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Arrayed CRISPR reveals genetic 
regulators of tau aggregation, 
autophagy and mitochondria 
in Alzheimer’s disease model
Lishu Duan1*, Mufeng Hu2, Joseph A. Tamm1, Yelena Y. Grinberg1, Fang Shen1, 
Yating Chai2, Hualin Xi1, Lauren Gibilisco2, Brinda Ravikumar1, Vivek Gautam1, Eric Karran1, 
Matthew Townsend1 & Robert V. Talanian1

Alzheimer’s disease (AD) is a common neurodegenerative disease with poor prognosis. New 
options for drug discovery targets are needed. We developed an imaging based arrayed CRISPR 
method to interrogate the human genome for modulation of in vitro correlates of AD features, and 
used this to assess 1525 human genes related to tau aggregation, autophagy and mitochondria. 
This work revealed (I) a network of tau aggregation modulators including the NF-κB pathway and 
inflammatory signaling, (II) a correlation between mitochondrial morphology, respiratory function 
and transcriptomics, (III) machine learning predicted novel roles of genes and pathways in autophagic 
processes and (IV) individual gene function inferences and interactions among biological processes via 
multi-feature clustering. These studies provide a platform to interrogate underexplored aspects of AD 
biology and offer several specific hypotheses for future drug discovery efforts.

Alzheimer’s disease (AD) is a prevalent, aggressive neurodegenerative disease for which effective treatments are 
lacking1. While autosomal dominant genetic variants have suggested key initiating factors2, those critical for 
pathology progression and ultimate dementia largely remain to be elucidated. We set out to reveal such mecha-
nisms by screening for modulators of key pathological phenotypes of AD in an in vitro model.

Increasing evidence supports tau as a therapeutic target, as human data demonstrate that the extent of tau 
pathology correlates better than amyloid with AD disease progression, brain atrophy and cognitive decline3,4. 
Pathogenic variants of the MAPT gene, encoding tau protein, can cause a range of neurodegenerative diseases 
known as tauopathies. Tau-targeting strategies include small molecules and immunotherapies that modulate tau 
protein levels, post-translational modifications, and aggregation5. However, many pharmacological agents have 
been limited by toxicity or lack of efficacy5. Therapeutic antibodies targeting tau achieve limited brain exposure 
due to the blood–brain barrier (BBB) and do not access intracellular tau tangles.

Many biological processes are altered in AD6. These might be crucial mediators of Aβ and tau toxicity or may 
contribute to AD independently. Mitochondrial structural and functional differences in AD patients have led to 
the mitochondrial cascade hypothesis of AD7. Proteostatic mechanisms are also disrupted in AD, particularly 
autophagy, which mediates large molecule (e.g., tau aggregate) degradation by lysosomes8. Mounting evidence 
from genome-wide association studies (GWAS) suggests a key role for innate immunity in AD, particularly medi-
ated via microglia9,10. These mechanisms, their interactions, and their potential for pharmacological modulation, 
are partially understood at best. A systematic experimental approach to identify genes that modulate protein 
aggregation, the associated proteopathic stress, as well as cellular responses to that stress before irreversible 
disease progression, may advance that understanding and lead to new AD drug targets9.

Functional genomics allows direct and unbiased interrogation of the human genome for new drug targets. 
RNA interference (RNAi) and open reading frame (ORF) methods have been applied at the whole genome scale. 
While hugely impactful, these methods need orthogonal approaches to get a more complete view of the potential 
target landscape due to limitations such as widespread off-targeting, short target inhibition duration, and supra-
physiological concentration-elicited non-specific cellular effects11,12. Pooled CRISPR knockout (KO) screens have 
generally been more specific and consistent than RNAi screens13,14. Pooled CRISPR screens in neurodegenera-
tive diseases face several challenges, including (i) inability to interrogate early disease-relevant processes prior 
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to survival endpoints used in traditional drop-out pooled CRISPR screen methods, (ii) difficulties in capturing 
morphological features, cellular localization, temporal sequences, and intracellular events by positive enrichment 
pooled CRISPR screen methods, and (iii) missing non-cell autonomous effects and multimodal interactions. 
These can be overcome by the arrayed CRISPR format, in which individual genes are knocked out in individual 
wells, followed by high content imaging (HCI). Publications of large-scale arrayed CRISPR screens have been 
limited, possibly due to laborious processes, limited availability of high-performance libraries, and challenges in 
quality control to achieve high and consistent editing efficiency to minimize phenotypic heterogeneity.

We developed an automated, arrayed CRISPR high content imaging phenotypic screen workflow, and used it 
to evaluate in an in vitro cell model system tau aggregation, autophagy, lysosomes, mitochondria, Golgi and cell 
health in parallel. A pilot screen targeting 1525 genes confirmed and extended biology reported in the literature, 
and revealed novel biology in each cellular process. A network of genes involved in immune response modulated 
tau aggregation including the NF-κB pathway and LKB1 complex. We present evidence that mitochondrial mor-
phology correlates well with respiratory function and gene expression profile. Further, we predicted and inferred 
gene functions as well as interaction of biological processes by applying bioinformatic tools. These methods 
and findings advance our understanding of tau pathobiology, providing novel target hypotheses and technical 
platforms to inform AD drug discovery efforts.

Results
Automated multi‑modality arrayed CRISPR phenotypic screen in AD relevant cell model.  We 
developed an arrayed CRISPR phenotypic screening method using engineered SH-SY5Y neuroblastoma cells to 
interrogate the genetic component of established AD pathologies. Misfolded tau aggregation can be modelled 
in SH-SY5Y cells by overexpressing full length 2N4R tau containing the human tauopathy-associated P301L 
mutation and tagged with C-terminal EGFP to visualize tau aggregation in vitro. Upon treatment with synthetic 
tau fibrils, these cells form intracellular detergent-insoluble hyperphosphorylated tau aggregates15,16. Cas9 and 
gRNAs were delivered by lentivirus, and virus titer and timing were optimized for CRISPR editing efficiency and 
phenotypic translation (Supplement Fig. 1). Editing efficiency was further increased by multiplexing gRNAs. At 
a fixed total lentiviral input, multiplexed gRNAs consistently achieved 65% or higher editing while individual 
gRNAs varied from 3 to 45% (Fig. 1a). In a pilot screen of multiplexed gRNAs targeting 63 proteostasis genes, 
two independently prepared lentiviral gRNA libraries produced reproducible changes in the phenotypic end-
point (LC3 puncta) (R2 = 0.88, p < 0.0001) (Fig. 1b). A qPCR analysis demonstrated that the expression profile 
of 192 genes was highly correlated between lentiviral libraries (R2 = 0.96, p < 0.0001) (Fig. 1c). Thus, although 
lentivirus preparations may vary in titer, the phenotype produced by CRISPR editing can be highly consistent. 
This reproducibility could be due to high CRISPR editing efficiency as well as on-target specificity. These results 
indicate that large scale lentiviral arrayed CRISPR screen can be used for phenotypic screening.

