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Abstract: Reactor safety research aims at the safe operation of nuclear power plants during their
service life. In this respect, Fraunhofer IZFP’s micromagnetic multiparameter, microstructure, and
stress analysis (3MA) has already made a significant contribution to the understanding of different
aging mechanisms of component materials and their characterization. The basis of 3MA is the fact
that microstructure and mechanical stress determine both the mechanical and magnetic material
behavior. The correlation between features of magnetic and mechanical material behavior enables
the micromagnetic prediction of mechanical properties and stress, both of which can decisively
influence the service life. The Federal Ministry for Economic Affairs and Energy (BMWi) funded this
research, handling the mutually superimposed microstructural and stress-dependent influences, a
substantial challenge, especially under practical conditions. This superposition leads to ambiguities
in the micromagnetic features. The 3MA testing system has been extended by more sophisticated
evaluation methods being able to cope with more complex datasets. Investigations dealing with
the expansion of the feature extraction and machine learning methods have led to a more precise
distinction between microstructural and stress-dependent influences. This approach provides the
basis for future applications in reactor safety.

Keywords: 3MA; micromagnetic materials characterization; machine learning; NDE; NDT; reactor
safety research

1. Introduction

Despite the German phase-out from nuclear energy, the highest safety requirements
for the operation of nuclear power plants during their remaining service life are still vital
for all countries. The Federal Ministry for Economic Affairs and Energy (BMWi), as a
funding body, therefore, supports research to maintain German expertise in the field of
reactor safety.

Reactor pressure vessels (RPVs) are subject to different influences, such as neutron-
degradation, plastic deformation, and temperature variations [1]. Although material
conditions are regularly checked with charpy tests, these tests can only be repeated in lim-
ited numbers [1]. To address this issue, non-destructive testing methods (ndt-methods) are
used to detect changes in material conditions to disburden destructive testing methods [1].
The micromagnetic multiparameter, microstructure, and stress analysis (3MA)-based test-
ing systems of the Fraunhofer Institute for Nondestructive Testing (Fraunhofer IZFP)
successfully contributed to the study of RPV-steel conditions such as copper precipitates
and neutron induced embrittlement [2–4] and has proven its capabilities in several other
fields of application, such as stress determination and general characterization of material
inhomogeneities [5–8].
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The main goal of this paper is the further distinction of microstructural and mechanical
stress influences utilizing the 3MA-X8 testing system. As previous research has shown, the
superposition of both influences has a non-negligible effect on micromagnetic methods on
the inspection of RPV-steel [2]. The extent to which influence ambiguities can be reduced
are examined and compared to former approaches.

The basis of 3MA is the fact that microstructure and mechanical stress determine both
the mechanical and magnetic material behavior [9]. Therefore, correlations exist between
mechanical and magnetic material behavior [9]. By using this correlation, the mechanical
material properties can be predicted by acquiring magnetic features. The magnetic behavior
can be characterized by features, which are extracted from the magnetic hysteresis [10].
Acquiring the magnetic hysteresis on components with a top-mounted sensor is usually
infeasible because the direct measurement of the hysteresis involves special requirements,
such as specific specimen geometries, coils comprising the specimen, and a low excitation
frequency [11].

Fraunhofer IZFP’s 3MA-X8 testing system acquires magnetic features with a top-
mounted sensor by combining three different micromagnetic ndt-methods to generate
hysteresis-like features [1,12,13]. Recent research made use of an automated feature extrac-
tion, creating further micromagnetic features [12,13]. Machine learning methods extract
the desired information out of the feature space to classify or quantify the acquired mea-
surements [6].

Within the scope of this paper, the feature space was further extended by the raw
signal data. Hence, depending on the measurement presets (sample rate, magnetization
frequency, etc.), over a thousand features were generated. The focus of this research is on
linear machine learning methods in combination with a high dimensional feature space.
The extended feature space is compared to the original 21-dimensional feature space to
determine possible improvements.

2. Materials and Methods
2.1. Materials

The materials used were 20MnMoNi5-5 and 22NiMoCr3-7. Both materials are in use
as RPV-steel [14,15]. The specimens were cut out of reactor components shown in Figure 1.
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Figure 1. Reactor components provided by Fraunhofer IWM.

The Fraunhofer Institute for Mechanics of Materials (Fraunhofer IWM) optimized
the specimens’ shape for the different deformation procedures while still maintaining
accessibility for a micromagnetic sensor.

