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Since the 1950s, the production of plastics has increased 200-fold, reaching 360 million
tonnes in 2019. Plasticizers, additives that modify the flexibility and rigidity of the product, are
ingested as they migrate into food and beverages. Human exposure is continuous and
widespread; between 75 and 97% of urine samples contain detectable levels of bisphenols
and phthalates, themost common plasticizers. Concern over the toxicity of plasticizers arose
in the late 1990s, largely focused around adverse developmental and reproductive effects.
More recently, many studies have demonstrated that exposure to plasticizers increases the
risk for obesity, type 2 diabetes, and cardiovascular disease (CVD). In the 2000s, many
governments includingCanada, the United States and European countries restricted the use
of certain plasticizers in products targeted towards infants and children. Resultant consumer
pressure motivated manufacturers to substitute plasticizers with analogues, which have
been marketed as safe. However, data on the effects of these new substitutes are limited
and data available to-date suggest that many exhibit similar properties to the chemicals they
replaced. The adverse effects of plasticizers have largely been attributed to their endocrine
disrupting properties, which modulate hormone signaling. Adipose tissue has been well-
documented to be a target of the disrupting effects of both bisphenols and phthalates. Since
adipose tissue function is a key determinant of cardiovascular health, adverse effects of
plasticizers on adipocyte signaling and function may underlie their link to cardiovascular
disease. Herein, we discuss the current evidence linking bisphenols and phthalates to
obesity and CVD and consider how documented impacts of these plasticizers on adipocyte
function may contribute to the development of CVD.
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INTRODUCTION

Cardiovascular diseases (CVD) lead to an estimated 17.9 million deaths annually, making them one
of the leading causes of death worldwide.1 The substantial global impact of CVD is one of the most
critical public health issues of our time. One of the strongest predictors of CVD is obesity. While
obesity is considered an independent risk factor for CVD, it frequently occurs in conjunction with
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other risk factors, including hypertension, insulin resistance and
dyslipidemia (Kachur et al., 2017), in what is known as the
metabolic syndrome (MetS). Presence of the MetS increases
the risk of death from CVD by approximately 2-fold (Ju et al.,
2017).

Given that obesity is a major driver of CVD, preventative
strategies depend on an understanding of the environmental and
socioeconomic factors that underpin worldwide trends in obesity
rates. According to the World Health Organization (WHO), over
1.9 billion adults were overweight (BMI > 20) and 650 million
adults were obese (BMI > 30) in 2016, representing 39 and 13% of
the world population, respectively. If trends continue,
approximately half of U.S. adults will be obese by 2030, with
one in four experiencing severe conditions (Ward et al., 2019).
Over the past decades, the rates of obesity have risen faster in
children than in adults (Biro et al., 2016), leading to the present
reality that one third of North American children suffer from one
or more risk factors for CVD (Tremblay and Willms, 2000; Biro
et al., 2016). Approximately three-quarters of overweight or obese
children will be obese as adults and at risk for cardiovascular
complications (Ward et al., 2019).

The high incidence of obesity is attributable to multiple
environmental and lifestyle factors, most notably changes in
food production and supply and reductions in physical
activity. While consumption of high caloric foods and
sedentary behaviour are indeed driving forces in the
pathogenesis of cardiometabolic disease, there is some
evidence to suggest that they do not fully explain the obesity
epidemic (Huo et al., 2016). In the early 2000s, Paula Baillie
Hamilton synthesized ecological data to reveal a correlation
between increasing rates of obesity in the United States and
increasing production of synthetic chemicals (Baillie-Hamilton,
2002). This observation coincided with the emerging theory of
endocrine disruption that attributes the homeostasis-disrupting
effects of exogenous chemicals to an interference with the
synthesis, release, transportation, metabolism, or elimination
of endogenous bodily hormones. In 2006, Grun and Blumberg
coined the “environmental obesogen hypothesis”, proposing a
causal link between environmental toxins and the obesity
epidemic (Grün and Blumberg, 2006).

Endocrine disrupting chemicals (EDCs) interfere with
hormone signaling by mimicking endogenous ligands to
nuclear receptors and acting as agonists or antagonists
depending on the dose, species, and cell-type. Plasticizers are
among the most pervasive EDCs owing to their high production,
slow degradation and leaching into the environment. There are
two main groups of plasticizers: 1) bisphenols, which confer
rigidity to hard polycarbonate plastics and 2) phthalates,
which provide flexibility to soft plastics and polyvinyl chloride
(PVC) products. A large body of evidence indicates that these
plastics interfere with adipocyte differentiation and adipose tissue
function. Since adipose tissue is a critical regulator of
cardiovascular health, the effects of plasticizers on adipocyte
biology may underlie their association with obesity and CVD.
Thus, this review will discuss bisphenols and phthalates, their
relationship with MetS, and their impact on adipose tissue
development and function.