RNA-seq analysis was used to compare the gene-specific molecular changes mediated by three different 
methods: CRISPR, siRNA and ORF, utilizing different constructs targeting the same genes. As expected, ORF 
overexpression led to significantly different gene expression profiles than CRISPR and siRNA, with thousands 
of gene changes (compared to hundreds), accounting for 24% of the variance by principal component analysis 
(PCA) (Supplemental Fig. 1). Hierarchical clustering of differentially expressed genes (DEG—log2 fold change) 
induced by CRISPR or siRNA revealed that while individual gRNAs targeting the same gene had similar mRNA 
profiles, siRNAs showed distinct expression profiles, in agreement with published results17 (Supplemental Fig. 1). 
Together, these data suggest that an optimized multiplexed gRNA arrayed CRISPR protocol produce consistent 
and gene-specific cellular and molecular profiles.

We scaled this up to evaluate for modulation of AD relevant phenotypes in vitro, 1525 select human genes 
that we categorically favor as “druggable”, particularly those annotated as kinases, phosphatases, and epigenet-
ics-associated genes (Supplemental Fig. 2). 3–4 gRNAs were pooled per gene/well and on plate controls were 
included to monitor screen performance. Automation enabled high-throughput 384-well cell splitting so that 
all phenotypic readouts were derived from the same gene editing event (Fig. 1d).

The arrayed CRISPR screen performed robustly. Sampling of 45 gRNAs targeting 15 genes revealed high edit-
ing efficiency (> 50% per gene) and plate controls performed as expected (Supplemental Fig. 2). Representative 
images of screening phenotypes are shown (Fig. 1e). To reveal biological insights from the dataset, i.e., gene func-
tion, pathway crosstalk, and interactions of biological processes, we developed a data analysis and bioinformatic 
pipeline (Supplemental Fig. 2).

Arrayed CRISPR screen and machine learning uncover novel genes and pathways that impact 
basal autophagy and lysosome homeostasis.  A key mechanism for intracellular macromolecule deg-
radation is autophagy. Cytoplasmic autophagy receptors such as p62/SQSTM1 link ubiquitinated macromol-
ecules to nascent LC3-positive autophagosomes. As autophagosomes mature they fuse with lysosomes leading 
to the degradation of their contents8. To interrogate broadly the genetic underpinnings of basal autophagy and 
lysosome homeostasis, we monitored autophagy by p62 and LC3-RFP, and lysosomes by LAMP1 staining, while 
selectively disrupting 1525 genes (Fig. 1e). The data was quantified and normalized by calculating plate-based 
z-scores. Gene set enrichment analysis (GSEA) of the p62 intensity z-score ranked gene list confirmed a sig-
nificant enrichment of autophagy-related genes including macroautophagy, phosphatidylinositol-3-phosphate 
biosynthetic process, defense response, and cellular response to starvation (Fig. 2a). This demonstrates that the 
arrayed CRISPR screen can robustly identify cellular pathways despite screening only selected subsets of genes.

Transcriptional profiling was performed to assess alignment of molecular profiles with cellular findings. 
Knockout of PRKAA1, encoding the α subunit of AMPK, elicited a transcriptional response highly enriched for 
autophagy and lysosomal processes, consistent with the role of AMPK in autophagy and lysosome regulation18 



3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:2879  | https://doi.org/10.1038/s41598-021-82658-7

www.nature.com/scientificreports/

Figure 1.   Multi-modal arrayed CRISPR and HCI phenotypic screen development. (a) Multiplexing lentiviral 
gRNAs significantly increased editing efficiency compared to single guides. Total lentivirus volume was fixed, 
n = 4, one-way ANOVA was applied to compare gRNAs performances in each gene group, *p-value < 0.05 
(p = 0.016), **p-value < 0.01 (p = 0.004), ***p-value < 0.001, ****p-value < 0.0001. (b) Pilot CRISPR screen with 
two batches of lentiviral gRNA preparation reveals significantly correlated functional phenotype—percentage of 
cells high in LC3 puncta. R2 = 0.88, p-value < 0.0001. (c) qPCR analysis of 192 genes resulting from pilot CRISPR 
screen show highly correlated expression indicated by Ct values. R2 = 0.96, p-value < 0.0001. (d) Automated 
384-well arrayed CRISPR and HCI screen workflow. (e) Representative confocal images of screen phenotypes, 
highlighting low and high signals in number of puncta, signal intensity, spectrum of morphology for each 
readout respectively, scale bar = 10 μm.
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Figure 2.   Basal autophagy and lysosome gene discovery via arrayed CRISPR and multi-parameter HCI. (a) 
GSEA analysis of p62 z score ranked gene list reveal enriched GO Biological Processes such as macroautophagy. 
(b) Enrichment analysis of differentially expressed genes upon PRKAA1 CRISPR show perturbed biological 
processes consistent with its role in autophagy. (c) Panel of autophagy related HCI parameters capture distinct 
patterns for genes involved in different stages of autophagy. d and f, Support-vector machine (SVM) learning was 
applied to 7-parameter dataset to predict genes that act similarly to phosphoinositol (referred to as PI) related 
genes in autophagy processes (d) and sirtuin genes in lysosome homeostasis (f). (e) Illustration of SVM method, 
predicted genes highlighted in red and blue, background is in grey. (g) Epigenetic regulators impact lysosome 
bi-directionally, supported by enriched pathways from GSEA analysis of LAMP1 z score ranked gene list.
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(Fig. 2b). We also observed enrichment of novel gene sets involved in protein modification, such as glycosylation 
and sialyation, and NF-κB signaling (Fig. 2b). This suggests that AMPK has a role as a master homeostasis and 
metabolic regulator, which merits further investigation. More broadly, the results show the feasibility of large-
scale CRISPR perturbation followed by transcriptional profiling to decipher gene function.

In the literature, assessing the state of cellular autophagy typically includes quantification of LC3 and p62 
positive autophagosome numbers19. Expanding the variety of features measured by HCI to include autophago-
some size, intensity, percentage of cells exhibiting high or low LC3 puncta, as well as a LAMP1 marker, can 
further differentiate subtle phenotypes. To test this, seven HCI parameters were used to evaluate the effects of a 
set of autophagy-modulating tool compounds (Torin1, rapamycin, chloroquine and bafilomycin A1) with dis-
tinct mechanisms of action. These newly established detection parameters clearly differentiated the phenotypes 
induced by the four test compounds in SH-SY5Y cells (Supplemental Fig. 3).

Applying these parameters to CRISPR edited cells revealed signaling pathways involved in different autophagy 
stages. These could be binned into five subpopulations: upstream signaling mediators; autophagy initiation; 
phagophore elongation; autophagosome maturation and autolysosome/lysosome function (Fig. 2c). For exam-
ple, disruption of upstream autophagy mediators (e.g. PPM1E, SGK1, PRKACA​) displayed profiles like those of 
autophagy induction (specifically, accumulation of LC3 puncta, reduced p62 intensity, decreased LC3 spot area 
and increased relative spot intensity)20,21. In contrast, disruption of the VPS34 complex core gene PIK3C3 and 
its regulatory subunit PIK3R4, which are critical for autophagy initiation and phagophore formation, demon-
strated a marked increase in p62 intensity, decreased LC3 puncta number, and increased LC3 spot area, fitting 
the profile of autophagy deficiency (Fig. 2c). Phosphoinositides implicated in autophagosome maturation or 
autolysosome function (e.g. FIG4, MTMR14, INPP5E) showed accumulation of bright, smaller LC3 puncta and 
enlarged LAMP1-positive spots (Fig. 2c). Disruption of SIRT2, SIRT3, and SIRT5 gave a profile consistent with 
previous findings that SIRT2/3 inhibit autophagy under basal conditions via deacetylation of autophagy related 
proteins22. Sirtuins also showed a strong reduction of LAMP1 spot area and intensity (Fig. 2c), suggesting a role 
in lysosome function.

