cancer  patients17. Compactness2 was 
also shown to improve patient stratification by outcomes in another prognostic model incorporating both clini-
cal and radiomic features in stage III NSCLC  patients32. In a study by Shakir et al., surface to volume ratio was 
a stable and cancer-discriminating feature, ranking first among 105 3D features for ability to distinguish benign 
from malignant lung  nodules31. In a study of subsolid nodules, surface to volume ratio was the only predictor 
among 92 radiomic features in differentiating benign from neoplastic nodules on univariate  analysis33.

Our results show that many higher order texture features differentiated primary and metastatic tumors on 
univariate analysis, and several individually discriminated well (AUC ≥ 0.75). This supports prior research in 
which higher order texture features have been shown to have classifying ability, and association with clinical 
outcomes in oncology patients. However, higher order texture features may be less reproducible than first order 
or shape-based features due to influence of slice thickness or reconstruction  algorithms34. NGTDM-derived 
coarseness features (reflecting the spatial rate of intensity change) were significant on univariate analyses in 
classifying between primary and metastatic tumors (AUC > 0.7). NGTD coarseness features have been shown to 
be lower in NSCLC patients who responded to treatment than non-responders, and coarseness an independent 
predictor of overall  survival35. NGTDM-derived contrast features have been shown to be related to progression-
free survival, with higher contrast correlating with longer progression-free  survival35.

Higher order texture feature GLSZM small area emphasis was significant on univariate analysis in distin-
guishing between primary and metastatic, and untreated primary and untreated metastatic tumors with many 
filters. Square root filtered GLSZM small area emphasis had AUC ≥ 0.75 among all tumors all protocols, and 
subset analyses suggesting this feature discriminates well individually. In a phantom study of 114 texture features, 
GLSZM small area emphasis was identified as the factor least dependent on slice  thickness36; feature stability 
may contribute to the significance of this feature across several comparisons in our study. GLSZM small area 
emphasis reflects underlying fine texture based on the distribution of small size  zones24. Square-root filtered 
GLRLM gray level non-uniformity normalized also demonstrated good individual discriminatory utility in the 
overall cohort, and protocol and treatment-history based subsets.

Our study has several limitations. We did not assess the reproducibility of radiomic features, which is 
 variable37,38. Future study in larger cohorts may determine optimal methods for dimensionality reduction based 
on statistical methods, including intra-and inter-observer  variability39, and/or machine learning. Though Aerts 
et al. has noted that more stable features generally demonstrate better  performance17. Our subgroups were rela-
tively small, precluding meaningful multivariable analysis with validation and test experiments. We included 
some pulmonary angiograms, however performed subset analyses of lesions imaged by non-CTPA DECT proto-
col. Standardization of imaging features–normalization in terms of not only contrast but also noise and intensity 
level for example, has been suggested to improve radiomic-based histopathologic  prediction29, and may also 
be a necessary step when incorporating exams obtained by various contrast-enhanced protocols, scanners, or 
institutions, and when assessing delta radiomics on contrast-enhanced studies. Effective radiomic signatures 
should be robust across imaging techniques to be clinically practical. We did not investigate specific treatment 
effects, and provided subgroup analyses excluding the potentially heterogeneously treated lesions. Evaluation 
of the peri-tumoral region, shown to improve lesion  classification40, and incorporation of tumor and patient 
characteristics may also strengthen predictive analyses in future modeling.

In conclusion, DECT radiomic features allow discriminatory potential beyond that of iodine concentration. 
Identifying radiomic features that independently discriminate well may direct understanding and development 
of reliable ensemble radiomic signatures.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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