PLASTICIZERS

Bisphenols
Bisphenols are one of the most commonly produced synthetic
chemicals worldwide. They are used in the manufacturing of
polycarbonate plastics and epoxy resin coatings in food and
beverage containers. Additional products containing
bisphenols include medical and dental devices, building
materials, thermal receipt paper, and children’s toys (Chen
et al., 2016). The most common and well-known bisphenol is
2,2-bis(4-hydroxyphenyl) propane or bisphenol A (BPA).
Worldwide production of BPA increased by approximately 2.3
million tons between 2003 and 2011 (Flint et al., 2012) and its
consumption is expected to increase at a rate of 3.6% per year
through 20232. Human exposure primarily occurs through the
ingestion of food, beverages and drinking water that have been
contaminated through leaching due to incomplete
polymerization or polymer degradation. A study conducted on
Harvard students found that after a washout period during which
BPA exposure was limited, 1 week of drinking from
polycarbonate water bottles increased urinary BPA levels by
almost 70% (Carwile et al., 2009). In National Health and
Nutrition Examination Survey (NHANES) participants that
consumed one or more canned foods over a 24 h period,
urinary BPA levels were over 50% higher than those who
consumed no canned goods (Hartle et al., 2016). Bisphenols
can enter the body through routes other than ingestion
(Stojanoska et al., 2017) as they are ubiquitous in our
environment, detected in surface water, biosolids, soil and air
(Corrales et al., 2015).

Ingested BPA is quickly conjugated in the liver and excreted in
bile or urine, with an approximate half-life of 6 h (Völkel et al.,
2008; Genuis et al., 2012). Despite its rapid metabolism and
clearance, BPA is persistent in our environment and detected in
over 92% of urine samples (Calafat et al., 2008). Findings of a
recent study that employed a new direct method of measuring
levels of BPA and its conjugated metabolites suggest that
traditional indirect methods used by regulatory bodies to
estimate health risk in humans may have underestimated
exposure by over 40-fold (Gerona et al., 2020). Studies show
that bisphenols cross the placenta and accumulate in fetal tissues
at levels higher than maternal serum (Ikezuki et al., 2002; Gerona
et al., 2013). This may be due to immature detoxification
defences, leading to slower clearance of bisphenols from the
fetal compartment, as demonstrated by studies in pregnant
sheep (Corbel et al., 2015; Gingrich et al., 2019). The fetus is
particularly vulnerable to the endocrine disrupting effects of
bisphenols and other xenobiotics as it is undergoing critical
developmental stages of organ maturation and setting of
endocrine axes.

By 2005, there were over 100 studies showing adverse effects of
BPA at or below the safety standard, conducted by dozens of
laboratories in the United States, Japan, and Europe. In 2008, the
Government of Canada declared BPA a toxic substance and in

2https://ihsmarkit.com/products/bisphenol-chemical-economicshandbook.html
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2010 banned all import and sales of baby products containing
BPA3, actions that were followed by the European Union in 2011
and the FDA in 2012. These policies, founded on developments in
toxicology and toxicokinetic data, prompted consumer concern
that pressured industries to replace BPA with chemical
substitutes. BPA analogues share two hydroxyphenol
functionalities (Chen et al., 2016). Bisphenol S (BPS), bisphenol
F (BPF) and bisphenol AF (BPAF), are the most common
analogues and are found in products labeled “BPA-free”
(Rochester and Bolden, 2015). Increased production and
consumption of BPA analogues have resulted in a rise in
environmental and human exposure. Based on data from
NHANES, BPA, BPS, and BPF, were detected in 96, 84, and
67% of U.S. adult urine samples, respectively (Lehmler et al.,
2018). Another study by Liao et al. reported the presence of BPS
in 81% of urine samples collected in the United States (Lehmler
et al., 2018). Wang et al. determined that exposure levels of BPA
analogues vary across countries, likely a reflection of manufacturing
practices or sources of exposure. Human BPS daily intake was
highest in Saudi Arabia, France, and Vietnam, whereas human BPF
daily intake was highest in Saudi Arabia, the Netherlands and
Canada (Wang et al., 2020). Canada, the country that first restricted
the use of BPA, had the lowest intake of BPA, but the highest intake
of BPF (Wang et al., 2020). While there has been extensive
investigation into the health effects of BPA, relatively few studies
have explored the analogues that have replaced it. The toxicity of
BPA analogues was not investigated sufficiently before introduction
to themarket, and the data that is available indicate that they exhibit
similar endocrine disrupting properties and may lead to the same
adverse health effects.