These results also enabled the prediction of the role of specific genes in the autophagic process via machine 
learning for the entire screened 1525 gene set. A training gene set was built based on literature reports, and 
the Support Vector Machine (SVM) learning method was used to predict genes that act similarly to phospho-
inositides and sirtuins (Fig. 2e). The trained SVM model had a 70% classification rate of the input training 
gene sets for phosphoinositides and 75% for sirtuins, with a 5% false discovery rate. A representative list is 
shown (Fig. 2d) for genes that act similarly to FIG4 and MTMR14, which includes additional correctly predicted 
genes such as INPP1, MTM1, OCRL, SACM1L, TPTE and TPTE2, all of which have literature support for roles 
in autophagosome regulation. Moreover, SVM predicted with 90% accuracy genes involved in phospholipid 
dephosphorylation in the library, 61% for phosphatidylinositol biosynthetic process and 41% for regulation of 
phosphatidylinositol 3-kinase, while as a negative control non-related histone lysine demethylation was predicted 
only 5% (Supplemental Table 2). When characterizing predicted sirtuin-like genes in lysosome phenotype, we 
found two gene categories that were enriched: MAPKKK activity and regulation of gene expression (Fig. 2f). This 
epigenetic component is further substantiated by GSEA of lysosome phenotypes described below. Ranked gene 
list based on LAMP1 staining intensity revealed a salient role of epigenetic regulators in modulating lysosome 
homeostasis (Fig. 2g). In particular, we uncovered a novel bidirectional impact on lysosomes by demethylase 
(increased LAMP1 intensity) and methyltransferase activity (decreased LAMP1 intensity). Actin binding and 
cytokine receptor binding activity were also implicated in lysosome modulation (Fig. 2g).

Discovery of interconnected networks implicating inflammatory NF‑κB pathway and LKB1 
complex in tau aggregation modulation.  Tau aggregation was assessed by quantifying tau aggregate 
spot area, which was the most sensitive and consistent metric. Disruption of the GSK3A/B genes, which are 
kinases well studied for their role in tau hyperphosphorylation, disassembled tau aggregates, validating the 
approach (Fig. 3a). We report for the first time that the CAB39 gene, which encodes the LKB1 complex compo-
nent MO25, drastically increased tau aggregation upon CRISPR editing (Fig. 3a). Cytoscape analysis to reveal 
protein–protein interactions and pathway enrichment among tau aggregation hits showed that KO of all com-
ponents of the LKB1 complex, CAB39, STK11, and STRADA, significantly increased tau aggregation (Fig. 3b). 
KO of the LKB1 downstream substrates MARK1 and MARK2, which phosphorylate tau in AD23,24, strongly 
increased tau aggregation. Two other LKB1 substrates, BRSK1 and SIK3, showed a similar phenotype. (Fig. 3b). 
These results strongly support a role for LKB1 complex in tau aggregation. To test if acute LKB1 perturbation 
leads to the same result, we used siRNA method to knock down the LKB1 components CAB39, STRADA and its 
substrate MARK2. Separate knockdowns of around 60% increased tau aggregation by 50% for each of the genes 
(Fig. 3e). Over-expression of the LKB1 components and MARK2 using lentiviral ORF constructs gave the oppo-
site phenotype, with significantly decreased tau aggregation (Fig. 3f). Overall, multiple lines of evidence suggest 
that the LKB1 complex and its substrates modulate tau aggregation in this system.

STRING network analysis shows interactions between genes that increase and decrease tau aggregation 
bridged by the FYN gene, reported to be a downstream mediator of Aβ synaptic toxicity and has been clinically 
targeted in AD25. In our screen, FYN disruption also decreased tau aggregation (Fig. 3b). We discovered a large 
network that reduces tau aggregation and is enriched for the NF-κB signaling pathway. Disruption of the IκB 
kinase (IKK) complex, which would block NF-κB activation and downstream signaling, significantly reduced 
tau aggregation. This is supported by the markedly decreased tau aggregation phenotype elicited by loss of all 
three members of the IKK complex, IKKα (CHUK), IKKβ (IKBKB) and NEMO (IKBKG) in the primary screen 
(Fig. 3b) and confirmatory experiments (Fig. 3c). Additional NF-κB pathway-associated genes include ZAP70, 
LYN, CSNK2A1 and CARD11.
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Figure 3.   Discovery of interconnected network of inflammatory NF-κB pathway and LKB1 complex that modulate 
tau aggregation. (a) Tau-EGFP aggregate morphology after methanol fixation to remove soluble tau. GSK3A/B 
knockout decreases tau aggregate area while CAB39 knockout increases it. Scale bar = 10 μm. (b) Cytoscape 
construction of STRING network of gene sets that modulate tau aggregation, colored by aggregation area z score. 
Outer ring highlight network enriched pathway. STRING interaction was limited to experimental evidence and 
database. (c) Representative inflammatory and NF-κB pathway gene hits are confirmed in secondary CRISPR 
experiments n = 4, one-way ANOVA, F (5,12) = 9.503, p = 0.0007; Sidak’s multiple comparisons, *p = 0.014. (d) Tau 
aggregate bearing cells upregulate expression of inflammatory genes detected by RNA-seq, n = 2, Two-way ANOVA 
with Sidak’s multiple comparisons, F (9, 20) = 9371, p < 0.0001. (e) siRNA knockdown of LKB1 complex related genes 
repeat tau aggregation increase phenotype by CRISPR method, knockdown efficiency (KD) determined by QPCR 
is highlighted in yellow, n = 4, one-way ANOVA, F (3, 12) = 6.687, p = 0.0066; Sidak’s multiple comparisons, CAB39 
p = 0.007, STRADA p = 0.011, MARK2 p = 0.013. (f) Over-expression of LKB1 complex related genes decrease Tau 
aggregation, further confirming primary screen finding. Over expression fold change (FC) by qPCR is indicated 
in yellow, n = 3, one-way ANOVA, F (4, 10) = 13.11, p = 0.0005; Sidak’s multiple comparisons, STK11 p = 0.004, 
MARK2 p = 0.004. All error bars indicate standard deviation, *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001, 
****p-value < 0.0001.
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Centering around the IKK complex, and intertwined with the NF-κB pathway, another pathway emerges—
cytokine response. CRISPR disruption of chemokines (CCL2, CCL8), cell surface receptors (TLR4, TNFRSF1A, 
CD40, CD40LG, CD14), inflammatory adhesion molecules (CD2, VCAM1), and downstream signaling mol-
ecules (IRAK2, RIPK1, FYN, CSNK2B) all reduced tau aggregation (Fig. 3b,c). This puts the NF-κB finding in an 
inflammatory context, which by itself is not surprising since NF-κB activation stimulates cytokine production 
and mediates inflammatory processes. It is however perplexing that such a strong inflammatory involvement in 
tau aggregation is found in SH-SY5Y cells, a non-immune cell type. We hypothesized that tau aggregation itself 
may be pro inflammatory. To test this, gene expression profiles of SH-SY5Y cells with or without tau aggregation 
were compared by RNA-seq. Under normal conditions, SH-SY5Y cells minimally express cytokines, indicated by 
RPKM values less than 1 (Fig. 3d). However, in tau aggregate-bearing cells, several cytokines increased substan-
tially: CCL2 (zero to RPKM value of 63), CCL27, IL17D and IL32 (zero to RPKM value of 8.4). TNF family recep-
tors also were significantly upregulated: TNFRSF9 (100-fold increase), EDA2R and FAS. IFI44-interferon induced 
protein 44-also increased by 100-fold and there was a tenfold increase in the senescence markers IGFBP3 and 
CDKN1A (Fig. 3d). These results support the hypothesis that tau aggregation induces inflammatory responses, 
even in SH-SY5Y cells, and that reducing inflammatory signaling decreases tau aggregation in those cells.