2.2. Influences

The examined dataset consisted of twelve different microstructures for classification
and a continuous variation of mechanical stress for regression purposes. The microstruc-
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tural states were adjusted beforehand. The micromagnetic measurements were conducted
during elastic tensile tests as seen in Figure 2.
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Figure 2. Measurement setup of a 3MA-X8 measurement of micromagnetic features during elastic tensile tests.

2.2.1. Plastic Deformation

Fraunhofer IWM conducted mechanical tests introducing microstructural changes by
plastic deformation [1,16]. For each material, six different microstructural states were ad-
justed by utilizing two different test methods with three different conditions. The methods
used were plastic deformation introduced by tensile tests with strain levels of 0.8%, 2%,
and 4% and low cycle fatigue tests (LCF-Tests) with 30%, 45%, and 60% of the determined
lifetime. For each condition, three specimens were used.

2.2.2. Elastic Stresses

Tensile tests continuously increasing the stress from 0% to 50% of the maximum
yield strength of each material introduced elastic stresses during the in situ measurements.
During the tests, the tensile stress was measured, synchronized, and saved to act as a
reference value for the magnetic features. Prior to performing the measurements, the
samples were demagnetized to minimize the influence of any residual magnetic fields.

2.3. Feature Engineering

Different approaches are utilized to quantify changes in the magnetic behavior.
These feature extraction methods result in three different categories of features. In addition
to the 21 subjective features of the 3MA-X8 testing system [4,7], recent research has added
automated features to the overall feature space [12,13]. In the course of this manuscript,
the raw data samples expand the feature space even further. Figure 3 shows an overview
of the different feature extraction methods and the definition of the 21-dimensional and
the extended feature space via a block diagram. For excitation, two superimposed voltage
controlled sinusoidal signals of different frequencies are applied to the 3MA-X8 sensor,
which consists of a U-shaped electromagnet [12]. While the lower magnetization frequency
(10–200 Hz) passes through operating points in the magnetic hysteresis, the higher eddy
current frequency (500–5000 Hz) is used to perform an eddy current analysis at the re-
spective points [13]. The resulting complex eddy current impedance signal, along with
the raw signals of voltage and current, enter the different feature extraction methods.
The measurements performed in this research were conducted with a magnetization signal
of 3.5 V at 100 Hz and an eddy current signal of 1.5 V at 4 kHz. The incoming signals were
sampled at 25 kHz. This parameterization results in 1247 features, which are divided into
21 subjective, 226 automated, and 1000 signal features.
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Figure 3. Feature engineering block diagram.

2.3.1. Subjective Feature Extraction

The subjective feature extraction consists of three different testing methods with
different sensitivities, the eddy current analysis, the incremental permeability analysis, and
the harmonic analysis [13]. Each subjective feature is defined as a certain characteristic
of the corresponding methods signal plot. Plotting the complex impedance over the real
and imaginary axes creates the eddy current impedance loop [4]. This loop represents
the impedance values for different operating points during a magnetization period of the
hysteresis [4]. Figure 4 illustrates the eddy current impedance loop, as well as the feature
extraction. Table 1 further describes the exact definition of the subjective features.
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Figure 4. Schematic representation of the eddy current impedance loop [4].

Table 1. Subjective features of the eddy current analysis.

Feature Description

Zmean Average of absolute impedance of impedance loop
Zmin Minimum of absolute impedance of impedance loop
Zmax Maximum of absolute impedance of impedance loop

Phizmean Phase of the average impedance
Phizmin Phase of the minimum impedance
Phizmax Phase of the maximum impedance

W3Z Width of the impedance loop at 3% of maximum
W10Z Width of the impedance loop at 10% of maximum

The incremental permeability curve is generated by plotting the change in coil
impedance over the magnetization voltage [4]. This plot provides information about
the permeability as a function of the magnetization [4]. Figure 5 illustrates the incremental
permeability curve, as well as the feature extraction. Table 2 further describes the exact
definition of the subjective features.
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Figure 5. Schematic representation of the incremental permeability curve [4].

Table 2. Subjective features of incremental permeability analysis.