Phthalates
Phthalates are diesters of 1,2-benzendicarboxylic acid that are
used as plasticizers in polymer products, softeners in PVC plastics
and fragrance stabilizers in hygiene and cosmetic products
(Stojanoska et al., 2017; Wang et al., 2019). Exposure to
phthalates is pervasive as they are found in numerous
consumer products ranging from adhesives, detergents,
automotive plastics, clothing, storage containers, and personal-
care products. Human exposure primarily occurs through
ingestion, inhalation, or by skin absorption as phthalates can
migrate out of products into food, air, dust, and water (Wang
et al., 2019). Approximately 60% of ingested phthalates are
metabolized within 24 h and excreted in urine; however,
metabolites have been detected in blood, saliva, amniotic fluid,
and breast milk (Stojanoska et al., 2017).

Di(2-ethylhexyl)phthalate (DEHP) is a high molecular weight
phthalate that is most commonly found in plastics and is
transformed into several different metabolites after entering
the body. Primary monoester metabolites of DEHP include:
mono(2-ethylhexyl)phthalate (MEHP), di-n-octyl phthalate
(DnOP), di-n-butyl phthalate (DnBP), benzyl butyl phthalate
(BBzP), and diethyl phthalate (Lang et al., 2008). Secondary

oxidation metabolites include: mono-2-ethyl-5-hydroxyhexyl
phthalate (MEHHP), mono-2-ethyl-5-oxohexyl phthalate
(MEOHP), and mono-2-ethyl-5-carboxypentyl phthalate
(MECPP) amongst many others (Meeker et al., 2012).
According to NHANES 1999–2000 data, MEHP was detectable
in the urine of >75% participants, and MEP, MBP, and MBzP
were detectable in >97% of participants in the USA (Silva et al.,
2004). In the Canadian Health Measures Survey 2007–2009, 11
metabolites were monitored, and results indicated that MEP,
MnBP, MBzP, MCPP, MEHP, MEOHP, and MEHHP were
detected in >90% of Canadians (Saravanabhavan et al., 2013).

In the late 1990s, concerns arose about adverse effects of
phthalates in humans, originally focused on DEHP and DINP
and their possible reproductive and developmental toxicity.
Panels formed by the American Council on Science and
Health (ACSH) and the NTP Center for the Evaluation of
Risk to Human Reproduction (NTP-CERHR) evaluated the
toxicity of a number of phthalates (Kamrin, 2009). In 2008,
the US Consumer Product Safety Improvement Act (CPSIA)
named limits on the use of six phthalates in children’s products.
Under this act DEHP, DBP, and BBP are restricted to an
individual concentration limit of 1000 ppm in children’s toys
and products for those under the age of 3 (Smith et al., 2020).
Whereas, DINP, DIOP, and DnOP are limited to concentrations
no greater than 1000 ppm in children’s toys that are small enough
to enter a child’s mouth, and in products for those under the age
of three (Smith et al., 2020). Canadian and European
governments have implemented similar restrictions on these
six phthalates. The Chronic Hazard Advisory Panel convened
in 2010 recommended further action by US agencies to widen
restrictions for DBP, BBP, and DEHP to include additional
consumer products. These regulations initiated a push toward
safer alternatives, motivating some companies to voluntarily use
substitutes with presumed lower toxicity.

EXPOSURE TO PLASTICIZERS AND RISK
FOR METABOLIC SYNDROME:
EPIDEMIOLOGICAL EVIDENCE

Bisphenols
To-date epidemiological research examining the association
between urinary bisphenol concentrations and the
development of obesity and other risk factors for CVD have
primarily focused on BPA. Many of these studies have been
conducted in a cross-sectional design, mainly utilizing data from
NHANES (LaKind et al., 2012). Using 2003–2008 data,
researchers determined that higher urinary BPA levels were
strongly associated with weight circumference (WC) and BMI
in males and females over 20 years of age (Shankar et al., 2012).
Cai et al. used NHANES 2003–2014 data to determine that higher
levels of BPA were associated with increased total CVD burden in
males; however, no results were determined in female groups (Cai
et al., 2020). Through analysis of 2003–2004 data, Lang et al.,
similarly demonstrated that CVD was associated with relatively
high levels of BPA compared to lower quartiles and that an

3https://www.canada.ca/en/health-canada/services/chemical-substances/
challenge/batch-2/bisphenol-a.html
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increase in CVD was associated with a one standard deviation
increase of BPA (Lang et al., 2008). While the above findings
indicate a relationship between bisphenols and MetS, there has
been debate regarding analytical methods and suitability of
NHANES data to determine associations. By applying different
inclusion criteria, methods and case definitions, Lankind et al.
was unable to find associations between BPA concentrations and
CVD in multiple NHANES datasets (LaKind et al., 2012).