Interplay of tau aggregation with autophagy and lysosome dynamics.  Evidence for autophagy 
and lysosome abnormalities have been found in AD brain and likely impact tau aggregation26. PHF seeding to 
induce tau aggregation resulted in a significant increase in LC3 puncta/spot area, suggesting that aggregation 
causes stress in the autophagy system, and that interplay of tau aggregation with cellular biological processes can 
be recapitulated in vitro (Fig. 4a). Treating cells with the autophagy inducers rapamycin and Torin1 had a minor 
effect on tau aggregation (not shown), but the PI-3K inhibitor wortmannin gave a concentration-dependent 
increase in tau aggregation area (Fig. 4b). Similarly, CRISPR perturbation of PIK3CA, PIK3CD, PIK3CG and 
PIK3C2B all led to increased tau aggregation, together with a blocked autophagy profile (Fig. 4f). These results 
suggest that inducing autophagy without increasing autophagic flux is not enough to curb tau aggregation27, 
while inhibition of basal autophagy exacerbates tau aggregation burden.

LAMP1 positive lysosome clusters surrounding tau aggregation spots were frequently observed, and their 
intensities were inversely related (Fig. 4d). This could indicate lysosome containment of tau aggregates, or exclu-
sion of lysosomes from the dense tau aggregate protein network. However, normal lysosomes appeared as distinct 
puncta rather than big clusters. To distinguish these possibilities, we performed live imaging experiments to 
monitor real-time tau aggregation and lysosome dynamics with LysoTracker labeling. PHF treatment resulted 
in significant increase of lysosome size compared to control prior to visible tau aggregate formation (Fig. 4c,e). 
Lysosomes continued forming clusters as tau aggregates grew. In some cases, lysosomes formed large clusters and 
appeared to segment tau aggregates (Fig. 4e). These observations were confirmed with LAMP1-RFP labeled lyso-
some live imaging. SH-SY5Y cells differentiated into neurons, which minimizes cell movement and allows better 
tracking of lysosome dynamics in situ, revealed LAMP1-RFP lysosomes trafficking along neurites, coalescing 
in the cell body to form big clusters in parallel to tau aggregation. The process was highly dynamic within and, 
unexpectedly, between cells (Supplemental Video 1). These results suggest a strong involvement of lysosomes in 
tau aggregation. The sirtuin genes, as well as others predicted by machine learning, showed a tau aggregation-
high phenotype (Fig. 4f). Example genes include sirtuins (SIRT2/3/5), regulation of MAPKKK activity (ARAF, 
LTK, MAP3K7CL, MAP3K9), epigenetic regulators of gene expression (CDK9, HDAC4, KDM7A, MTA3, PHF11, 
SETDB2, SMARCA2). Genes involved in glucose metabolism and glycolysis also had a tau aggregation-high 
phenotype (PGK1, PKLR). PFKFB4 exhibited high tau aggregation together with a sirtuin-like autophagy and 
lysosome profile (Fig. 4f). Two genes causal for fragile x syndrome, FMR1 and FXR2, displayed a strong lyso-
some phenotype together with increased tau aggregation upon CRISPR loss of function (Fig. 4f). In summary, 
tau aggregation in vitro causes stress in autophagy and lysosome dynamics and that modulating genes involved 
in these processes can affect tau aggregation.

Mitochondrial morphology indicates cellular bioenergetic preferences and correlates strongly 
with transcriptional profiles.  To inform on cell health and cellular bioenergetics, mitochondrial mor-
phology was monitored by MitoTracker labeling and live imaging. CRISPR disruption of Mitofusin 1 and 2 gave 
clearly fragmented mitochondria compared to the tubular network observed under basal conditions. MFN2 
disruption also reduced mitochondrial volume compared to MFN1 and control (Fig. 5a). CRISPR knockout of 
various genes (e.g. DGKQ, PIK3C3, TRIM24) decreased mitochondrial volume with a different type of fragmen-
tation, swollen globules and rods (Fig. 5a). Others (e.g. ING1, PPM1N, PPIP5K1) led to elongated mitochondria 
(Fig. 5a).

We used an array of functional assays to investigate whether the observed mitochondrial morphologies reflect 
function. The Seahorse28 Mito Stress Test revealed that cells with elongated mitochondria had higher basal and 
maximum respiration compared to control measured by oxygen consumption rate (OCR), while cells with frag-
mented mitochondria showed the opposite (Fig. 5b). The Seahorse Glycolytic Rate assay, which measures proton 
efflux rate attributed to glycolysis (glycoPER), showed significantly increased glycolysis in cells with elongated 
mitochondria compared to control, but cells demonstrating mitochondrial fragmentation showed decreased 
glycolysis (Supplemental Figs. 4 and 5c). The Seahorse ATP Production Rate assay, which measures total ATP 
production attributed to glycolysis and oxidative phosphorylation (OXPHOS), confirmed that cells with elon-
gated mitochondria upregulated glycolysis (OXPHOS/glycolysis ratios: control: 1.5, elongated mitochondria: 
0.5, fragmented mitochondria: > 5, Supplemental Fig. 4). Mitochondrial membrane potential, assessed by TMRE 
labeling intensity, revealed that cells with fragmented mitochondria have significantly higher membrane poten-
tial (2–4 fold, Supplemental Fig. 4), which may explain the increased oxidative phosphorylation capacity. These 
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novel results establish a clear correlation of mitochondrial morphology with cellular bioenergetic preference, 
particularly that mitochondrial elongation is associated with increased glycolysis.