Feature Description

DZmax Maximum value of incremental permeability
DZmean Average value of incremental permeability

DZr Value of incremental permeability at U = 0
Ucdz Voltage at maximum of incremental permeability

DU75dz Width of incremental permeability at 75% of maximum
DU50dz Width of incremental permeability at 50% of maximum
DU25dz Width of incremental permeability at 25% of maximum

Rem Voltage offset of DZmax

The nonlinearities of the hysteresis cause the distortion of the magnetization cur-
rent [4]. This nonlinear behavior is quantified using a fast Fourier transformation (FFT) [4].
The resulting FFT provides the foundation for the features of the harmonic analysis [4].
Figure 6 illustrates the harmonic analysis, as well as the feature extraction and feature
calculations. Table 3 further describes the exact definition of the subjective features.

Materials 2021, 14, x FOR PEER REVIEW 5 of 15 
 

 

The incremental permeability curve is generated by plotting the change in coil im-

pedance over the magnetization voltage [4]. This plot provides information about the per-

meability as a function of the magnetization [4]. Figure 5 illustrates the incremental per-

meability curve, as well as the feature extraction. Table 2 further describes the exact defi-

nition of the subjective features. 

 

Figure 5. Schematic representation of the incremental permeability curve [4]. 

Table 2. Subjective features of incremental permeability analysis. 

Feature Description 

DZmax Maximum value of incremental permeability 

DZmean Average value of incremental permeability 

DZr Value of incremental permeability at U = 0 

Ucdz Voltage at maximum of incremental permeability 

DU75dz Width of incremental permeability at 75% of maximum 

DU50dz Width of incremental permeability at 50% of maximum 

DU25dz Width of incremental permeability at 25% of maximum 

Rem Voltage offset of DZmax  

The nonlinearities of the hysteresis cause the distortion of the magnetization current 

[4]. This nonlinear behavior is quantified using a fast Fourier transformation (FFT) [4]. The 

resulting FFT provides the foundation for the features of the harmonic analysis [4]. Figure 

6 illustrates the harmonic analysis, as well as the feature extraction and feature calcula-

tions. Table 3 further describes the exact definition of the subjective features. 

 

Figure 6. Schematic representation of the harmonic analysis [4]. 

  

Figure 6. Schematic representation of the harmonic analysis [4].

Table 3. Subjective features of the harmonic analysis.

Feature Description

Vmag Amplitude of magnetization voltage
Imag Amplitude of magnetization current

K Distortion factor
A3 Amplitude of third harmonic
P3 Phase shift of third harmonics
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2.3.2. Automated Feature Extraction

The automated feature extraction is a systematic approach to generalize the proce-
dures of the subjective feature extraction [12]. This more sophisticated evaluation of all
available time signals leads to a more sensitive representation of the magnetic behav-
ior [12,13]. The FFT is analyzed up to the tenth harmonic with magnitude and phase [13].
Characteristic points of all signals (e.g., maximum, minimum, zero points) as well as values
of other signals at the aforementioned points contribute to the feature extraction [12].

2.3.3. Signals as Features

Every sample of the raw signals is added to the feature space. The raw signals include
the measured voltage, current, and the real and imaginary part of the complex impedance.

2.4. Machine Learning Methods

Different machine learning algorithms are used to cope with the difficulties occurring
in a multidimensional feature space. In contrast to prior research that focused on algorithms
with hyperparameter optimization, the approach in this paper is based on a more complex
feature space and linear algorithms without the need of hyperparameter optimization [12].
An additional advantage of linear algorithms is the tendency to be less prone to overfitting,
which makes them a reliable choice, especially in practical use cases [7].

2.4.1. LDA

The machine learning algorithm linear discriminant analysis (LDA) was applied to the
feature space to extract the essential information content for material and property analysis.
LDA is a supervised method used in machine learning [17]. With the help of determined
discriminant functions, a coordinate transformation with subsequent linear projection
onto new secondary characteristics (canonical variables) was carried out. Since this is a
supervised procedure, the class memberships of the training data in the feature space are
known. The rotation of the coordinate system is performed according to the principle of
minimizing the variance within a class (intragroup variance) and maximizing the variance
between classes (intergroup variance). The number of classes to be separated is crucial
for the number of discriminant functions. To separate n classes, a maximum of n−1
discriminant functions can be determined. The information content of the classes to be
separated is highest in the first discriminant function and decreases continuously.