Data obtained from cohorts other than NHANES provide
further evidence to support a relationship between bisphenol
exposure and MetS. In a cross-sectional study, Wang et al.
analyzed a population of adults over the age of 40 from a
community in Shanghai, China (n � 3,390). Positive
associations between the highest quartiles of BPA exposure
and insulin resistance, as well as both general and abdominal
obesity were determined (Wang et al., 2012). A case-control study
performed by Duan et al. revealed a positive correlation between
urinary BPS or BPAF concentrations and type 2 diabetes (T2D)
(Duan et al., 2018). Another study aimed to determine the risk of
developing T2D over a 9-year period in the French cohort called
“Data from an Epidemiological Study on the Insulin Resistance
Syndrome” (D.E.S.I.R). Of 755 participants, 201 cases of diabetes
were diagnosed, and results suggested that participants in higher
quartiles of BPA exposure had nearly double the risk of
developing T2D (Rancière et al., 2019). Overall, available data
provide strong evidence supporting a link between bisphenol
exposure and MetS.

Phthalates
Several epidemiological studies have explored the relationship
between phthalates exposure and the risk for obesity and related
metabolic disorders. Using data from NHANES (1992–2002),
two studies highlighted a relationship between urinary phthalate
metabolites and obesity. Hatch et al. found that BMI and WC
were positively associated with exposure to six phthalates inmales
aged 20–59: the strongest associations occurring with MBzP,
MEHHP, and MEOHP (Hatch et al., 2008). However, only
MEP significantly predicted BMI and WC in adolescent
females, but not in adult females. Stahlhut et al. reported links
between MBzP, MEHHP, MEOHP, and MEP and WC (Stahlhut
et al., 2007). Both studies determined that MEHP was not
significantly correlated with WC, with a possible explanation
being its shorter half-life compared to the other studied
metabolites.

A cross-sectional study using data from the 2012–2014 Korean
National Environmental Health Survey II (n � 5,251) reported a
significant association between urine MEHHP levels and MetS,
defined by NCEP ATP III criteria (Shim et al., 2019). In
agreement with these results, James-Todd et al., used
NHANES data from 2001 to 2010 (n � 2,719) and found that
higher concentrations of DEHP metabolites, including MEHP,
MEHHP, and MEOHP, increased the odds of developing MetS in
males (Shim et al., 2019). Similar to findings revealed by Hatch
et al., (2008), no correlations were found in adult females. Gaston
and Tulve performed a cross-sectional study with NHANES data
from 2003 to 2013 in U.S. adolescents (n � 918) and discovered a
strong association between MnBP and MetS (Gaston and Tulve,

2019). A smaller study examining MetS patients in a hospital in
Prague (n � 168) revealed significantly higher urine levels of four
phthalate metabolites (MnBP, MEHHP, MEOHP, MECPP) in
T2D patients compared to non-diabetic patients, but no
relationship with hypertension or dyslipidemia (Piecha et al.,
2016). Similarly, another study noted significantly elevated
concentrations of DEHP and MECPP in T2D Mexican
women; however, correlations between DEHP and IR were
only noted for non-diabetic patients (Svensson et al., 2011).
Lastly, Huang et al. (2014) determined there was a significant
correlation between MnBP, MiBP, MCPP, and DEHP with IR,
glycemia, and insulinemia (Huang et al., 2014). In summary,
current literature supports a relationship between phthalate
exposure and MetS.

UNDERSTANDING THE LINK BETWEEN
PLASTICIZERS AND CVD: ROLE OF
ADIPOSE TISSUE
Adipose tissue is thought to be a major target for the adverse
developmental and functional effects of plasticizers and other
EDC as it tends to sequester lipophilic toxins. Numerous
investigations have implicated adipose tissue dysfunction as
central in the development of obesity-associated CVD. The
metabolic consequences of adipose tissue dysfunction, which
include insulin resistance, dyslipidemia and increased visceral
adiposity among others, are defining features of MetS.