Cells with altered mitochondrial morphologies were also profiled by RNA-seq and analyzed for transcrip-
tional changes and pathway perturbations. Enrichment analysis of DEGs revealed canonical glycolysis as the 
top upregulated pathway in cells with elongated mitochondria (e.g. PPIP5K1, IMPA1), alongside pathways that 
fit the biological role of these genes (Fig. 5d). Cells with fragmented mitochondria (e.g. PIK3C3) downregulated 
respiratory electron transport chain, complex I assembly, mitochondrial translation and transport (Supple-
mental Fig. 4d). Similar phenomena were observed across multiple samples, hence a panel of genes critical for 
the above processes was selected for hierarchical clustering of all samples. CRISPR edited cells with elongated 
mitochondria clustered with universal upregulation of glycolysis genes (Fig. 5e). For some genes (ING1, HDAC2 
and MTA3), the edit-induced mitochondria related transcriptomic changes were only limited to upregulated 
glycolysis genes. Significant down regulation of genes in mitochondrial complex I biogenesis, mitochondrial 
fatty acid beta-oxidation, mitochondrial translation, the tricarboxylic acid (TCA) cycle and respiratory electron 
transport were seen in cells with fragmented mitochondria. Cells with CRISPR edits that did not result in an 
overt mitochondrial morphology phenotype had limited mitochondrial gene network changes (Fig. 5e). Overall, 

Figure 4.   Interaction of tau aggregation with autophagosome and lysosome dynamics. (a) PHF-treated 
cells display significantly enlarged LC3 positive autophagosome, n = 4, two-tailed unpaired t-test. (b) pan-
PI3K autophagy inhibitor wortmannin concentration dependently increases tau aggregate spot area, n = 4, 
One-way ANOVA with Tukey’s multiple comparisons, F (6, 20) = 19.74, p < 0.0001. (c) PHF-treated cells 
significantly increase lysosome size marked by lysotracker red, n = 5, two-tailed unpaired t-test. (d) LAMP1-
positive lysosome clusters and tau-EGFP aggregates are mutually exclusive, two-tailed unpaired t-test. (e) Live 
imaging of lysosome coalescence via lysotracker red during tau aggregation process, scale bar = 10 μM. (f) Tau 
aggregation, autophagy and lysosome profiles of examples genes similar to wortmannin and SIRT2. Error bars 
indicate standard deviation. ***p-value < 0.001, ****p-value < 0.0001.
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Figure 5.   Mitochondrial morphology is correlated with cellular respiration preference and transcription. (a) 
MitoTracker red labeling reveals differences in mitochondrial morphology upon various gene disruptions via 
CRISPR, broadly categorized as fragmented or elongated mitochondria. Scale bar = 5 μm. Arrowhead points to 
fragmented mitochondria, open arrows indicate swollen globules and arrows indicate elongated mitochondria. 
(b) Seahorse mito stress test shows markedly different mitochondrial respiration function indicated by 
cell number normalized OCR, which correlates with mitochondrial morphology, red indicates elongated 
mitochondria while blue indicates fragmented mitochondria. Olig: oligomycin; R/A: rotenone and antimycin A. 
(c) Seahorse glycolytic rate assay indicates elongated mitochondria is associated with significant upregulation of 
glycolysis while fragmented mitochondria decreased glycolytic rate based on cell number normalized glycoPER. 
Error bars indicate standard deviation, n = 6, one-way ANOVA, F (14,60) = 172.8, p < 0.0001. Dunnett’s multiple 
comparisons, ***p-value < 0.001, ****p-value < 0.0001. (d) Enrichment analysis of RNA-seq DEGs of cells with 
elongated mitochondria reveals canonical glycolysis to be the top regulated biological process. (e) Hierarchical 
clustering heatmap of log2 fold change of DEGs involved in mitochondria related processes. Elongated 
mitochondrial morphology is strongly associated with upregulation of glycolysis genes while fragmented 
mitochondria have downregulation of genes in involved in TCA, complex I biogenesis and other critical 
mitochondrial processes.
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the evidence suggests that mitochondrial morphology is highly correlated with gene expression profiles and that 
mitochondrial elongation is accompanied by upregulation of glycolysis genes and glycolytic function.

Gene function inference and fingerprinting based on CRISPR cellular features.  Arrayed CRISPR 
phenotypic screening permits grouping of genes based on similarity of cellular features and inferring novel gene 
functions and relationships. We chose 33 non-redundant HCI parameters within 6 categories of cellular features 
quantifying: general cell morphology and cell health, tau, autophagy, mitochondria, Golgi and lysosome. These 
parameters represent the full spectrum of probed processes and enable identification of communication between 
pathways. For example, parameters such as tau intensity in aggregate spots vs. LAMP1 positive spots, soluble 
tau intensity and p62 intensity in LAMP1 spots, might reveal autophagy and lysosome-mediated tau aggregate 
degradation (Supplemental Table 1).

K-means clustering was used to separate all screened genes into14 groups (Fig. 6a). Each was characterized 
by dominant cellular features and had specific enriched signature pathways. For example, group 1 was enriched 
in MAPK signaling (MAP4K1, MAPKAPK2, MAPKAPK5, MAP3K7, MAPK4 and MAP4K4), and was associated 
with bigger cell size and lower soluble tau phenotype (Fig. 6a). A strong mitochondrial morphology phenotype 
was found in gene sets involved in phosphatidylinositol signaling, axon guidance, insulin signaling and autophagy 
(Fig. 6a). A detailed STRING interaction network of these gene sets and pathway enrichment is shown (Fig. 6b). 
The connection of mitochondrial morphology with autophagy echoes the previous characterization, that loss 
of autophagy-related genes such as PIK3C3, PIK3AP1, PIK3CA resulted in a profound change in mitochondrial 
morphology, suggesting adaptation and functional metabolic reprogramming. Loss of function of insulin signal-
ing genes (e.g., PHKG1, HK2, PRKCZ, PPARGC1A) also altered mitochondrial morphology. This is consistent 
with observations that insulin resistance is associated with altered mitochondrial dynamics that favors fission29. 
Genes involved in axon guidance had a strong impact on mitochondrial morphology, including the following 
gene sets: axon guidance cues ephrins (EPHB2/3, EFNA4); classic axon guidance molecule semaphorin recep-
tors such as NRP1 and plexins (PLXNA1/3/4, PLXNB2/3, PLXNC1); growth cone actin polymerization genes 
(LIMK1/2, SSH2/3); cytoskeleton dynamics Rho GTPase associated genes (ROCK1, RYK, PAK4); and cell adhe-
sion related genes (ILK, SRC, MET). While it is known that rapid growth cone remodeling during axon outgrowth 
is energetically costly and requires mitochondrial biogenesis30, we report that CRISPR disruption of an array of 
axon guidance molecules actually alters mitochondrial morphology (Fig. 6b). Our data suggest an intrinsic link 
between axon guidance biology and mitochondrial dynamics.

Compared to k-means clustering, which extracts dominant cellular features, hierarchical clustering achieves 
high resolution gene fingerprinting, based on gene similarity indicating related functions in a majority of the 
probed biological processes (Fig. 7). Hierarchical clustering placed many genes within families adjacent to one 
another, for example phosphatase regulatory subunits (PPP1R3A, PPP2R5C, PPP1R3B, PPP2R1B) and activin 
receptors (ACVR1, ACVR1C, ACVR2A) Lesser-known genes (e.g., SLK, SNRK, PXK) associate with better char-
acterized genes (STRADA, MARK2, PIK3AP1, PRKCG) linked via common tau phenotype (Fig. 7). Detailed 
examination of this dendrogram will suggest hypotheses for novel gene function by inferences from neighboring 
genes and respective probed biological processes.