2.4.2. KNN-Classifier

The classification is based on the machine learning algorithm k-nearest neighbor
(kNN) classifier [17]. When performing the kNN-classification, the data to be classified
are compared to the trained data. For this purpose, the Euclidean distances of the new
measured value to each trained data point are determined, and then sorted according to
their distance. In the k smallest distances, the predicted class is determined. The most
frequently occurring class in the k smallest distances is the predicted class. For classification
problems, the class memberships are known in training. An evaluation of the model quality
is only possible on a referenced data set. Hence, without knowledge of the target variable
to be classified, it is not possible to evaluate whether the classification was correct.

3. Results
3.1. Preliminary Examinations

After the specimens were machined from the reactor components, a preliminary
micromagnetic test was carried out to detect significant outliers in them. The feature
DZr of the subjective feature extraction was chosen to evaluate the micromagnetic test.
DZr represents the incremental permeability at remanence [4]. As shown in Figure 7,
aside from the normal variation of the specimen measurements, no significant outliers
were detected.
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Figure 7. Preliminary micromagnetic measurements on all specimens, feature DZr.

Tensile tests were performed to determine and characterize the basic material prop-
erties. A low variation of yield strength for each material ensures sufficient specimen
homogeneity. Based on these tests, the strain levels (plastic deformation) 0.8%, 2%, and
4% were chosen to represent different material states. Figure 8 shows each of five tensile
tests per material. Each stress-strain curve corresponds to a specimen of the respective
material. All specimens were in the same condition for statistical verification. The legend
represents the specimen identifier. The final elastic tensile tests for acquiring the dataset
were designed based on 50% of the yield strength for each material.
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Figure 8. Stress-strain curves for each material during preliminary examinations: (a) 20MnMoNi5-5
and (b) 22NiMoCr3-7.

LCF-tests determined the fatigue limit defined by the number of cycles to failure.
A strain amplitude of 0.35% was applied to all specimens at a load ratio of 0.1. The obtained
cycles to failure and their standard deviation are shown in Table 4. Due to a high standard
deviation of up to ~20%, relative to the cycles to failure, the number of applied cycles for the
main experiment was highly limited towards the maximum cycles to failure. As a tradeoff
between maintaining sufficient microstructural change and protecting the specimens from
accidental breakage during testing, 30%, 45%, and 60% of the averaged cycles to failure
were chosen.

Table 4. Results of Preliminary LCF-tests.

Material Cycles to Failure Standard Deviation

20MnMoNi5-5 3238 432 (13.34%)
22NiMoCr3-7 6020 1322 (21.96%)
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In order to obtain a rough overview of the stress and microstructure dependencies,
Figure 9 shows the feature DZmax as an example of one of the 21 subjective features in
dependence of both microstructure and stress influences. The scatterplot displays no clear
overall interrelationship. An ambiguity regarding the stress and microstructure depen-
dency is present. Therefore, neither stress-independent microstructure characterization nor
microstructure-independent stress determination is possible with this single feature.
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3.2. Stress-Independent Microstructure Characterization

In prior to the evaluation, the dataset, containing 103,884 samples, was randomly split
into a test and train dataset with a ratio of 20% test data to 80% train data. Training and
testing with different datasets can reveal overfitting when the training dataset is signifi-
cantly better predicted than the test dataset [18]. The classification was carried out in two
steps. First, the LDA transformed the high dimensional feature space into four canonical
components for a more intuitive grasp of the overall distribution and distinguishability.
The kNN classifier predicted the classes based on the LDA output. The classification
results are shown in a confusion matrix. The resulting misclassification rate represents the
overall performance of the classification and enables a quantifiable comparison of different
approaches. The two different approaches used consist of two individual feature spaces,
the original 21-dimensional feature space on one hand and the extended feature space with
additional automatic feature extraction as well as the raw signal data on the other hand.

The first step, transforming the data with a LDA of the 21-dimensional feature space,
is shown in Figure 10 and the transformed data of the extended feature space is shown in
Figure 11. The first four canonical components are presented as two-dimensional plots
to illustrate the group-based clustering the LDA generated. The legend of each diagram
shows the colors of the test data while the train data are shown as the same color with a
lighter shade.