Adipogenesis
Adipose tissue is the body’s largest endocrine organ and major
energy reservoir (Berry et al., 2013). There is growing
appreciation for the importance of the “quality” of adipose
tissue, over its mass-based quantity, in carrying out its role in
regulating systemic metabolic homeostasis (Ikeoka et al., 2010;
Akoumianakis et al., 2017). As the body’s main energy reserve,
adipose tissue undergoes dynamic remodeling to expand or
contract in response to fluctuations in energy balance (Chait
and den Hartigh, 2020). In a state of prolonged positive energy
balance, subcutaneous fat depots serve as a “metabolic sink” that
buffers the excess energy. Healthy expansion of adipose tissue
depends on a dynamic balance between hypertrophic growth of
existing adipocytes and hyperplastic growth that increases the
number of adipocytes through adipogenesis (Chatterjee et al.,
2014; Choe et al., 2016; Jeffery et al., 2016). Adipogenesis is the
process by which adipocyte stem cells commit and differentiate
into mature, lipid-storing adipocytes. When adipogenesis is
insufficient, expansion relies on hypertrophy, which beyond a
threshold leads to lipid spillover into the circulation and engorged
adipocytes that are hypoxic, inflamed and resistant to the anti-
lipolytic effects of insulin (Kim et al., 2015; Jang et al., 2016).
Thus, failed expansion of adipose tissue underlies the insulin
resistance, hyperlipidemia and low-grade inflammation that
triggers obesity-induced onset of CVD (Medina-Gomez et al.,
2007; Chatterjee et al., 2014).

In adult depots, new adipocytes are recruited from a resident
population of progenitors that are committed in utero, as revealed
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by seminal studies by the Gaffe group (Jiang et al., 2014).
Therefore, a perturbation in the critical in utero window of
adipocyte lineage commitment will not only influence
postnatal fat mass but may also have later-life consequences
for availability of preadipocytes for differentiation and thereby
the buffering capacity of adipose tissue. Adipogenesis in vitro is
increased in response to BPA, as supported by a large body of
evidence (Sargis et al., 2010; Boucher et al., 2014; Ohlstein et al.,
2014; Ariemma et al., 2016). Much less is known regarding the
effect of BPA substitutes on in vitro adipogenesis, but the
evidence to-date points to similar pro-adipogenic properties. A
non-monotonic response to BPS exposure, where increased
adipogenesis was observed at lower doses, was reported in
stem cells isolated from the subcutaneous depots of female
donors (Boucher et al., 2016). In 3T3-L1 murine fibroblasts,
pro-adipogenic effects were more pronounced after treatment
with BPS compared to BPA (Ahmed and Atlas, 2016). Using the
same cell line, a recently published study showed that the
adipogenic response of BPS, BPF and BPB occurred at lower
doses than that of BPA (Ramskov Tetzlaff et al., 2020). The
molecular pathways mediating bisphenol-induced potentiation of
adipogenesis are unclear, although a few studies have
demonstrated the involvement of estrogen (Boucher et al.,
2014) or glucocorticoid (Sargis et al., 2010) signaling.

Phthalates and their metabolites have been studied far less
compared to BPA with respect to their effect on preadipocyte
differentiation; however, existing evidence indicate similar pro-
adipogenic properties. Feige et al. showed increased
differentiation via PPARγ activation in 3T3-L1 cells exposed
to MEHP, a monoester metabolite of DEHP (Feige et al.,
2007). In agreement, a more recent study reported that MEHP
promoted differentiation in the same cell line (Qi et al., 2019).
Work by Pomatto et al. assessed four plasticizers (DiNP, DiDP,
DEGDB, and TMCP) commonly used in the manufacture of food
packaging as substitutes for the phthalate DEHP. All DEHP
substitutes increased adipogenesis in 3T3-L1 cells, albeit with a
maximal response lower than BPA (Pomatto et al., 2018).
Another study reported an increase in 3T3-L1 differentiation
in response to prolonged exposure to the DEHP substitute, DiNP,
an effect that was prevented by PPARγ antagonism (Zhang et al.,
2019). Overall, these findings suggest that phthalates and their
substitutes augment in vitro differentiation of adipocyte
progenitors.