Discussion
We describe for the first time, a large-scale, arrayed CRISPR screen for genetic modulators of multiple morpho-
logical and functional cellular phenotypes associated with AD. We identified novel genes and implied pathways 
that broaden our understanding of the underlying biology of AD and may be useful as drug targets.

The screen used automation to reduce systematic error, increase throughput, and most importantly, enable 
parallel quantification of phenotypes from the same batch of CRISPR edited samples. Consistent and high level 
CRISPR editing was achieved by multiplexing lentiviral gRNAs, which outperformed the best single gRNAs. 
Similar approaches for improving homology-directed repair (HDR) efficiency have been noted31. Systematic gene 
function profiling is a concept employed by previous studies: RNAi and high content imaging based screens32,33, 
cell painting profiling of small molecules via morphological signatures indicated by multifluorescent probes34, 
and ORF morphological mapping of gene functions by cell painting35. This work complements previous stud-
ies by choosing a more target specific CRISPR method, shown here to reflect the biological roles of genes, and 
includes multimodal disease relevant phenotypes. By combining cellular profiling with gene expression profiling, 
we revealed the complexity of individual gene function and broader pathway involvement. For example, genes 
linked to axon guidance, phosphatidylinositol signaling, insulin signaling, and autophagy are associated with 
distinct mitochondrial morphology, and this cellular phenotype is associated with signature mitochondrial gene 
expression profiles. A systematic analysis pipeline with various bioinformatic tools was developed to extract 
novel biology from big datasets. For example, machine learning successfully predicted gene functions in discrete 
stages of autophagy with a multi-parameter SVM linear classifier. These insights provide multiple starting points 
for further studies.

Numerous novel observations were made. Many autophagy studies focus on mechanisms of stimulated 
autophagy, which was originally proposed as a stress response36. We found phosphatidylinositol signaling to be 
a major player in basal autophagy, possibly reflecting its role in membrane dynamics crucial for autophagy37,38. 
Mutations in phosphoinositides increase the risk for several neurodegenerative diseases39. FIG4 mutations lead 
to neurodegenerative diseases such as Charcot-Marie-Tooth disease and Amyotrophic Lateral Sclerosis (ALS). 
Similarly, OCRL, INPP5B, MTM and MTMR14 have been linked to various diseases39. The fact that all these 
genes had autophagy alterations in our screen suggests basal autophagy as an underlying cellular mechanism. 
There is a growing interest in the relationship between mitochondrial morphology and mitochondrial function40. 
We found that elongated mitochondrial morphology is associated with increased glycolysis relative to oxidative 
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Figure 6.   Gene function inference and pathway interactions revealed by signature cellular features. (a) 
Heatmap illustration of k-means clustering of screened genes based on 33 cellular features that capture general 
cell morphology and health, tau, autophagy, mitochondria, Golgi, and lysosome. The 14 clusters show dominant 
perturbed cellular processes and are associated with signature enriched pathways. Enriched pathway FDR 
q-value < 0.05. (b) Cytoscape STRING network of genes and pathways that affect mitochondrial morphology. 
Outer ring highlight network enriched pathway. STRING interaction evidence included experiments and 
databases.
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phosphorylation and that these functions were associated with an upregulation of glycolysis related gene expres-
sion. Previous reports suggested elongation as a mechanism to protect mitochondrial damage during starvation-
induced autophagy41. We extend this finding with numerous autophagy related gene CRISPR knockouts, demon-
strating fragmentation of mitochondria when autophagy is compromised. This suggests a dynamic interaction of 
biological processes to maintain cellular homeostasis, and that metabolic adaptation and reprograming happens 
if one process is chronically compromised.

The contribution of autophagy and lysosome biology to the process of tau aggregation was examined in detail. 
A cellular model of tau pathology similar to ours showed no autophagy impairment during tau aggregation 
as judged by LC3 and p62 accumulation15. We found increased spot area of both LC3 and LAMP1, indicating 
autophagic and lysosomal stress during tau aggregation, consistent with AD pathology of autophagic vacuoles in 
dystrophic neurites42. Inhibiting basal autophagy with the PI3K inhibitor wortmannin and by disrupting PI3K 
genes led to increased tau aggregation. This aligns with the consensus that autophagy plays a role in tau aggrega-
tion and clearance27,43. Intriguingly, a strong link between lysosomes and tau aggregation was found. Lysosomes 
formed clusters around tau aggregates and modulated tau aggregate morphology. These clusters might come from 
lysosome coalescence, a mechanism of lysosome enlargement during drug inhibition44. Transcription factor EB 
(TFEB) is a master regulator of lysosome biogenesis45. We uncovered a bidirectional modulation of lysosomes by 
epigenetic regulators. It will be interesting to see if these genes impact lysosomes via TFEB dependent pathways 
or through new mechanisms. These epigenetic genes also had intriguing effects on tau aggregation. Whether this 
is related to autophagy-lysosome mediated degradation, lysosome biogenesis, or other mechanisms, requires 
further study27,43.

There is significant evidence that the LKB1 complex modulates tau aggregation. LKB1 is a master kinase 
regulator with 14 known substrates including AMPK and various tau kinases such as MARK2 and NUAK146. 
CRISPR disruption of all three components of LKB1 causing increased tau aggregation may reflect the con-
certed action of tau kinases and autophagy in regulation of aggregation propensity and clearance. We show 
for the first time, that inhibition of NF-κB, a transcription factor most commonly associated with immune cell 

Figure 7.   High-resolution finger printing of gene function via hierarchical clustering. Hierarchical clustering 
of representative genes based on screened 33 cellular features, representing general cell morphology and health, 
tau, autophagy, mitochondria, Golgi, and lysosome, show similarity of gene functions manifested by probed 
biological processes. Color coding indicates z score values ranging from − 2 to 2.
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activation, can decrease tau aggregation in a neuronal system. Transcriptomic analysis on tau aggregate-bearing 
cells also shows increased inflammatory signaling, including cytokines, TNF, and interferon related signals. This 
perhaps identifies a key mechanistic link between inflammation and propensity for tau aggregate formation, 
as both amyloid beta and proinflammatory cytokines have been described to activate NF-kB in neurons47. The 
neuroinflammation hypothesis of AD is supported by genetic, biomarker, and experimental evidence including 
recent single cell studies48. Most literature suggests that the inflammation signal is due to extracellular Aβ and 
modulates amyloid progression via microglia48. Recently it was reported that knocking out the NLRP3 inflam-
masome also reduced tau pathology downstream of Aβ through microglia49. There is limited literature regarding 
inflammatory signal response by neurons, despite the presence in neurons of inflammasome components such as 
NLRP150. Our work suggests that genes traditionally implicated in inflammation can modulate tau aggregation 
in response to a proinflammatory extracellular environment, and thus may represent a point of intervention. We 
also reveal potential mechanisms by which the neuronal cell-autonomous inflammatory response that occurs 
as a result of tau aggregation can trigger the production of chemokines inviting distant and nearby immune 
cell activation. For example, sequencing shows that tau aggregate-bearing cells produce the chemokine CCL2, 
which has been described in rodent studies as a key signal to induce macrophage recruitment from the blood 
into the brain51. Together, this work describes specific signaling that modulates propensity for tau aggregation 
in response to inflammation, as well as how cellular responses to tau aggregation can result in the promotion of 
neuroinflammation, potentially triggering a feed-forward cascade. Indeed recent literature suggests that perhaps 
not amyloid itself but instead the inflammatory response to amyloid is key in precipitating dementia52. Future 
experiments in primary neurons53 or human iPSC derived neurons54 and co-cultured with microglia with revers-
ible techniques such as CRISPRi may better elucidate the mechanisms behind these findings and suggest novel 
targets for AD therapy.