The first subjective impression is an improvement in the distinction of each of the
classes by feature space extension. The clusters of the 21-dimensional feature space
show much more overlap than the clusters of the extended feature space. In both cases,
the transformation of the test data does not vary significantly from the training data.
Therefore, a low risk of overfitting can be assumed.
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The kNN-classification was performed solely on the test data to survey the prediction
of unknown data. Only the first four canonical components of each feature space deter-
mined the space, in which the kNN-classifier predicted the classes. The kNN-classifier
was parametrized to predict the class with k = 5 neighbors and a uniform weighting.
The confusion matrices were used to determine the misclassification rate. The result of
each feature space is shown in Figure 12. Comparing the misclassification rate of both
feature spaces, the extended feature space misclassified with 0.77% about four times less
often than the 21-dimensional feature space with 3.89%.
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3.3. Microstructure-Independent Stress Determination

The dataset on which the stress determination was carried out is identical to the dataset
of the prior material determination. Before using a multiple linear regression (MLR), the
datasets of each feature space were divided into range-based subgroups to detect overfitting
and overgeneralization. For each individual dataset, a total of seven subgroups with an
equal number of samples were used. This sample range-based subdivision was chosen to
determine a fixed ratio of 3/7 testing and 4/7 training data. The alternating assignment to
testing and training data enabled us to see how well the model would interpolate the test
data. In addition to the typical regression on the whole dataset, an additional approach
based on hierarchical modeling was investigated. Here, the classification first estimated
a microstructure subgroup (e.g., material) before using a subgroup-specific regression
model. This approach required a sufficient classification, as well as an increasing prediction
quality when using a subgroup-specific regression model. Material- and influence-based
subgroups were analyzed to see, how much different subgroup specific regression models
improved the stress prediction quality. Figure 13 compares the 21-dimensional feature space
with the extended feature space to give an insight over the improvements. A comparable
training and testing root mean square error (RMSE) in each of the models indicates that
overfitting did not occur. Comparing the test RMSE of the different feature spaces, the
extended feature space performed substantially better than the 21-dimensional feature
space. The test RMSE of 14.66 MPa of the extended feature space was about 37% of the
21-dimensional feature space with 40.10 Mpa.
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Figure 13. MLR for stress determination on whole dataset. (a) 21-dimensional feature space and (b) extended feature space.

The first subgroup division shown in Figure 14 was carried out with an influence-
based division of the dataset. Both datasets were trained with the extended feature space.
Both divisions performed similar with a test RMSE of 11.01 MPa for the plastification
via tensile tests and 10.87 Mpa for the LCF-tests. The test RMSE was lowered to about
76% compared to the regression on the whole dataset with the extended feature space.
Therefore, the hierarchical modeling was able to get a significantly better result by using
an influence-based subgroup division.
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The second subgroup division based on the different materials is shown in Figure 15.
The datasets were trained with the extended feature space. The test RMSE of each material
subgroup differed clearly, in contrast to the prior influence-based subgroup division where
the resulting RMSE of each subgroup was similar. For the material 20MnMoNi5-5, the
RMSE was remarkably reduced to about 61% with 8.93 MPa compared to the regression on
the whole dataset with the extended feature space. The RMSE for the material 22NiMoCr3-7
did not change considerably with 13.95 Mpa to only 95% of the regression on the whole
dataset with the extended feature space. The material-based subgroup division therefore
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improved the prediction quality of the material 20MnMoNi5-5 distinctly more than for the
material 22NiMoCr3-7.
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4. Discussion

The approaches applied in the scope of this publication have been proven suitable
for the distinction of microstructural and mechanical stress influences. In contrast to prior
research, using an extended feature space containing an automatic feature extraction as
well as raw signals in combination with linear machine learning methods reduced the
need for hyperparameter optimization. By evading the hyperparameter optimization,
the risk of overfitting by improperly parametrized models was avoided. However, gen-
eral overfitting still has to be investigated with separate testing and training datasets to
verify the models’ prediction quality. For both regression and classification models, the
extended feature space significantly improved the prediction quality compared to the
original 21-dimensional feature space. The great advantage of the extended feature space is
that the subjectively imperceptible signal properties are also included in the evaluation [12].
Hierarchical models improve the prediction quality further for regression models by first
reducing complexity in known influences before focusing on predicting certain influences.
Nevertheless, each subgroup specific model has to be surveyed to avoid overfitting and
based on the quality of the results, it has to be decided, whether a hierarchical model is
appropriate for the application.

This research creates a solid foundation for future practical implementation in reactor
safety. Various other 3MA-X8 applications can also be improved with the approach inves-
tigated in this research, especially in similar conditions where superimposed influences
result in complex datasets.
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