While the pro-adipogenic effects of plasticizers in isolated
stem cells are well-documented, whether this translates to
increased in vivo adipogenesis during critical developmental
windows of adipose tissue development remains unclear. In
offspring born to pregnant rats treated with a low dose of
BPA during pregnancy, body weight of both sexes was
increased at birth and at weaning total mass and adipocyte
size was increased in fat depots of females only (Somm et al.,
2009). However, the authors studied only visceral fat, which
contributes negligibly to total fat mass in rodents at weaning,
as these secondary depots develop primarily after birth (Wang
and Scherer, 2014). Later in postnatal life, there were no
differences in body weight between offspring born to BPA or
vehicle treated dams; however, BPS-exposed offspring were more

vulnerable to diet-induced weight gain (Somm et al., 2009). Mice
and rats are not ideal species to study the effect of in utero
exposures on adipogenesis as they are born with very little fat
compared to humans, sheep, and guinea pigs. In ovine fetuses of
BPA-exposed, but not BPS-exposed dams, there was a sex-
dependent increase in differentiation of isolated preadipocytes,
without changes in body weight and perirenal adipocyte size (Pu
et al., 2017). However, exposure was restricted to mid-gestation
(Gd 30–100) despite the accumulation of fat mass occurring
predominately in late gestation in sheep and other precocious
species. While some studies have examined prenatal bisphenol
exposure, fewer have investigated the impact of intrauterine
phthalate exposure on early life fat accumulation. One study
found higher body weight and visceral adiposity in 8-week old
offspring born to pregnant C57BL/6J mice dams exposed to a low
dose of the DEHP metabolite, MEHP (Hao et al., 2012).

In humans, studies regarding the relationship between
plasticizer exposure and early-life fat mass have yielded
inconsistent results. As far as bisphenols, some studies have
reported a negative association between maternal exposure and
birth weight (Miao et al., 2011; Troisi et al., 2014), while others
have found a positive association (Lee et al., 2014). A study by
Vafeiadi et al. studied a cohort of 1,363 pregnancies in Greece and
showed maternal urinary BPA levels in the first trimester to be
negatively associated with BMI in girls between the ages of 1–4,
but positively associated with BMI in boys (Vafeiadi et al., 2016).
The same study showed that urinary BPA levels were lower in
mothers compared to their children and that BPA levels in
children at 4 years of age predicted higher BMI and prevalence
of obesity. BPA levels in spot urine samples collected from a
smaller cohort of pregnant women were negatively associated
with BMI in 9 year old girls, with no effect on boys, while
BPA levels in children of both sexes were higher in those with
greater BMI (Harley et al., 2013). In a Spanish cohort,
prenatal BPA levels had no effect on growth in the first 6-
months, but was correlated to higher WC and BMI at 4 years
of age (Valvi et al., 2013). Overall, these findings suggest that
obesity is associated with postnatal rather than prenatal exposure
to bisphenols.

Similar to data on bisphenols, current evidence does not
support a relationship between prenatal phthalate exposure
and birth weight (Shoaff et al., 2016; Chiu et al., 2018).
Weight gain in the first 6 months and BMI between ages 1
and 7 were positively associated with maternal DEHP
metabolites measured in the first and third trimester, while
higher in utero exposure decreased early life weight gain in
boys (Valvi et al. 2015). No relationship between maternal
exposure to DEHP metabolites and fat mass in children aged
4–9 was reported by Buckley et al., (2016b). In a pooled analysis of
three cohorts, prenatal exposure to MCPP, a non-specific
metabolite of high molecular weight phthalates, was associated
with a 2-fold increase in childhood obesity, while exposure to
metabolites specific to DEHP was inversely related to childhood
obesity (Buckley et al., 2016a). The effect of childhood exposure
on adiposity is clearer, with studies showing high levels,
particularly in low molecular weight phthalates, to predict
childhood obesity (Hatch et al., 2008; Trasande et al., 2013;

Frontiers in Pharmacology | www.frontiersin.org February 2021 | Volume 11 | Article 6264485

Callaghan et al., Plasticizers and Cardiovascular Health

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Deierlein et al., 2016). Together, the above studies underscore the
importance of timing of exposure in relation to stages of
development. Slower clearance in the fetus due to immature
detoxification defences may shift the non-monotonic dose
response curve to the right and additionally, toxic effects on
the placenta may adversely affect fetal growth. Further, low dose
effects are difficult to extract from epidemiological studies due to
ubiquitous exposure. As well, studies typically treat EDCs in
isolation when human exposure occurs in mixtures. In summary,
while in vitro studies demonstrate a pro-adipogenic effect of
plasticizers, more studies are needed to determine if accelerated
fat accumulation due to early life exposure leads to the
development of obesity and its cardiometabolic complications.