Materials and methods
Cell culture and lentiviral arrayed CRISPR screen.  Wildtype SH-SY5Y cells (ATCC, #CRL-2266) were 
infected with lentivirus encoding CMV-tau (p301L)-EGFP. Cells were maintained in basal medium (DMEM, 
high glucose, GlutaMAX supplement) with 10% heat-inactivated FBS, 1 × Pen-Strep and 8 μg/mL Blasticidine 
for selection. Cells were FACS-sorted for optimal EGFP signal and passaged with selection pressure and frozen 
before passage 18. All cell culture reagents were purchased from Thermo Fisher Scientific.

Same-passage frozen cells were thawed, passaged and plated on 384-well plates (Greiner, #781094) at a den-
sity of 7000 cells per well for the screen. The next day, cells were infected with 2.5 μL lentiviral human gRNA 
library (Thermo Fisher Scientific) with automated liquid handing on a Bravo pipetting workstation (Agilent), 
supplemented with 8 μg/mL Polybrene (MilliporeSigma) to increase infection efficiency. 16 h later, Cas9 len-
tivirus was added at a MOI of 1. Three days after Cas9 infection, 1.2 μg/mL puromycin and 1.2 mg/mL G418 
were added to the cell culture medium to select for gRNA and Cas9 double-infected cells. Cells were maintained 
in selection medium with intermittent replenishment for 11 days before splitting onto 384-well imaging plates 
(CellCarrier-384 Ultra, PerkinElmer).

High content imaging.  High content images were captured on a PerkinElmer Operetta CLS confocal 
microscope. Exposure time was within the linear range of signal detection. 7–9 fields of images were captured 
for each well. Three confocal stacks at intervals of 1.5 μM were acquired for all readouts. Live imaging was car-
ried out at 37 °C, 5% CO2.

Maximum projections of confocal Z stack images were used for feature extraction and quantification. Perki-
nElmer Harmony software was used to build algorithms for various readouts. Algorithms were validated by 
manual inspection of raw images for definitive signal cell events and minimal false positive and false negatives.

Immunocytochemistry.  Culture medium was evacuated from 384 well imaging plates with a BioTek 
EL406 plate washer. Cells were fixed with cold methanol at − 20 °C for 15 min. Plates were washed once with 
1xPBS before primary antibody incubation at 4  °C overnight in staining solution: 1xPBS, 1% BSA (Thermo 
Fisher Scientific), 0.2% Triton X-100 (Sigma-Aldrich), 5% goat serum (Jackson ImmunoResearch). Second-
ary staining was performed in PBS with addition of HOECHST 33,342 (Thermo Fisher Scientific). Plates were 
washed 3 × with PBS between staining steps. Primary antibodies were: mouse anti-p62 antibody (1:1000 dilu-
tion, MBL International, #M162-3); rabbit anti-LAMP1 antibody (1:1000, Cell Signaling Technology, #9091S). 
Secondary antibodies: highly cross-adsorbed secondary antibodies goat anti-mouse IgG (H + L) Alexa Fluor 
568/647 and goat anti-rabbit IgG (H + L) Alexa Fluor 647 (Thermo Fisher Scientific).

Tau aggregation induction and detection.  PHF tau seeds were prepared by a heparin-induced recom-
binant tau (2N4R with P301L mutation) aggregation method55. PHF was batch-sonicated and frozen at a stock 
of 800 nM. SH-SY5Y cells overexpressing tau (P301L)-EGFP were treated with freshly thawed PHF at 15 nM 
final concentration overnight. PHF treated cells were then exposed to 0.8 mM Leu-Leu methyl ester hydrobro-
mide (LLME, Sigma-Aldrich) for 1 h, and medium was switched to normal culture medium to allow tau seeds 
to escape from lysosome and form tau aggregation efficiently56. 72 h later, cells were fixed with methanol and 
stained overnight with mouse anti-p62 antibody and rabbit anti-LAMP1 antibody. Secondary antibodies goat 
anti-mouse Alexa Fluor 568 and goat anti-rabbit Alexa Fluor 647 were used. Plates were then imaged on a PE 
Operetta with a 40 × water objective at 512 × 512 resolution.

Autophagy detection and compound treatments.  To monitor autophagy, cells were labeled with 
Premo Autophagy sensor LC3B-RFP (BacMam 2.0) at a MOI of 10 (Thermo Fisher Scientific, #P36236). 48 h 
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later, live imaging was conducted with a 40 × water objective at 512 × 512 resolution for RFP and EGFP channels. 
Plates were then fixed with methanol and stained with mouse anti-p62 antibody and goat anti-mouse Alexa 
Fluor 647. Fixed plates were imaged again with the same setting with additional 647 channel for the screen.

BafA1, chloroquine, rapamycin, Torin1, and wortmannin (Tocris Bioscience) were dissolved in DMSO at 
stock concentrations resulting in 0.1% DMSO final concentrations. Serial dilutions were carried out with DMSO 
and then with culture medium to keep the DMSO concentration constant.

SH‑SY5Y neuronal differentiation and lysosome tracking.  Engineered SH-SY5Y cells were differ-
entiated into neurons as described57 with slight modifications. Cells were switched to a low serum medium 
(normal culture medium with 1% FBS) for three days. 10 μM all-trans retinoic acid was added for four days. 
Cells were maintained in neuronal medium (Neurobasal medium supplemented with 1 × N2 and B27) contain-
ing 10 ng/mL BDNF. Differentiated cells were infected with CellLight Lysosomes-RFP, BacMam 2.0 (Thermo 
Fisher Scientific, #C10504) at a MOI of 10. The next day, tau aggregation was induced as described above, and 
the culture plate was live imaged to monitor lysosomes and tau aggregation dynamics over time.

Organelle labeling and membrane potential assessments.  To monitor mitochondria and Golgi, 
cells were labeled with 75  nM MitoTracker Red CMXRos and 1  μg/mL WGA, Alexa Fluor 647 conjugate 
(Thermo Fisher Scientific) and Hoechst (1 to 5000) for 1 h. Live imaging was carried out with a 63 × water objec-
tive at 512 × 512 resolution for Hoechst, MitoTracker Red, EGFP and Alexa 647 channels. To assess mitochon-
drial membrane potential, mitochondria were labeled with 10 nM TMRE (tetramethylrhodamine, ethyl ester) 
for 20 min and cells were live imaged and quantified for TMRE intensity.

Sanger sequencing and TIDE analysis.  DNA was prepared from CRISPR cell lysates using the Mag-
MAX mirVana Total RNA Isolation Kit (Thermo Fisher Scientific) without DNase addition. PCR primers were 
designed to span gRNA edited regions, with at least 100 bp on either side and final amplicon size between 500 
and 850 bp. DNA samples were amplified by PCR. PCR product purification and Sanger sequencing were con-
ducted by Genewiz. Sanger sequencing chromatograms were used for online TIDE analysis as described58.

siRNA and ORF.  Silencer Select siRNAs (Thermo Fisher Scientific) were transfected into SH-SY5Y cells at 
15 nM using StemFect RNA Transfection kit (Stemgent). PHF was added the next day and tau aggregation was 
assessed 96 h post siRNA treatment. Cells were infected with lentiviral ORF vectors (Broad Institute) and under-
went antibiotic selection for one week prior to tau aggregation induction and assessment. siRNA knockdown 
efficiency and ORF overexpression level were evaluated by qPCR.

Mitochondrial Seahorse assays.  Real-time quantification of OCR (oxygen consumption rate) and ECAR 
(extracellular acidification rate) was performed on the Seahorse 96XFe (Agilent) instrument in pH-defined 
media and normalized to cell counts by imaging and quantification of cell confluency. SH-SY5Y cells reached 
90% confluency at the time of assay in normal culture medium. All plates contained Cas9 infected or gRNA 
control samples. The Seahorse Glycolytic Rate Assay, Mito Stress Test, and Real-Time ATP Rate Assay kits were 
used according to the manufacturer’s instructions. Each kit enables use of the OCR and ECAR rates following 
sequential injections of pharmacologic perturbations to quantify the two main energy-production pathways: 
oxidative phosphorylation and glycolysis. The Glycolytic Rate Assay utilizes a sequential injection of rotenone/
antimycin A (0.5 µM), followed by 2-deoxyglucose (50 mM), to quantify glycolysis. The MitoStress Test uses oli-
gomycin (1 µM), FCCP, then rotenone/antimycin A. The Real-Time ATP Rate Assay uses oligomycin, followed 
by rotenone/antimycin A. The calculations are listed below: glycolytic proton efflux rate (glycoPER) is the rate of 
protons released into the extracellular media due to glycolysis. GlycoPER is quantified by subtracting the extra-
cellular acidification from mitochondrial CO2 from the total Proton Efflux Rate (PER). glycoPER (pmol H + /
min) = PER (pmol H + /min) − mitoPER (pmol H + /min); glycoATP production rate (pmol ATP/min) = glyco-
PER (pmol H + /min). The mitoATP production rate (pmol ATP/min) is calculated as follows: OCRATP (pmol O2 
/min) * 2 (pmol O/pmol O2) * P/O (pmol ATP/pmol O), where O is molecular oxygen and the P/O ratio is the 
number of ATP molecules synthesized per oxygen atom reduced by an electron pair.

Total RNA isolation, RNA QC, and cDNA preparation.  Total RNA was prepared using the MagMAX 
mirVana Total RNA Isolation Kit (Thermo Fisher Scientific). RNA integrity (RIN) scores and concentration were 
determined using an Agilent Bioanalyzer with the RNA 6000 Pico or Nano kits. RIN scores ranged from 7.8 to 
10, with a mean of 9.2. RNA samples were normalized to 10 ng/µL with water and reverse transcription was 
performed for all samples in a 20 µL reaction with Superscript IV VILO (Thermo Fisher Scientific) using 16 µL 
of each RNA preparation. The cDNA yield for each reaction was determined using Quant-iT OliGreen reagent 
(Thermo Fisher Scientific). Samples with a cDNA concentration greater than 5 ng/µL were normalized to that 
value by addition of water.

Quantitative PCR (qPCR) and data analysis.  Samples were subjected to qPCR analysis using the Juno/
Biomark HD high throughput platform (Fluidigm). cDNA was preamplified for 15 PCR cycles in a multiplex 
fashion using the appropriate Taqman assay panel. Following tenfold dilution with water, the preamplified sam-
ples were prepared for loading onto the integrated fluidic circuit according to the manufacturer’s protocol. Data 
analysis was performed using the GenEx Professional software package, version 6, (MultiD Analyses AB). Start-
ing with the raw Ct values, the Normfinder feature of the software was used to identify the most robust normali-
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zation scheme, which was used to convert raw Ct values into delta Ct values. Differential gene expression values 
for each sample were calculated relative to the average expression level of the reference group using the 2^delta.

RNA‑seq analysis.  Library preparation for RNA-seq analysis was performed as described59 starting with 
28 ng of total RNA. Samples used for sequencing had an average RIN of 9.8. Sequencing was performed using a 
NextSeq550 (Illumina). Sequencing analysis was conducted by polyA-trimming off the reads before alignment. 
STAR 2.6.0a was used to align the reads to the hg19 reference. FeatureCounts was used to map sequencing reads 
to genomic features. The number of transcripts per kilobase million (TPM) was used to evaluate gene expression 
level. We used the R package “DESeq2” to calculate differential gene expression comparing the target phenotypes 
with control group. The log ratio of genes (log2fold change) was used to compare gene expression levels.

Bioinformatics analysis.  We used heatmaps and hierarchical clustering to find the structures in our gene 
expression trends and to partition genes into clusters. The heatmap was generated by the R package “pheatmap”. 
The clustering distance is calculated by the Euclidean method. The transcript expression value is presented by 
the log ratio of a gene’s log2fold change.

We use principle component analysis (PCA) as the dimensional reduction technique to study the phenotypic 
patterns with the selected genes TPM (transcripts per kilobase million). PCA is performed by the R package 
“prcomp”.

The R package “mclust” for model-based clustering was used to cluster cellular features extracted from HCI. 
The optimal number of groups was used for k-means calculation (nstart = 25, algorithm = "Hartigan-Wong"). 
The R package “hclust” with method “complete” was used to generate a circular dendrogram for cellular feature 
hierarchical clustering.

Cellular feature ranked z score enrichment analysis was conducted by GSEA (Broad Institute version 3.0) 
using weighted enrichment statistic by 1000 permutations, with FDR = 0.05 as the threshold. GO Biological 
Process, GO Molecular Function, and KEGG pathways60 were utilized.

Ranked DEGs with adjusted p value cutoff of 0.05 were used for pathway enrichment analysis via Enrichr 
platform61. KEGG60, BioPlanet, and Reactome pathways were utilized. Protein–protein interaction network and 
enrichment analyses were conducted by Cytoscape with STRING app62. STRING interactions were only limited 
to experiments and databases.

Support vector machine was used as a machine learning method by importing the R package “e1071”. The 
training data was curated by annotating 67 genes with their significant functions from various literature. The 
training strategy was to highlight the targeted category and temporarily label other categories as the ’rest’ 
("one-against-the-rest"). The binary classification was based on linear kernel (type = C-classification, cost = 10, 
scale = False). The trained model was used to predict screened genes without prior notification for their functions. 
All hyperparameters of these genes were PCA transformed and plotted in 3D space by their first three principal 
components (PC1 var = 51.3%, PC2 = 17.4%, PC3 = 12.1%).
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