Production of Adipokines
Adipose tissue regulates systemic metabolic homeostasis in part
through secreting adipokines, a group of adipocyte-derived
hormones, proteins, and cytokines with autocrine, paracrine
and endocrine effects on energy balance, lipid and glucose
metabolism, appetite, insulin sensitivity and inflammation
(Ahima and Lazar, 2008). Dysregulated adipokine secretion is
a hallmark of hypertrophic adipocyte dysfunction and
contributes to the pathogenesis of obesity-associated CVD.

Many plasticizers can alter adipose function by disrupting
endocrine signaling in adipose tissue. Obesogenic effects leading
to adipocyte hypertrophy and dysfunction may account for
dysregulated adipokine release, or EDC may directly
influence the endocrine function of adipose tissue. In human
adipose tissue explants, treatment with BPA inhibited the
release of the hormone adiponectin when present at
nanomolar concentrations (Hugo et al., 2008). Adiponectin
itself is a 30 kDa protein with the capacity to form several
multimers, the synthesis of which is regulated by PPARy
receptors (Trujillo and Scherer, 2006). Once released from
adipocytes, the physiological effects of adiponectin vary based
on the specific adiponectin multimer and tissue-specific
receptor to which the protein binds. For example,
adiponectin increases fatty acid oxidation and glucose
metabolism in muscle when bound to skeletal AdipoR1.
When bound to hepatic AdipoR2, however, adiponectin
stimulates increased insulin sensitivity. Adiponectin also
has the potential to stimulate anti-inflammatory and
antiatherogenic effects and is considered to be a key
regulator of insulin sensitivity (Trujillo and Scherer, 2006).
BADGE, a synthesis product of BPA, has been shown to
antagonize PPARy receptors, potentially inhibiting
adiponectin expression through this mechanism (Wright
et al., 2000). Moreover, BPA may directly inhibit adiponectin
synthesis by disrupting the action of protein disulfide isomerase,
an enzyme crucial to the assembly and retention of adiponectin
(Hiroi et al., 2006). Other bisphenols, including BPF, have also
been shown to inhibit adiponectin production (Rochester and
Bolden, 2015). Further, the phthalate DEHP has been shown to
inhibit the expression of adiponectin in female mice (Schmidt
et al., 2012; Klöting et al., 2015). Similarly to bisphenols, this
phthalate and its metabolites suppress expression of PPARy
receptors (Schmidt et al., 2012).

Plasticizers have also been shown to disrupt the production
of the adipokine leptin in adipose tissue, which is a signaling
protein involved in regulating feelings of hunger and satiety.
BPA exposure was positively associated with serum leptin levels
in both humans and rats, although this increase was not
correlated with a change in fat mass in human subjects (Wei
et al., 2011). Elevation of leptin in these studies was shown to be
attributable, in part, to neonatal exposure to BPA (Rönn et al.,
2014). The plasticizer, DEHP, a phthalate, has also been shown
to increase leptin levels in human pre-adipocytes, although
decreased lipid accumulation was observed in this study (Wei
et al., 2011; Rönn et al., 2014; Haq et al., 2020). In contrast to the
anti-inflammatory properties of adiponectin, leptin stimulates
the production of pro-inflammatory cytokines, and an
imbalance in the ratio of leptin-to-adiponectin secretion has
been associated with obesity and its cardiovascular outcomes
(López-Jaramillo et al., 2014).

Adipocytes are responsible for the production of a number of
other adipokines, although the effects of plasticizers on these
compounds is less studied. Chemerin is a protein produced by
adipocytes that is associated with inflammation, metabolic
dysfunction and carcinogenesis (Hoffmann et al., 2018). BPA
and its halogenated derivatives have been shown to decrease the
mRNA expression levels of this peptide in a cancer cell model
(Hoffmann et al., 2018). Resistin, an adipokine that interferes
with insulin signaling, also shows increased expression in vitro
in the presence of BPA (Jamaluddin et al., 2012; Menale et al.,
2017). The phthalate DEHP did not affect resistin levels in rats,
while increases in circulating resistin were observed in female
mice after perinatal DEHP exposure (Campioli et al., 2014;
Neier et al., 2019). The plasticizer dibutyl phthalate (DBP) has
also been negatively correlated with the serum levels of the
adipokine omentin (Zhang et al., 2017). The effects of
plasticizers on other adipokines such as visfatin and
dipeptidyl peptidase 4 have been insufficiently studied.
Visfatin, however, is regulated by PPARγ signalling (Choi
et al., 2005). Given the previously discussed effects of
plasticizers on these receptors, it is possible to speculate that
plasticizers may impact visfatin expression.

Adipose Tissue Inflammation and Oxidative
Stress
Inflammation and oxidative stress are core underlying
mechanisms in the progression of adipose tissue dysfunction
and CVD. BPA has been shown to stimulate the release of
inflammatory adipocytokines, including IL-6 and TNF-α from
preadipocytes, adipocytes and macrophages within adipose
tissue (Heinrich et al., 2003; Ben-Jonathan et al., 2009).
Phthalates such as DEHP have also been shown to stimulate
TNF-α in adipose tissue (Campioli et al., 2014). While both
cytokines exhibit potent inflammatory effects, IL-6 is a
pleiotropic cytokine that has been known to stimulate
lipolysis, inhibit lipoprotein lipase, and reduce glucose uptake
in the adipose tissue. This cytokine furthermore suppresses
adiponectin release (Kamimura et al., 2003). TNF-α
stimulates lipolysis in the adipose tissue and suppresses
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insulin sensitivity by downregulating glucose transporter
expression, interfering with insulin signaling, and by
inhibiting transcription factors involved in insulin sensitivity
(Ben-Jonathan et al., 2009).

An increase in oxidative stress in response to BPA has been
reported in several cell types (Gassman, 2017). A relationship
between the inflammation induced by BPA and oxidative stress
has been demonstrated (Ferguson et al., 2016). In an
inflammatory state, immune cells such as macrophages are
recruited to the adipose tissue; these cells generate reactive
oxygen species (ROS) and nitrogen species that both
contribute to chronic inflammation and damage cells.
Furthermore, oxidative stress induced by BPA was shown to
be essential in the activation of the NOD-like receptor protein 3
(NLRP3) inflammasome in adipose cells (Ahmed and Atlas,
2016). The activation of an inflammatory response by BPA-
induced oxidative stress causes the recruitment of additional
ROS-generating immune cells to the adipose tissue, leading to a
sustained cycle of inflammation and oxidative stress (Meli et al.,
2020). Alternatively, BPA may induce the production of ROS
directly by inhibiting the action of antioxidant enzymes,
including superoxide dismutase, catalase, glutathione

reductase (GR), and glutathione peroxidase (GSH-Px) (Meli
et al., 2020). Further, BPA exposure leads to ATP depletion,
cytochrome c release, loss of mitochondrial mass, and loss
membrane potential (Lin et al., 2013). Thus, mitochondrial
dysfunction may be both a cause and consequence of BPA-
induced oxidative stress. Phthalate exposure has also been
associated with oxidative stress in adipose tissue (Schaedlich
et al., 2018). It has been hypothesized that phthalate-induced
oxidative stress is mediated through the activation of PPAR
receptors or through changes in mitochondrial function
(Trasande and Attina, 2015). The above evidence highlights
oxidative stress and inflammation as important pathogenic
mechanisms linking plasticizer exposure to adipose tissue
dysfunction and CVD.

CONCLUSION

Commonly used plasticizers, bisphenols and phthalates, are
among the most pervasive environmental toxins in our
environment. Numerous studies have revealed that
exposure to these synthetic chemicals can lead to

FIGURE 1 | In isolated adipocyte progenitors, differentiation is enhanced with exposure to common plasticizers, phthalates and bisphenols. Therefore, exposure to
plasticizers during critical developmental windows of adipogenesis may recruit a greater number of progenitors towards terminal differentiation. Increased adipogenesis
during early life leads to the development of obesity and may prematurely deplete the progenitor pool that protects against obesity-associated adipose tissue
dysfunction. Adipose tissue dysfunction characterized by an impaired energy buffering capacity, adipocyte hypertrophy and inflammation, is a pivotal pathogenic
event in the development of CVD risk factors such as dyslipidemia and insulin resistance. Image made in Biorender.
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reproductive and developmental disorders including
infertility and early puberty. More recently, exposure has
been linked to the pathogenesis of cardiometabolic diseases
such as obesity, diabetes and CVD. Given that adipose tissue
sequesters environmental toxins and is central to the
development of obesity-associated CVD, it may play a
critical role in mediating the impact of plasticizers on
cardiovascular health (Figure 1). Herein we highlight
current evidence surrounding potential mechanisms by
which plasticizer exposure modulates adipose tissue
development and function. Data described include those
from recent studies revealing that synthetic analogues
marketed as safer alternatives have similar effects on
adipogenesis, oxidative stress and adipose tissue function.
These findings emphasize the need for further scientific
inquiry into synthetic analogues and their purported safety
and continued efforts to limit environmental exposure or
develop safer alternatives such as the emerging bio-polymers.
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